加权类分数傅立叶变换及其在通信系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究背景,来源于现实需求下影响通信系统性能的两方面主要因素:首先是复杂政治、经济因素带来的对于信息安全的威胁,更重要的是通信系统宽带化与通信环境复杂化带来的各种干扰。
     传统时频域的低概率截获通信技术已经出现多年,并为大多数技术工作者熟悉,这使其对通信信号的保护性大大降低,工程中对于新型抗截获通信技术的需求十分迫切。而所谓的复杂环境,即在“高运动速率”下进行“高信息速率”传输时信号所经历的时频双弥散信道和多变的信道衰落类型。传统单载波和多载波体制在不同类型衰落信道下的性能各有优劣,但现有系统无法根据变化的通信环境自适应地选择载波体制,进而为了承载相同业务、服务相同对象却产生了使用不同技术的系统,这无疑是一种低效地资源分配方式。
     针对以上传统通信系统的不足,本文提出:面对复杂的时频环境,应该通过选择恰当的时频数学工具,在多系统、多技术、多域协同的工作方式下,建立起新的通信理论和通信方式;而数学工具本身要通过理解、推广,使其适用于实际系统的工程化需求。在此,本文选择的是一种新型的时频数学工具――加权类分数傅立叶变换(Weighted-typeFractionalFourierTransform,WFRFT)。
     分数傅立叶变换(FractionalFourierTransform,FRFT)是一种时频联合数学分析工具,具有丰富的定义形式。其中出现最早的是以“chirp”信号为正交基的FRFT,通常被称为“chirp类FRFT”(chirp-typeFRFT,CFRFT)。而本文所研究的,是一种有别于CFRFT、出现较晚的“加权类分数傅立叶变换”,即WFRFT。目前有关WFRFT的基础数学理论尚处发展阶段,其在通信领域中更无应用先例。本文通过揭示WFRFT蕴含的“时频对称”思想,提出利用离散傅立叶变换(Discrete Fourier Transform, DFT)计算连续函数WFRFT的离散算法及其约束条件;通过定义“序列的WFRFT”(以下简称WFRFT),推导得到WFRFT的矩阵表达形式。基于以上将WFRFT内涵向工程实用化方向拓展的工作,建立起WFRFT数字通信系统框架,论证了其与现有系统的兼容性。
     在将WFRFT数学工具工程化的基础上,根据WFRFT系统结构和信号特征,本文提出WFRFT在通信系统中应用的两个主要研究方向:①提出基于WFRFT的抗截获通信新技术和方案;②提出在通信系统中,WFRFT可以视为同时包含单、多载波体制的混合调制过程,并由此提出了基于WFRFT的载波体制融合方法和协作通信方式,尝试解决不同载波体制通信系统之间的融合与协作问题。
     针对现有低概率截获通信技术的不足,本文提出了利用WFRFT信号的特征进行低概率截获通信的思想,分析了WFRFT信号的抗截获性能。WFRFT信号的星座图随着参数的变化呈现出旋转、分裂等特性,其统计特性服从复高斯分布,这使得大多基于高阶累积量等统计方法的盲信号检测手段失效。在对抗参数扫描的特性上,WFRFT系统也有不错表现。与跳频、直扩技术结合,文中又提出了动态改变WFRFT参数的抗截获通信策略,而利用WFRFT作为嵌入信号的波形搭载隐蔽通信方案可以提高现有同类系统的性能。
     现有通信系统中存在单载波、多载波体制不兼容的现象,而为了提高资源使用效率和系统性能,未来的通信系统将朝着不同载波体制相互融合与协同工作的方向发展。对比WFRFT系统与正交频分复用(Orthogonal Frequency-DivisionMultiplexing, OFDM)系统、单载波频域均衡(Single Carrier with Frequency DomainEqualization, SC-FDE)系统的实施方式和数学模型,文中揭示了4-WFRFT在通信系统中所蕴含的物理含义:序列的WFRFT是一个同时包含有单载波体制和多载波体制的混合载波体制调制过程。而WFRFT系统的这一特点正适应于载波体制发展的需求,有助于解决不同载波体制同时传输、协同工作的技术难题。
     WFRFT信号的峰均比要小于OFDM信号,其实现复杂度与OFDM系统和SC-FDE系统相当。文中比较了衰落信道下WFRFT、OFDM和单载波系统的误码率性能,在单弥散信道中WFRFT系统性能介于OFDM和单载波系统之间,而在双弥散信道中选择恰当的参数可以使得WFRFT系统性能同时优于OFDM和单载波系统。比较的结论认为WFRFT系统在衰落信道下的系统性能鲁棒性更强,通过WFRFT参数的恰当选择,即WFRFT参数与信道的匹配,可以使得单、多载波体制获得最优的协同工作性能。同时文中还提出了基于分布式发送天线的载波体制协同通信方案与加权分数域均衡等新想法。
     在论文内容之外,WFRFT应用于通信领域还有更多值得深入研究的问题,特别是利用其混合载波体制调制的特性。目前,有关利用WFRFT进行信道估计和加权分数域均衡等技术正在深入研究中,文中所述内容的WFRFT通信桌面演示系统已经初步建立。
The background of this thesis is formed from the two aspects decreasing perfor-mance of communication systems: one is the threat to information security induced bythe comprehensive political and economic factors, and a more important one is the inter-ferences caused by high information rate and complex communication environments.
     The traditional Low Probability Interception (LPI) communication techniques de-signed on time or frequency domain have existed for a long time that they are knownto most researchers, which impairs its capability for protecting communication signals.So there are exigent demands for new LPI techniques. The so called complex environ-ments means time-frequency doubly dispersive channels and varying channel fading typeswhen delivers high data rate in a high moving speed. The single carrier scheme andmulti-carrier scheme have different performance under channels of different fading types.However, few current systems is able to vary carrier scheme automatically that systemswith different techniques have to be adopted for the same services and customers. It isno doubt the waste of resources. In order to develop the current systems, I propose inthe thesis that: the proper time-frequency mathematical analysis tools and cooperationamong systems, techniques and domains should be adopted to solve the problems oc-curring in complex time-frequency channels by building up new communication theoriesand modes; while the mathematical tools themselves should be generalized to satisfy theengineering demands. In this thesis, I consider a rather new time-frequency mathematicaltool–Weighted-type Fractional Fourier Transform (WFRFT).
     Fractional Fourier Transform (FRFT), which is a mathematics tool for time-frequency analysis, has a variety of definitions. And the earliest one is chirp-type FRFT(CFRFT), which is notified by its name that has chirp signals as its orthogonal basis. Inthis thesis, whereas, we focus on a different kind of FRFT–WFRFT, which was proposedlater than CFRFT. WFRFT is a developing theory that its applications have never beenseen in communications. The thesis reveals the symmetrical time-frequency property ofWFRFT. Moreover, a creative work on the basic theory of WFRFT is done on the discretealgorithm of 4-terms WFRFT for continuous functions based on Discrete Fourier Trans-form (DFT), and also its restrict conditions for utilization. WFRFT matrix is obtained by defining the WFRFT for sequence. The structures of WFRFT digital communicationsystems are designed and proved to be compatible to current systems based on the gener-alization works on WFRFT.
     On the aspect of applications in communications, there are two major scenarioswith the considerations of WFRFT’s structure and its signals’characters. One is thenew anti-interception techniques based on WFRFT. The other one is the carrier schemeconvergence and cooperation based on WFRFT’s physical structure of hybrid modulationprocess with single carrier and multi-carrier scheme.
     With a view to the weakness of current LPI communication techniques, I suggest tomake WFRFT involve and analyze the anti-interception capability for WFRFT’s signals.The constellation of WFRFT signals appears the rotation and fission property along withthe variation of WFRFT parameter. Meanwhile, when WFRFT parameter satisfies certainconditions, the signal constellation on the complex plane appears to have a quasi Gaus-sian probability density, which invalidates most of the blind detection methods based onhigher order cumulants. When the WFRFT parameter is scanned and detected one byone, WFRFT signals also appears convinced security. In With the combination of fre-quency hopping or Directed Sequence Spread Spectrum techniques, alterable parametersschemes are proposed in order to enhance the anti-interception capability of WFRFT sys-tems. Covert communication based on waveform overlay with WFRFT signals wouldalso improve the efficiency of traditional overlay systems.
     Although the single carrier and multi-carrier scheme are not compatible in currentcommunication systems, the convergence and cooperation of systems with different car-rier schemes is moving on. By analogy with Orthogonal Frequency-Division Multiplex-ing (OFDM) and Single Carrier with Frequency Domain Equalization (SC-FDE) system,the physical meaning of 4-WFRFT in digital communication is revealed: 4-WFRFT is acompatible process of multi-carrier and single carrier modulation. With respect to carrierschemes in current communication systems and the popular researches on relative tech-niques, I believe that convergence and cooperation of different carrier schemes are theforeseeing requirements which WFRFT can satisfy.
     The Peak-to-Average Power Rate of WFRFT signals is smaller than that of OFDMsignals. And WFRFT system has a comparative hardware complexity to that of OFDM orSC-FDE. The comparisons of bit error rate performance among different carrier schemes under fading channels are made in the thesis. WFRFT takes the second place under singledispersive channels, while it outperforms both of OFDM and single carrier system underdouble dispersive channels. The simulation results show that WFRFT system has the mostrobust performance under different kinds of fading channels. And the proper parameterof WFRFT that matches the channel will lead to the optimal cooperative carrier scheme.More creative works, such as cooperative carrier scheme communication system based ondistributed transmission antennae and equalization on the weighting fractional domain,can also be seen in the thesis.
     Beyond the contents of this thesis, there are more worthy subjects about the appli-cations of WFRFT in communications, especially when the property of hybrid carrierscheme modulation is considered. Channel estimation and equalization based on WFRFTare in the processes and the rudiments of WFRFT demo system have been established.
引文
1张贤达.现代信号处理(第二版).清华大学出版社, 2002: 349–353
    2 M. Martone. A multicarrier system based on the fractional Fourier transform fortime-frequency-selective channels. IEEE Transactions on Communications. 2001,49(6): 1011–1020
    3 S. Barbarossa, R. Torti. Chirped-OFDM for transmissions over time-varying chan-nels with linear delay/Doppler spreading. IEEE International Conference on Acous-tics, Speech, and Signal Processing, 2001. Proceedings of ICASSP’01. 2001, 4:2377–2380
    4陶然,陈恩庆,孟祥意,等.基于分数阶傅立叶变换的正交频分复用(OFDM)系统.中国专利ZL200610076692.3. 2008
    5 S. Boumard, A. M?¨?mmel?¨?. Robust and Accurate Frequency and Timing Synchro-nization Using Chirp Signals. IEEE Transactions on Broadcasting. 2009, 55(1):115–123
    6 H. Liu. Multicode ultra-wideband scheme using chirp waveforms. IEEE Journalon Selected Areas in Communications. 2006, 24(4): 885– 891
    7李瓒.隐蔽通信自适应传输和频率认知理论研究.西安电子科技大学博士学位论文. 2006: 11-17
    8 R. F. Mills, G. E. Prescott. Noncoherent pulse combining for improved multiple ac-cess LPI network performance. IEEE Military Communications Conference, 1993.Proceedings of MILCOM’93. 1993, 2: 590–594
    9 R. F. Mills, G. E. Prescott. Waveform design and analysis of frequency hoppingLPI networks. IEEE Military Communications Conference, 1995. Proceedings ofMILCOM’95. 1995, 2: 778–782
    10 J. D. Endsley, R. A. Dean. Multi-access properties of transform domain spreadspectrum systems. Proceedings of Tactical Communications Conference, 1994.Vol. 1. Digital Technology for the Tactical Communicator. 1994, 1: 505
    11 J. Y. Liu, Y. T. Su. Performance Analysis of Transform Domain CommunicationSystems in the Presence of Spectral Mismatches. IEEE Military CommunicationsConference, 2007. Proceedings of MILCOM’07. 2007: 1–5
    12 R. J. Mammone, O. McKee, D. Schilling. Frequency Resolution Enhancement ofa Compressive Receiver by Spectral Estimation. IEEE Military CommunicationsConference, 1983. Proceedings of MILCOM’83. 1983, 3: 713–719
    13 G. Lopez-Risueno, J. Grajal, O. A. Yeste-Jeda, et al. Two digital receivers basedon time-frequency analysis for signal interception. Proceedings of the InternationalRadar Conference, 2003. 2003: 394–399
    14 G. Lopez-Risueno, J. Grajal, A. Sanz-Osorio. Digital channelized receiver based ontime-frequency analysis for signal interception. IEEE Transactions on Aerospaceand Electronic Systems. 2005, 41(3): 879–898
    15马建仓,牛奕龙,陈海洋.盲信号处理.国防工业出版社, 2006: 1–6, 28–33
    16 E. Chandler, G. Cooper. Low Probability of Intercept Performance Bounds forSpread-Spectrum Systems. IEEE Journal on Selected Areas in Communications.1985, 3(5): 706–713
    17 N. Benvenuto, S. Tomasin. Block Iterative DFE for Single Carrier Modulation. IEEElectronics Letters. 2002, 38(19): 1144–1145
    18尹长川,罗涛,乐光新.多载波宽带无线通信技术.北京邮电大学出版社,2004: 16–50
    19 S. B. Weinstein. The history of orthogonal frequency-division multiplexing. IEEECommunications Magazine. 2009, 47(11): 26–35
    20 E. Gray. Electrical Telegraph for Transmitting Musical Tones. U.S. Patent 166095.1875
    21 A. G. Bell. Improvement in Telegraphy. U.S. Patent 174465. 1876
    22 T. A. Edison. Acoustic Telegraph. U.S. Patent 182996. 1876
    23 S. Kasturia, J. Aslanis, J. Cioffi. Vector coding for partial-response channel. IEEETransactions on Information Theory. 1990, 36(4): 741–762
    24 A. Muayyadi, M. Abu-Rgheff. Wavelet-based multicarrier CDMA system and its.IEE Proceedings-Communications,. 2003, 150(6): 445– 452
    25 X. Yu, X. Zhang, G. Bi. Performance of an MC-CDMA system based onthe complex wavelet packet and pre-equalisation technique. IEE Proceedings-Communications,. 2004, 151(2): 152–156
    26 Y. Zhang, S. Cheng. A novel multicarrier signal transmission system over multipathchannel of low-voltage power line. IEEE Transactions on Power Delivery. 2004,19(4): 1668–1672
    27 H. Zhang, H. Fan, A. Lindsey. Receiver design for wavelet-based multicarrierCDMA communications. IEEE Transactions on Vehicular Technology. 2005,54(2): 615–628
    28 L. Yu, L. White. Complex rational orthogonal wavelet and its application in com-munications. IEEE Signal Processing Letters. 2006, 13(8): 477–480
    29 M. M. Akho-Zahieh, O. C. Ugweje. Wavelet packet based MC/MCD-CDMA com-munication system. Electronics Letters. 2006, 42(11): 644–645
    30 R. Dilmaghani, M. Ghavami. Comparison between wavelet-based and Fourier-based multicarrier UWB systems. IET Communications. 2008, 2(2): 353–358
    31 M. M. Akho-Zahieh, O. C. Ugweje. Diversity Performance of a Wavelet-Packet-Based Multicarrier Multicode CDMA Communication System. IEEE Transactionson Vehicular Technology. 2008, 57(2): 787–797
    32 S. Baig, M. Mughal. Multirate signal processing techniques for high-speed commu-nication over power lines. IEEE Communications Magazine. 2009, 47(1): 70–76
    33 G. Cherubini, E. Eleftheriou, S. Olcer. Filtered multitone modulation for VDSL.Proceedings of IEEE Globecom’99. Brazil, 1999: 1139–1144
    34 G. Cherubini, E. Eleftheriou, S. Olcer. Filtered multitone modulation for Very HighSpeed Digital Subscriber Lines. IEEE Journal on Selected Areas in Communica-tions. 2002, 20: 1016–1028
    35 B. Saltzberg. Performance of an Efficient Parallel Data Transmission System. IEEETransactions on Communication Technology. 1967, 15(6): 805–811
    36 R. Chang, R. Gibby. A Theoretical Study of Performance of an Orthogonal Multi-plexing Data Transmission Scheme. IEEE Transactions on Communication Tech-nology. 1968, 16(4): 529–540
    37 J. Salz, S. B. Weinstein. Fourier transform communication system. Proceedings ofthe first ACM symposium on Problems in the optimization of data communicationssystems. New York, NY, USA, 1969: 99–128
    38 S. Weinstein, P. Ebert. Data Transmission by Frequency-Division Multiplexing Us-ing the Discrete Fourier Transform. IEEE Transactions on Communication Tech-nology. 1971, 19(5): 628–634
    39 A. Peled, A. Ruiz. Frequency domain data transmission using reduced com-putational complexity algorithms. IEEE International Conference on Acoustics,Speech, and Signal Processing, 1980. Proceedings of ICASSP’80. 1980, 5: 964–967
    40 J. A. C. Bingham. Multicarrier modulation for data transmission: an idea whosetime has come. IEEE Communications Magazine. 1990, 28(5): 5–14
    41 D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, et al. Frequency DomainEqualization for Singer-Carrier Broadband Wireless Systems. IEEE Communica-tions Magazine. 2002, 40(4): 58–66
    42 D. R. Gimlin, C. R. Patisaul. On minimizing the peak-to-average power ratio for thesum of N sinusoids. IEEE Transactions on Communications. 1993, 41(4): 631–635
    43 H. Ochiai, H. Imai. On the distribution of the peak-to-average power ratio in OFDMsignals. IEEE Transactions on Communications. 2001, 49(2): 282–289
    44 V. Tarokh, H. Jafarkhani. On the Computation and Reduction of the Peak-to-Average Power Ratio in Multicarrier Communications. IEEE Transactions on Com-munications. 2000, 48(1): 37–44
    45 S. H. Han, J. H. Lee. An overview of peak-to-average power ratio reduction tech-niques for multicarrier transmission. IEEE Wireless Communications. 2005, 12(2):56–65
    46 C. L. Wang, S. J. Ku, C. J. Yang. A Low-Complexity PAPR Estimation Scheme forOFDM Signals and Its Application to SLM-Based PAPR Reduction. IEEE Journalof Selected Topics in Signal Processing. 2010, 4(3): 637–645
    47 J. Hou, J. Ge, D. Zhai, et al. Peak-to-Average Power Ratio Reduction of OFDMSignals With Nonlinear Companding Scheme. IEEE Transactions on Broadcasting.2010, 56(2): 258–262
    48 X. Ma, C. Tepedelenlioglu, G. B. Giannakis. Non-data-aided carrier offset estimatorfor OFDM with null subcarriers: Identifiability, algorithms, and performance. IEEEJournal on Selected Areas in Communications. 2001, 19(12): 2504–2515
    49 M. Morelli. Timing and frequency synchronization for uplink of an OFDMA sys-tem. IEEE Transactions on Communications. 2004, 52(2): 296–306
    50 Y. Ma, R. Tafazolli. Estimation of Carrier Frequency Offset for Multicarrier CDMAUplink. IEEE Transactions on Signal Processing. 2007, 55(6): 2617–2627
    51 J. K. Cavers. An Analysis of Pilot Symbol Assisted Modulation for Rayleigh FadingChannels. IEEE Transactions on Vehicular Technology. 1991, 40(4): 686–693
    52 O. Edfors, M. Sandell, van de Beek J-J, et al. OFDM Channel Estimation by Sin-gular Value Decomposition. IEEE Transactions on Communications. 1998, 46(7):931–939
    53 Y. Li, L. J. J. Cimini, N. R. Sollenberger. Robust Channel Estimation for OFDMSystems with Rapid Dispersive Fading Channels. IEEE Transactions on Commu-nications. 1998, 46(7): 902–915
    54 M. Luise, R. Reggiannini, G. M. Vitetta. Blind Equalization/Detection for OFDMSignals over Frequency-Selective Channels. IEEE Journal on Selected Areas inCommunications. 1998, 16(8): 1568–1578
    55 Y. Li, N. Seshadri, S. Ariy-avisitakul. Channel Estimation for OFDM Systemswith Transmitter Diversity in Mobile Wireless Channels. IEEE Journal on SelectedAreas in Communications. 1999, 17(3): 461–471
    56 H. Bolcskei, R. W. J. Heath, A. J. Paulraj. Blind Channel Identification and Equal-ization in OFDM-Based Multi-Antenna Systems. IEEE Transactions on SignalProcessing. 2001, 50(1): 96–109
    57 S. Zhou, G. B. Giannakis. Finite-Alphabet Based Channel Estimation for OFDMand Related Multicarrier Systems. IEEE Transactions on Communications. 2001,49(8): 1402–1414
    58 S. Coleri, M. Ergen, A. Puri, et al. Channel Estimation Techniques Based on PilotArrangement in OFDM Systems. IEEE Transactions on Broadcasting. 2002, 48(3):223–229
    59 M. Dong, L. Tong. Optimal Design and Placement of Pilot Symbols for ChannelEstimation. IEEE Transactions on Signal Processing. 2002, 50(12): 3055–3069
    60 Y. Li. Simplified Channel Estimation for OFDM Systems with Multiple TransmitAntennas. IEEE Transactions on Wireless Commmications. 2002, 1(1): 67–75
    61 I. Barhumi, G. Leus, M. Moonen. Optimal Training Design for MIMO OFDMSystems in Mobile Wireless Channels. IEEE Transactions on Signal Processing.2003, 51(6): 1615–1624
    62 J. Liang, Z. Ding. Nonminimum-Phase FIR Channel Estimation Using CumulantMatrix Pencils. IEEE Transactions on Signal Processing. 2003, 51(9): 2310–2320
    63 O. Simeone, Y. Bar-Ness, U. Spagnolini. Pilot-Based Channel Estimation forOFDM Systems by Tracking the Delay-Subspace. IEEE Transactions on WirelessCommunications. 2004, 3(1): 315–324
    64 A. Vahlin, N. Holte. Optimal finite duration pulses for OFDM. IEEE Transactionson Communications. 1996, 44(1): 10–14
    65 H. B(?)¨?lcskei, P. Duhamel, R. Hleiss. A subspace-based approach to blind chan-nel identification in pulse shaping OFDM/OQAM systems. IEEE Transactions onSignal Processing. 2001, 49(7): 1594–1598
    66 N. Baas, D. Taylor. Pulse shaping for wireless communication over time- orfrequency-selective channels. IEEE Transactions on Communications. 2004, 52(9):1477– 1479
    67 P. Tan, N. Beaulieu. Reduced ICI in OFDM systems using the”better than”raised-cosine pulse. IEEE Communications Letters. 2004, 8(3): 135– 137
    68 M. Roberts, M. Temple, R. Raines, et al. Communication Waveform Design Usingan Adaptive Spectrally Modulated, Spectrally Encoded (SMSE) Framework. IEEEJournal of Selected Topics in Signal Processing. 2007, 1(1): 203–213
    69 P. Jung, G. Wunder. The WSSUS Pulse Design Problem in Multicarrier Transmis-sion. IEEE Transactions on Communications. 2007, 55(10): 1918–1928
    70 G. Lin, L. Lundheim, N. Holte. Optimal Pulses Robust to Carrier Frequency Offsetfor OFDM/QAM Systems. IEEE Communications Letters. 2008, 12(3): 161–163
    71 S. Mason, C. Berger, S. Zhou, et al. Detection, Synchronization, and Doppler ScaleEstimation with Multicarrier Waveforms in Underwater Acoustic Communication.IEEE Journal on Selected Areas in Communications. 2008, 26(9): 1638–1649
    72 J. Xu, T. Strohmer. Pulse Construction in OFDM Systems Via Convex Optimiza-tion. IEEE Transactions on Communications. 2008, 56(8): 1225–1230
    73 C. D. Chung. Spectral precoding for rectangularly pulsed OFDM. IEEE Transac-tions on Communications. 2008, 56(9): 1498–1510
    74 L. Cheng, B. Henty, R. Cooper, et al. A Measurement Study of Time-Scaled
    802.11a Waveforms Over The Mobile-to-Mobile Vehicular Channel at 5.9 GHz.IEEE Communications Magazine. 2008, 46(5): 84–91
    75 N. Zhou, X. Zhu, J. Gao, et al. Optimal asymmetric resource allocation with limitedfeedback for OFDM based relay systems. IEEE Transactions on Wireless Commu-nications. 2010, 9(2): 552–557
    76 S. Wang. Efficient Resource Allocation Algorithm for Cognitive OFDM Systems.IEEE Communications Letters. 2010, 14(8): 725–727
    77 J. Xu, S.-J. Lee, W.-S. Kang, et al. Adaptive Resource Allocation for MIMO-OFDM Based Wireless Multicast Systems. IEEE Transactions on Broadcasting.2010, 56(1): 98–102
    78 X. Kang, H. Garg, Y.-C. Liang, et al. Optimal power allocation for OFDM-basedcognitive radio with new primary transmission protection criteria. IEEE Transac-tions on Wireless Communications. 2010, 9(6): 2066–2075
    79 W. Dang, M. Tao, H. Mu, et al. Subcarrier-pair based resource allocation for cooper-ative multi-relay OFDM systems. IEEE Transactions on Wireless Communications.2010, 9(5): 1640–1649
    80 Y.-U. Jang, E.-R. Jeong, Y. Lee. A Two-Step Approach to Power Allocation forOFDM Signals Over Two-Way Amplify-and-Forward Relay. IEEE Transactionson Signal Processing. 2010, 58(4): 2426–2430
    81 Z. Wang, X. Ma, G. B. Giannakis. OFDM or Single-Carrier Block Transmissions.IEEE Transactions on Communications. 2004, 52(3): 380–394
    82 H. Sari, G. Karam, I. Jeanclaude. Frequency-Domain Equalization of Mobile Radioand Terrestrial Broadcast Channels. Proceedings of IEEE GLOBECOM’94. SanFrancisco, Califonia, 1994: 1–5
    83 H. Sari, G. Karam, I. Jeanclaude. Transmission techniques for digital terrestrial TVbroadcasting. IEEE Communications Magazine. 1995, 33(2): 100–109
    84 M. Noune, A. Nix. Frequency-domain precoding for single carrier frequency-division multiple access. IEEE Communications Magazine. 2009, 47(6): 68–74
    85 C. T. Lam, D. D. Falconer, F. Danilo-Lemoine. Iterative frequency domain channelestimation for dft-precoded ofdm systems using in-band pilots. IEEE Journal onSelected Areas in Communications. 2008, 26(2): 348–358
    86 N. Benvenuto, R. Dinis, D. Falconer, et al. Single Carrier Modulation With Non-linear Frequency Domain Equalization: An Idea Whose Time Has Come—Again.Proceedings of the IEEE. 2010, 98(1): 69–96
    87 P. Vandenameele, L. V. der Perre, B. Gyselinckx, et al. A Single-Carrier FrequencyDomain SDMA Basestation. Proceedings of IEEE ICASSP’00. Piscataway, NJ,2000, 6: 3714–3717
    88 J. Coon, S. Armour, M. Beach, et al. Adaptive Frequency Domain Equalizationfor Single-Carrier Multiple-Input Multiple-Output Wireless Transmissions. IEEETransations on Signal Process. 2005, 53(8): 3247–3256
    89 J. Tubbax, L. V. der Perre, S. Donnay, et al. Single-carrier communications us-ing decision-feedback equalization for multiple antennas. Proceedings of IEEEICC’03. 2003, 4: 2321–2325
    90 X. Zhu, R. D. Murch. Layered space-frequency equalization in a single-carrierMIMO system for frequency-selective channels. IEEE Transactions on WirelessCommunications. 2004, 3(3): 701–708
    91 R. Kalbasi, R. Dinis, D. D. Falconer, et al. Hybrid time-frequency layered space-time receivers for severe time-dispersive channels. Proceedings of IEEE SPAWC.Portugal, 2004: 218–222
    92 R. Kalbasi, R. Dinis, D. D. Falconer, et al. Layered space-time receivers for single-carrier transmission with iterative frequency-domain equalization. Proceedings ofIEEE VTC Spring. 2004, 1: 575–579
    93 Y. Zhu, K. B. Ben Letaief. Single-Carrier Frequency-Domain Equalization WithNoise Prediction for MIMO Systems. IEEE Transactions on Communications.2007, 55(5): 1063–1076
    94 N. Benvenuto, S. Tomasin. On the Comparison between OFDM and Single Carrierwith a DFE Using a Frequency Domain Feedforward Filter. IEEE Transactions onCommunications. 2002, 50(6): 947–955
    95 A. Gusmao, R. Dinis, N. Esteves. On frequency domain equalization and diversitycombining for broadband wireless communications. IEEE Transactions on Com-munications. 2003, 51(7): 1029–1033
    96 Y. Zhu, K. B. Letaief. Single-Carrier Frequency-Domain Equalization WithDecision-Feedback Processing for Time-Reversal Space-Time Block-Coded Sys-tems. IEEE Transactions on Communications. 2005, 53(7): 1127–1131
    97 F. Pancaldi, G. M. Vitetta. Frequency-Domain Equalization for Space-Time Block-Coded Systems. IEEE Transactions on Wireless Communications. 2005, 4(6):2907–2916
    98 J. T. E. McDonnell, T. A. Wilkinson. Comparison of Computation Complexity ofAdaptive Equalization and OFDM for Indoor Wireless Networks. Proceedings ofPIMRC’96. Taipei, Taiwan, 1996: 1088–1090
    99 Y. Han, H. Huh, J. Krogmeier. Comparison of error probability for OFDM and SC-FDE. Conference Record of the Thirty-Seventh Asilomar Conference on Signals,Systems and Computers, 2003. 2003, 1: 497–501
    100刘谦雷,杨绿溪.单载波频域均衡与多载波OFDM误码性能的理论比较.电子与信息学报. 2005,27(3):411–414
    101方朝曦,奚家熹,王宗欣.基于迫零均衡的单载波分块传输系统的误符号率分析.通信学报. 2010,31(1):80–84
    102 P. Xiao, L. G. Barbero, M. Sellathurai, et al. On the Uncoded BER PerformanceBound of the IEEE 802.16d Channel. IEEE Signal Processing Letters. 2008, 15:561–564
    103 J. Louveaux, L. Vandendorpe, T. Sartenaer. Cyclic prefixed single carrier and mul-ticarrier transmission: bit rate comparison. IEEE Communications Letters. 2003,7(4): 180–182
    104 B. Devillers, L. Vandendorpe. Bit rate comparison of adaptive OFDM and cyclicprefixed single-carrier with DFE. IEEE Communications Letters. 2009, 13(11):838–840
    105 G. Berardinelli, L. Ruiz de Temino, S. Frattasi, et al. OFDMA vs. SC-FDMA:performance comparison in local area imt-a scenarios. IEEE Wireless Communi-cations. 2008, 15(5): 64–72
    106 J. F. Li, Y. Du, Y. Liu. Comparison of Spectral Efficiency for OFDM and SC-FDEunder IEEE 802.16 Scenario. 11th IEEE Symposium Computers and Communica-tions, 2006. Proceedings of ISCC’06. IEEE, 2006: 467–471
    107 R. W. Chang. Orthogonal frequency division multiplexing. U.S. Patent 3488445.1970
    108 P. Bello. Selectrive Fading Limitations of the Kathryn Modem and Some SystemDesign Considerations. IEEE Transactions on Communication Technology. 1965,13(3): 320–333
    109 M. Zimmerman, A. Kirsch. The AN/GSC-10 (KATHRYN) Variable Rate DataModem for HF Radio. IEEE Transactions on Communication Technology. 1967,15(2): 197–204
    110 G. Porter. Error Distribution and Diversity Performance of a Frequency-DifferentialPSK HF Modem. IEEE Transactions on Communication Technology. 1968, 16(4):567–575
    111 H. K. Markey, G. Antheil. Secret Communication System. U.S. Patent 2292387.1942
    112 M. Corson, R. Laroia, A. O’Neill, et al. A new paradigm for IP-based cellularnetworks. IT Professional. 2001, 3(6): 20–29
    113 C. Eklund, R. Marks, K. Stanwood, et al. IEEE standard 802.16: a technicaloverview of the WirelessMANTM air interface for broadband wireless access.IEEE Communications Magazine. 2002, 40(6): 98–107
    114 A. Ghosh, D. Wolter, J. Andrews, et al. Broadband wireless access withWiMax/802.16: current performance benchmarks and future potential. IEEE Com-munications Magazine. 2005, 43(2): 129–136
    115 B. Li, Y. Qin, C. P. Low, et al. A Survey on Mobile WiMAX [Wireless BroadbandAccess]. IEEE Communications Magazine. 2007, 45(12): 70–75
    116 M. Peng, W. Wang, H.-H. Chen. TD-SCDMA Evolution. IEEE Vehicular Technol-ogy Magazine. 2010, 5(2): 28–41
    117 M. Chang, Z. Abichar, C.-Y. Hsu. WiMAX or LTE: Who will Lead the BroadbandMobile Internet? IT Professional. 2010, 12(3): 26–32
    118 I.-K. Fu, Y.-S. Chen, P. Cheng, et al. Multicarrier technology for 4G WiMax system.IEEE Communications Magazine. 2010, 48(8): 50–58
    119 E. Dahlman, S. Parkvall, J. Sk?¨?ld, et al. 3G Evolution HSPA and LTE for MobileBroadband (Second Edition)影印版.人民邮电出版社, 2010: 29–80
    120张雪丽,王睿,董晓鲁,等.应急通信新技术与系统应用.机械工业出版社,2010: 126–136
    121 A/54A Guide to Use of the ATSC Digital Television Standard, with CorrigendumNo.1, 2006
    122 Z. Yang, L. Tong, L. Yang. Outage probability comparison of CP-OFDM andTDS-OFDM for broadcast channels. IEEE Global Telecommunications Confer-ence, 2002. Proceedings of IEEE GLOBECOM’02. 2002, 1: 594–598
    123杨知行主编.地面数字电视传输技术与系统.人民邮电出版社, 2009: 4–9,
    230124 Y. Wang, X. Dong, P. Wittke, et al. Cyclic prefixed single carrier transmission inultra-wideband communications. IEEE International Conference on Communica-tions, 2005. Proceedings of IEEE ICC’05. 2005, 4: 2862–2866
    125 Y. Wang, X. Dong. Performance of SC-FDE in UWB communications with channelestimation errors. IEEE Pacific Rim Conference on Communications, Computersand signal , 2005. Proceedings of PACRIM’05. 2005: 21–24
    126 Y. Wang, X. Dong. Frequency domain channel estimation for SC-FDE in UWBcommunications. IEEE Global Telecommunications Conference, 2005. Proceed-ings of GLOBECOM’05. 2005, 6: 3654–3658
    127 Y. Wang, X. Dong. A TDMA scheme for SC-FDE UWB communications. IEEEGlobal Telecommunications Conference, 2005. Proceedings of GLOBECOM’05.2005, 6: 3659–3663
    128 Y. Wang, X. Dong. A time-division multiple-access SC-FDE system with IBI sup-pression for UWB communications. IEEE Journal on Selected Areas in Communi-cations. 2006, 24(4): 920–926
    129 Y. Wang, X. Dong, P. Wittke, et al. Cyclic prefixed single carrier transmission inultra-wideband communications. IEEE Transactions on Wireless Communications.2006, 5(8): 2017–2021
    130 Y. Wang, X. Dong. Frequency-Domain Channel Estimation for SC-FDE in UWBCommunications. IEEE Transactions on Communications. 2006, 54(12): 2155–2163
    131 Y. Wang, X. Dong, I. Fair. A Method for Spectrum Shaping and NBI Suppressionin UWB Communications. IEEE International Conference on Communications,2006. Proceedings of IEEE ICC’06. 2006, 4: 1476–1481
    132 Y. Wang, X. Dong, I. Fair. Spectrum Shaping and NBI Suppression in UWB Com-munications. IEEE Transactions on Wireless Communications. 2007, 6(5): 1944–1952
    133 Y. Wang, X. Dong. Impact of Frequency Offset and Timing Offset on the Perfor-mance of SC-FDE UWB. IEEE Global Telecommunications Conference, 2006.Proceedings of IEEE GLOBECOM’06. 2006: 1–5
    134 Y. Wang, X. Dong. Comparison of Frequency Offset and Timing Offset Effects onthe Performance of SC-FDE and OFDM Over UWB Channels. IEEE Transactionson Vehicular Technology. 2009, 58(1): 242–250
    135 D. Wang, L. G. Jiang, C. He. Robust Noise Variance and Channel Estimation forSC-FDE UWB Systems under Narrowband Interference. IEEE Transactions onWireless Communications. 2009, 8(6): 3249–3259
    136 U. Li, S. Mclaughlin, D. Cruickshank, et al. Towards multi-mode terminals. IEEEVehicular Technology Magazine. 2006, 1(4): 17–24
    137 W. Kozek, A. F. Molisch. Nonorthogonal pulseshapes for multicarrier communica-tions in doubly dispersive channels. IEEE Journal on Selected Areas in Communi-cations. 1998, 16(8): 1579–1589
    138 K. Liu, T. Kadous, A. M. Sayeed. Orthogonal Time-Frequency Signaling OverDoubly Dispersive Channels. IEEE Transactions on Information Theory. 2004,50(11): 2583–2603
    139 S. Das, P. Schniter. Max-SINR ISI/ICI-Shaping Multicarrier Communication Overthe Doubly Dispersive Channel. IEEE Transactions on Signal Processing. 2007,55(12): 5782– 5795
    140 I. Trigui, M. Siala, S. Affes, et al. SIR Optimized Hermite-Based Pulses for BFDMSystems in Doubly Dispersive Channels. Signals, Systems and Electronics, 2007.Proceedings of ISSSE’07. 2007, 7: 58–590
    141 H. Sari. Technical challenges and trends in broadband wireless access at frequen-cies between 2 and 11 GHz. Proceedings of International Conference on Informa-tion and Communication Technologies: From Theory to Applications 2004. 2004
    142 A. M. Sayeed, B. Aazhang. Joint Multipath-Doppler Diversity in Mobile WirelessCommunications. IEEE Transactions on Communications. 1999, 47(1): 123–132
    143陶然,邓兵,王越.分数傅里叶变换及其应用.清华大学出版社, 2009: 12–96
    144 V. Namias. The fractional order Fourier transform and its application to quantummechanics. J. Inst. Math. Applicat. 1980, 25: 241–265
    145 C. C. Shih. Fractionalization of Fourier Transform. Optics Communications. 1995,118: 495–498
    146 C. C. Shih. Optical interpretation of a complex-order Fourier transform. OpticsLetters. 1995, 20(10): 1178–1180
    147 S. T. Liu, J. D. Zhang, Y. Zhang. Properties of the fractionalization of a Fouriertransform. Optics Communications. 1997, 133: 50–54
    148 G. Cariolaro, T. Erseghe, P. Kraniauskas, et al. A Unified Framework for the Frac-tional Fourier Transforms. IEEE Transactions on Signal Processing. 1998, 46(12):3206–3219
    149 G. Cariolaro, T. Erseghe, P. Kraniauskas, et al. Multiplicity of Fractional FourierTransforms and Their Relationships. IEEE Transactions on Signal Processing.2000, 48(1): 227–241
    150 D. S. Yeung, Q. W. Ran, E. C. Tsang, et al. Complete way to fractionalize FourierTransform. Optics Communications. 2004, 230: 55–57
    151 Q. Ran, D. S. Yeung, E. C. C. Tsang, et al. General Multifractional Fourier Trans-form Method Based on the Generalized Permutation Matrix Group. IEEE Transac-tions on Signal Processing. 2005, 53(1): 83–98
    152 J. Lang, R. Tao, Q. Ran, et al. The Multiple-Parameter Fractional Fourier Trans-form. Science in China Series F: Information Sciences. 2008, 51(8): 1010–1024
    153 Q. W. Ran, H. Zhao, G. X. Ge, et al. Sampling analysis in weighted fractionalfourier transform domain. Proceedings of the 2009 International Joint Conferenceon Computational Sciences and Optimization, CSO 2009. 2009, 1: 878–881
    154史军,迟永钢,沙学军,等.加权分数傅里叶变换在采样重构中的应用.通信学报. 2010,31(4):88–93
    155 Q. W. Ran, Q. Wang, L. Y. Tan. Multifractional fourier transform method and itsapplications to image encryption. Chinese Journal of Electronics. 2003, 12(1):29–34
    156 Q. W. Ran, H. Y. Zhang, J. Zhang, et al. Deficiencies of the cryptography basedon multiple-parameter fractional Fourier transform. Optics Letters. 2009, 34(19):2945
    157 J. Lang, R. Tao, Y. Wang. Image encryption based on the multiple-parameter dis-crete fractional Fourier transform and chaos function. Optics Communications.2010, 283(10): 2092–2096
    158张贤达.矩阵分析与应用.清华大学出版社, 2004: 133–174, 453–493
    159 B. Santhanam, J. H. McClellan. The DRFT-a rotation in time-frequency space.International Conference on Acoustics, Speech, and Signal Processing, 1995. Pro-ceedings of ICASSP-95. 1995, 2: 921–924
    160 B. Santhanam, J. H. McClellan. The discrete rotational Fourier transform. IEEETransactions on Signal Processing. 1996, 44(4): 994–998
    161 R. Tao, F. Zhang, Y. Wang. Research progress on discretization of fractional Fouriertransform. Science in China Series F: Information Sciences. 2008, 51(7): 859–880
    162陶然,张峰,王越.分数阶Fourier变换离散化的研究进展.中国科学E辑:信息科学. 2008,36(4):481–503
    163 J. G. Proakis. Digital Communications (Fourth Edition)影印版.电子工业出版社,2003:202–205
    164田日才.扩频通信.清华大学出版社, 2007: 6–9
    165 F. A. P. Petitcolas, R. J. Anderson, M. G. Kuhn. Information hiding-a survey. Pro-ceedings of the IEEE. 1999, 87(7): 1062–1078
    166张邦宁,张健,郭道省.应用DS扩频信号的卫星重叠通信研究.通信学报.2005, 26(5): 57–62
    167戎雁,郝士琦,高广军.基于混沌调制技术的卫星隐蔽通信性能分析.计算机仿真. 2009,26(3):95–98
    168 S. Blunt, J. Metcalf. Estimating temporal multipath via spatial selectivity: Buildingenvironmental knowledge into waveform design for radar-embedded communica-tions. International Conference on Electromagnetics in Advanced Applications,2009. Proceedings of ICEAA’09. 2009: 513–516
    169石荣,李剑,贺岷珏.基于相位噪声模拟的隐蔽通信技术. 2009年军事通信抗干扰研讨会论文集.2009:214–218
    170 T. S. Rappaport. Wireless Communications Principles and Practice (Second Edi-tion). Publishing House of Electronics Industry, 2004: 177–246
    171杨大成等编著.现代移动通信中的先进技术.机械工业出版社, 2005: 39–84
    172 M. P(?)tzold. Mobile Fading Channels. Chichester, England: John Wiley & Sons,Ltd., 2002: 11–80
    173 W. H. Tranter, K. S. Shanmugan, T. S. Rappaport, et al.通信系统仿真原理与无线应用.北京:机械工业出版社,2006:321–378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700