分数布朗运动驱动的随机方程及其在期权定价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与经典的布朗运动相比,分数布朗运动所具有的增量间相关的性质使得分数布朗运动能用来描述或者能更确切的描述一些经典的随机分析方法所不能描述的现象,因此,分数布朗运动在金融、气象、交通、水文、互联网、生态学等领域有着重要的应用。
     本文主要研究由分数布朗运动驱动的随机方程及其在金融期权定价中的应用,在综述已有的相关研究成果的基础上,从倒向随机微分方程、随机Volterra方程、期权定价以及随机人口动力系统等四个方面进行了研究。
     在绪论中,介绍了分数布朗运动的随机计算的研究历史与进展,特别是对由分数布朗运动驱动的随机方程(如随机微分方程、随机发展方程、倒向随机微分方程、随机Volterra方程等)以及分数Black-Scholes模型的研究历史及研究热点进行了较为详尽的综述。
     在第二章中,我们介绍了本文研究所需要的分数布朗运动的定义、性质以及随机积分理论的主要成果。
     在第三章中,我们研究了由分数布朗运动驱动的倒向随机微分方程的解的存在性与唯一性问题。首先,在假设生成元关于y满足Lipschitz连续但关于z仅满足一致连续条件下,利用拟条件期望的单调性质以及Tanaka公式得到了该类方程解的存在性与唯一性结果。其,在假设生成元满足随机Lipschitz条件下,利用方程的解的不等式估计性质,构造压缩映射证明了这类方程解的存在性与唯一性。另外,我们还应用关于分数布朗运动的Girsanov定理,获得了两个倒向随机微分方程弱解存在性的等价结果。
     在第四章中,我们研究了分数噪声驱动的随机Volterra方程的解的存在性与唯一性问题。首先,通过研究确定性线性Volterra方程预解算子的性质,得到关于分数布朗运动的随机卷积的正则性结果,应用关于耗散非线性确定性Volterra方程广义适度解的存在性与唯一性结果,获得了分数噪声驱动的耗散非线性随机Volterra方程广义适度解的存在性与唯一性。其,我们引入了一个与分数布朗运动性质相似的增量间任意相关的不正则高斯过程,得到了不正则高斯噪声驱动的线性随机Volterra方程的弱解的存在性与唯一性,并将所得到的结果应用于对随机热方程弱解的存在性与唯一性研究。
     在第五章中,我们研究了分数Black-Scholes模型下的金融期权定价问题,首先,在研究一般性分数Black-Scholes模型下的金融期权定价原理的基础上,通过研究基于不同的计价单位变换的测度变换结果,得到了一个新的研究期权定价模型的方法,在此方法上,我们研究了标准买权、交换期权、分数随机利率情形下的买权等常见期权的定价公式,我们采用的方法在计算中具有便利性优点。
     在第六章中,我们研究了分数噪声驱动的年龄依赖型人口动力系统模型的解的存在性与唯一性问题。
     最后,我们对本文的结果进行了总结,并提出了一些还需要进一步研究问题。
By comparing with the classic standard Brownian motion, fractional Brownian motion shares a proposition which is the correlation between increments, so fractional Brownian motion can be applied to describe exactly some phenomenon which can't be described by classic stochastic analysis method, so fractional Brownian motion has important applications in many fields such as finance, meteorological phenomena, traffic, hydrology, international net and ecology et.
     In this dissertation, based on the summarization of some research results correlated with our topics, we studied stochastic equations driven by fractional Brownian motion and its applications in option pricing theory. That is to say, we studied the following four topics:backward stochastic differential equations, stochastic Volterra equations, option pricing theory and stochastic population dynamic system.
     In introduction, we introduced the research history and advance of the stochastic calculus to fractional Brownian motion, particularly, we gave a detailed summarization of the research history and hot topics in stochastic equations driven by fractional Brownian motion such as stochastic differential equations, stochastic evolution equations, backward stochastic differential equations, stochastic Volterra equations and fractional Black-Scholes model.
     In Chapter2, we introduced the main results in studying fractional Brownian motion such as the definition, properties and stochastic integral theory, which were used in our research topics.
     In Chapter3, we studied the existence and uniqueness of solution to backward stochastic differential equations driven by fractional Brownian motion. Firstly, under the assumption that the generator of these equations is Lipschitz continuous in y but uniformly continuous in z, we obtained a existence and uniqueness result by using the monotone proposition of quasi-conditional expectation and Tanaka formula. Secondly, under the assumption of the generator satisfied stochastic Lipschitz condition, we also obtained a existence and uniqueness result by constructing contraction mapping based on some priori inequality estimates. In addition, we obtained a equivalence result between existence of the weak solutions to two backward stochastic differential equations by using Girsanov theorem for fractional Brownian motion.
     In Chapter4, we studied the existence and uniqueness problem of the solution to stochastic Volterra equations driven by fractional noise. Firstly, we obtained a regularity result to stochastic convolution process with respect to fractional Brownian motion by using the propositions of resolvent operator to deterministic linear Volterra equations, then we obtained the existence and uniqueness of generalized mild solution to stochastic Volterra equations with fractional Brownian noise and dissipative nonlinearity by using the results that were obtained in deterministic Volterra equations with dissipative nonlinearity. Secondly, we introduced a irregular Gaussian process with arbitrary correlation between increments, which shared some similar propositions by comparing with fractional Brownian motion, then, a existence and uniqueness result of weak solution to linear stochastic Volterra equations with additive irregular Gaussian noise was obtained, and we also used the result to study the weak to stochastic heat equations.
     In Chapter5, we studied the option pricing problem in the fractional Black-Scholes environment. Firstly, based on the general option pricing theory for fractional Black-Scholes model, by selecting different assets as numeraire, we obtained a result of measure transformation and a new option pricing method. Using the method we had obtained, we obtained a option pricing formula for standard call option, exchange option, a option pricing formula was also obtained under the assumption of fractional stochastic rate process. The method we used in this chapter have convenient advantage in computing.
     In Chapter6, we studied the existence and uniqueness of solution to stochastic age-dependent population dynamic system with additive fractional noise.
     Finally, we summarized the main results of this dissertation and pointed out some issues remaining unsolved.
引文
[1]Mandelbrot B. and Van Ness J., Fractional Brownian motion, fractional noises and applications [J], SIAM Review,1968,10(2):422-437.
    [2]Alos E., Mazet 0. and Nualart D., Stochastic calculus with respect to Gaussian processes [J], Ann. Probab.2001,29(3):766-801.
    [3]Alos E., Mazet 0. and Nualart D., Stochsatic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2 [J], Stochastic Processes Appl.2000,86(1):121-139.
    [4]Nunno.G Advanced mathematical methods for finance [M], Berlin: Springer-Verlag,2005
    [5]Biagini F., Hu Y., Oksendal B. and Zhang T., Stochastic calculus for Fractional Brownian motion and applications [M], probability and its applications, Berlin:Springer-Verlag,2008
    [6]Decreusefond L. and Ustunel A.S., Stochastic analysis of the fractional Brownian motion [J], Potential Analysis,1999,10(1): 177-214.
    [7]Biagini F., Hu, Y. Oksendal B. and Sulem A., A stochastic maximum principle for processes driven by fractional Brownian motion [J], Stochastic Processes and their applications,2002,100(1):233-253.
    [8]Caithamer P., Decoupled double stochastic fractional integrals [J], Stoch. Stoch. Rep.2007,77(1):205-210.
    [9]Carmona P. and Coutin L., Fractional Brownian motion and the Markov property [J], Elect. Comm. Probab.1998,3(1):95-107.
    [10]Cheridito P. and Nualart D. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H∈(0,1/2) [J], Ann. I. H. Poincare probab. Stat.2005,41(4): 1049-1081.
    [11]Coutin L. and Qian Z., Stochastic analysis, rough path analysis and fractional Brownian motions [J], Probability Theory and Related Fields,2002,122(1):108-140.
    [12]Dagupta A. and Kallianpur G., Multiple fractional integrals [J], Probability Theory and Related Fields,1999,115(2):505-525.
    [13]Dagupta A. and Kallianpur G., Chaos decomposition of multiple fractional integrals and applications [J], Probability Theory and Related Fields,1999,115(2):527-548.
    [14]Duncan T. E., Some martingale from a fractional Brownian motion and applications [C], Proceedings of 44th IEEE Conference on decision and control, and the European control conference 2005, Spain,2005, 1753-1755.
    [15]Duncan T. E., Hu Y. and Pasik-Duncan B., Stochastic calculus for fractional Brownian motion 1 [J]. Theory, SIAM J. Control and Optim. 2000,38(2):582-612.
    [16]Duncan T. E., Jakubowski J. and Pasik-Duncan B., Stochastic integration for fractional Brownian motion in a Hilbert space [J], Stochastics and Dynamics,2006,6(1):55-75.
    [17]Feyel D. and Pradelle A. de la, Fractional integrals and Brownian processes [J], Potential Analysis,1996,10(2):273-288.
    [18]Grippenberg G. and Norros I., On the prediction of fractional Brownian motion [J], J. Appl. Probab.1996,33(2):400-410.
    [19]He S., Wang J. and Yan J., Semimartingal theory and stochastic calculus [M], Science Press and CRC Press,1992.
    [20]Hida T., Kuo H., Potthoff J. and Streit L., White noise analysis [M], Kluwer,1993.
    [21]Huang Z. Y., Foundations of stochastic analysis [M],武汉: 武汉大学出版社,1988.
    [22]Karatzas I. and Shreve S. E., Brownian motion and Stochastic calculus [M], Springer-Verlag, New York,1988.
    [23]Rogers L. C., Arbitrage with fractional Brownian motion [J], Mathematical Finance,1997,7(1):95-105.
    [24]Russo F. and Vallois P., Stochastic calculus with respect to continuous finite quadratic variation processes [J], Stochastics and Stochastics Reports 2000,70(1):1-40.
    [25]Lin S. J., Stochastic calculus of fractional Brownian motion [J], Stoch. Stoch. Rep.1995,55(1):121-140.
    [26]Perez-Abreu V. and Tudor C., Multiple stochastic fractional integrals:a transfer principle for multiple stochastic fractional integrals [J], Bol. Soc. Mat. Mexican,2002,8(1):187-203.
    [27]Hu Y., Oksendal B. and Sulem B., Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion [J], Inf. Dim. Anal. Quantum Probab. Rel. Top.2003,6(4):519-536.
    [28]Zahle M., Integration with respect to fractal functions and stochastic calculus 1 [J]. Probability Theory and its Related Fields, 1998,111(3):333-374.
    [29]Biagini F., Oksendal B., Sulem A. and Wallner N., An introduction to white noise theory and malliavin calculus for fractional Brownian motion [J], The Proceedings of the Royal Society,2004,460(2041): 347-372.
    [30]Bender C., An ITO formula for generalized functional of a fractional Brownian motion with arbitrary parameter. Stochastic processes and their applications [J],2003,104(1):81-106.
    [31]Baudoin F. and Coutin L., Operators associated with a stochastic differential equation driven by fractional Brownian motions [J], Stochastic processes and their applications,2007,117(3):550-574.
    [32]Berman S., Gaussian processes with stationary increments, Local times and sample function properties [J], Ann. Math. Stat. 1970,41(4):1260-1272
    [33]Boufoussi B. and Ouknine Yu., On a SDE driven by a fractional Brownian motion and with monotone drift [J], Elect. Comm. Probab.2003,8(1): 122-134.
    [34]Coutin L., Nualart D. and Tudor C. A., Tanaka formula for the fractional Brownian motion [J], Stochastic processes and their applications,2001,94(2):301-315.
    [35]Denis L., Erraoni M. and Ouknine Yu., Existence and uniqueness for solutions of one dimensional SDE's driven by an additive fractional noise [J], Stoch. Stoch. Rep.2004,76(2):409-427.
    [36]Diop M. A. and Ouknine Y., A linear stochastic differential equation driven by a fractional Brownian motion with Hurst parameter>1/2 [J], arXiv:1107.3790vl,2011, preprint
    [37]Duncan T. E., Nualart D., Existence of strong solution and uniqueness in law for stochastic differential equations driven by frational Brownian motion [J], Stochastics and Dynamics,2009,9(3):423-435.
    [38]Duncan T. E., Maslowski B. and Pasik-Duncan B., Solutions of stochastic linear distributed parameter equations with multiplicative fractional Gaussian noise [J], IEEE transactions on automatic control,1999.
    [39]Fannjiang A. and Komorowski T., Fractional Brownian motions in a limit of turbulent transport [J], Annals of Applied Probability, 2000,10(4):1100-1120.
    [40]Hairer M., Ergodicity of stochastic differential equations driven by fractional Brownian motion [J], The Annals of Probability,2005, 33(2):703-758.
    [41]Hu Y., Integral transformations and anticipative calculus for Brownian motion [J], Mem. Amer. Math. Soc.2005.
    [42]Hu Y., D Nualart., Differential equations driven by Holder continuous functions of order greater then 1/2, in Stochastic Analysis and Applications [M], Proc. Abel Symp., Vol.2, (Springer-Verlag,2007), 399-413.
    [43]Hu Y., Nualart D., Song X., A singular stochastic differential equation driven by fractional Brownian motion [J], Stat. Probab. Lett.2008,78(14):2075-2085.
    [44]Huang Z. Y. and Q. Lin, The weak solution for stochastic differential equations with terminal conditions [J], Applied Math,1997,10(1): 56-59.
    [45]Jumarie G., On the representation of fractional Brownian motion as an integral with respect to (dt)a [J], Applied Mathematics Letters, 2005,18(7):739-748.
    [46]Jumarie G., On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion [J], Applied Mathematics Letters,2005,18(7):817-826.
    [47]Jumarie G., Path integral for the probability of the trajectories generated by fractional dynamics subject to Gaussian white noise [J], Applied Mathematics Letter,2007,20(8):846-852
    [48]Jumarie G., Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions [J], Appl. Math. Model.,2008,32(5):836-859
    [49]Klingenhofer F. and Zahle M., Ordinary differential equations with fractal noise [J], Proceeding of the American mathematical society, 1999,127(4):1021-1028
    [50]Kunita H., Stochastic flows and stochastic differential equations [J], Cambridge University Press, Cambridge, UK,1990.
    [51]Maslowski B. and Schmalfuss B., Random dynamical systems and stationary solutions of differential equations driven by fractional Brownian motion [J], Stochastic Processes and their applications, 2004,22(6):1577-1609.
    [52]Memin J., Mishura Yu. and Valkeila E., Inequalities for the moments of Wiener integrals with respect to fractional Brownian motions [J], Stat. Prob. Letter,2001,51(2):197-206.
    [53]Nualart D., The Malliavin Calculus and Related Topics, Berlin [M], Berlin:Sprigner-Verlag,1995.
    [54]Nualart D., Stochastic integration with respect to fractional Brownian motion and applications [J], Stochastic models (Mexico City, 2002),3-39, Contemp. Math.2003,36(1),1-37.
    [55]Nualart D. and Pardoux E., Stochastic calculus with anticipating integrands [J], Probability Theory and its Relate Fields,1988,78(4): 555-581.
    [56]Nourdin I. and Simon T., On the absolute continuity of a one-dimensional SDEs driven by a fractional Brownian motion [J], Stat. Prob. Letter,2006,76(7):907-912.
    [57]Norros I., Valkeila E.and Virtamo J., On elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion [J], Bernoulli,1999,5(2):571-578.
    [58]Nualart D. and Rascanu A., Differential equations driven by Fractional Brownian motion [J], Collect. Math.2002,53(1):55-81.
    [59]Nualart D. and Ouknine Y., Regularization of differential equations by fractional noise [J], Stoch. Proc. Appl.2002,102(1) 103-116.
    [60]Nualart D. and Ouknine Y., Stochastic differential equations with additive fractional noise and locally unbounded drift, Stochastic inequalities and applications [J], Birkhauser, Basel,2003,21(2): 353-365.
    [61]Oksendal B., Stochastic differential equations:An introduction with applications,3rd [M], Berlin:Springer-Verlag,1991.
    [62]Pipiras V. and Taqqu M. S., Integration questions related to fractional Brownian motion [J], Probab. Theory Related Fields,2000, 118(2):251-291.
    [63]Zahle M., Stochastic differential equations with fractal noise [J], Math. Nachr.2005,278(9):1097-1106.
    [64]Snuparkova J., Weak solutions to stochastic differential equations driven by fractional Brownian motion [J], Czechoslovak Mathematical Journal,2009,134(4):879-907.
    [65]Mishura Yu. and Nualart D., Weak solution for stochastic differential equations driven by a fractional Brownian motion with parameter H>1/2 and discontinuous drift [J], Statistics and Probability Letters,2004,70(2):253-261.
    [66]Jien Yu-J., Ma J., Stochastic differential equations driven by fractional Brownian motions [J], Bernoulli,2009,15(4):846-870.
    [67]Ferrante M., Rovira C., Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H>1/2 [J], Bernoulli,2006,12(1):85-100.
    [68]Al-Hussein A., Martingale representation theorem in infinite dimensions [J], Arab J. Math. Sc.,2004,10(1):1-18.
    [69]Anh V. V. and Grecksch W., A fractional stochastic evolution equation driven by fractional Brownian motion [J], Monte Carlo Methods and Applications,2003,3(1):189-199.
    [70]Belinsky B. and Caithamer P., Energy estimate for the wave equation driven by a fractional Gaussian noise [J], Discr. Cont. Dyn. Syst. DCDS, Supplement 2007,92-101.
    [71]Belinsky B. and Caithamer P., Energy of the stochastic wave equation driven by a fractional Gaussian noise [J], Rand. Oper. Stoch. Eqs. 2007,15(2):303-326.
    [72]Belinskiy B. and Caithamer P., Existence criteria for solutions of linear stochastic differential equations with skew-symmetric differential operator and additive fractional Brownian noise [J], Stochastics and Dynamics,2009,9(1):153-167.
    [73]Brzezniak Z., Van Neerven J. and Salopek D., Stochastic evolution equations driven by Liouville Fractional Brownian motion [J], Arxiv: 1001.4013,2010.
    [74]Brzezniak Z., Van Neerven J., Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise, J. Math. Kyoto Univ.2003,43(2):261-303.
    [76]Caithamer P., The stochastic wave equation driven by fractional Brownian noise and temporally correlated smooth noise, Stochastics and Dynamics,2005,5(1):45-64.
    [77]Carmona R. A. and Viens F., Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter, Stoch. Stoch. Rep.1998,62(2):251-273.
    [78]Da Prato G. and Zabczyk J., Stochastic equations in infinite dimensions, Cambridge:Cambridge University Press,1992.
    [79]Densch W., Londen S.-0., On a stochastic parabolic integral equation, Functional analysis and evolution equation,2008,1(1):157-169.
    [80]Dettweiler J., van Neerven J. and Weis L., Space-time regularity of solutions of the parabolic stochastic Cauchy problem, Stoch. Anal. Appl.,2006,24(4):843-869.
    [81]Duncan T. E., Maslowski B. and Pasik-Duncan B., Fractional Brownian motion and stochastic equations in Hilbert spaces, Stochastics and Dynamics,2002,2(2):225-250.
    [82]Duncan T. E., Maslowski B. and Pasik-Duncan B., Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion, SIAM J. Math. Anal.2009,400:2286-2315.
    [83]Duncan T. E., Maslowski B. and Pasik-Duncan B., Stochastic equations in Hilbert space with multiplicative fractional Brownian Gaussian noise, Stochastic Processes and Their applications,2005,115(8): 1357-1383.
    [84]Duncan T. E., Maslowski B. and Pasik-Duncan B., Linear stochastic equations in a Hilbert space with a fractional Brownian motion, Control Theory Applications in Financial Engineering and Manufacturing, Springer-Verlag, New-York,2006,201-222.
    [85]Duncan T. E., Maslowski B. and Pasik-Duncan B., Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion, SIAM J. Math. Anal.,2009,40(12):2286-2315.
    [86]Grecksch W. and Ahn V. V., A parabolic stochastic differential equation with fractional Brownian motion input, Statistics and Probability Letters,1999,41(2):337-346.
    [87]Grecksch W. and Tudor, C. Stochastic evolution equations:A Hilbet Space Approach, Academic Press,1995.
    [88]Gubinelli M., Lejay A. and Tindel S., Young integrals and SPDEs, Potential Analysis,200625(2):307-326.
    [89]Hernandez E., Keck D. N. and Mckibben M. A., On a class of measure-dependent stochastic evolution equations driven by fBm, Journal of applied mathematics and stochastic analysis,2007, doi:10.1155/2007/69747.
    [90]Holevo A. S., On dissipative stochastic equations in Hilbert space, Probab. Theory Related Fields,1996,104(4):483-500.
    [91]Hu Y., A class of SPDE driven by fractional white noise, Stochastic processes, physics and geometry, new interplays,2, CMS Conference on proceedings, American Mathematical Society,2000,29(2):317-325.
    [92]Hu Y., Heat equation with fractional white noise potentials, Appl. Math. Optim.2001,43(3):221-243.
    [93]Hu Y. and Oksendal B., Wick approximation of quasi-linear stochastic differential equations, Stochastic Analysis and related topics, 1996,38(2):203-231.
    [94]李开泰,马逸尘,数学物理中的Hilbert空间方法[M],北京:科学出版社,2008.
    [95]Maslowski B. and Nualart D., Evolution equations driven by a fractional Brownian motion, J. Funct. Anal.2003,202(2):277-305.
    [96]Oksendal B., Optimal control of stochastic partial differential equations, Stochastic Anal. Appl.,2005,23(1):165-179.
    [97]Oksendal B., Zhang T., Multiparameter fractional Brownian motions and quasi-linear stochastic partial differential equations. Stochastics and Stochastics Reports,2001,71(1):141-163.
    [98]Peszat S., The Cauchy problem for a nonlinear stochastic wave equation in any dimension, J. Evol. Equations,2002,3(2):383-394.
    [99]Peszat S. and Zabczyk J., Nonlinear stochastic wave and heat equations, Probability Theory and its Related Fields,2000,116(2): 321-443.
    [100]Revuz D. and York M., Continuous martingales and Brownian motion, 3rd, Berlin:Springer,1999.
    [101]Temam R., Infinite dimensional dynamical systems in mechanics and physics, Second Edition, [M]世界图书出版公司,北京,2000.
    [102]Tindel S., Tudor C. A. and Viens F., Stochastic evolution equations with fractional Brownian motion, Probability Theory and its Related Fields,2003,127(1):186-204.
    [103]Tindel S. and Viens F., On space-time regularity for the stochastic heat equation on Lie groups, J. Func. Analy.1999,169(3):559-603.
    [105]Ahmed N. U. and Ding X., A semilinear Mckean-Vlasov stochastic evolution equation in Hilbert space, Stochastic processes and their applications,1995,60(1):65-85.
    [107]王明新,算子半群与发展方程[M],北京:科学出版社,2008.
    [108]Mocioalea 0. and Viens F., Space regularity of stochastic heat equations driven by irregularity Gaussian processes, communications on stochastic analysis,2007,2(2):209-229.
    [109]Mocioalea O. and Viens F., Skorohod integration and stochastic calculus beyond the fractional Brownain motion, Journal of Functional Analysis,2005,222(2):385-434.
    [110]Bonaccorsi S. and Fantozzi M., Volterra integro-differential equations with accretive operators and non-autonomous perturbations, J. Integral equation Appl.,2006,18(4):437-470.
    [111]Bonaccorsi S. and Fantozzi M., Infinite dimensional stochastic Volterra equations with dissipative nonlinearity, Dynamic systems and applications,2006,15(4):465-478.
    [112]Bonaccorsi S. and Fantozzi M., Large deviation principle for semilinear stochastic Volterra equations, Dynamatic Systems and Applications 2004,13(2):203-220.
    [113]Bonaccorsi S. and Tubaro L., Mittag-Leffler's function and stochastic linear Volterra equations of convolution type, Stochastic Anal. Appl.,2003,21(1):61-78.
    [114]Caithamer P. and Karczewska A., Convolution-type stochastic Volterra equations with additive fractional Brownian motion in Hilbert space, arXiv:math/0611832v1[math. PR],2006, preprint
    [115]Clement Ph. and Da Prato G., Some results on stochastic convolutions arising in Volterra equations perturbed by noise, Rend. Math. Ace. Lincei,1996,7(1):147-153.
    [116]Clement Ph., Da Prato G. and Pruss J., White noise perturbation of the equations of linear parabolic viscoelasticity, Rend. Istit. Mat. Univ. Trieste,1998,29(2):207-220.
    [117]Karczewska A., Properties of convolutions arising in stochastic Volterra equations, Int. J. Contemp. Math. Sciences,2007,2(21) 1037-1052.
    [118]Karczewska A. and Lizamia C., Strong solution to stochastic Volterra equations, J. Math. Anal. Appl.2009,349(2):301-310.
    [119]Karczewska A. and Lizamia C., Stochastic Volterra equations driven by cylindrical Wiener Process, Journal of Evolution equations,2007 7(4):373-386.
    [120]Karczewska A. and Lizamia C., Regularity of solutions to stochastic Volterra equations with infinite delay, Proc. Amer. Math. Soc.2007, 135(2):531-540.
    [121]Keck D. N. and Mckibben M. A., On a Mckean-Vlasov stochastic integro-differential evolution equation of Sobolev-type, Stochastic Analysis and Applications,2003,21(5):1115-1139.
    [122]Keck D. N. and Mckibben M. A., Functional integro-differentiual stochastic evolution equations in Hilbert space, Journal of Applied Mathematics and Stochastic Analysis,2003,16(1):141-161.
    [123]Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer, New York,1983.
    [124]Sperlich S., On parabolic Volterra equations disturbed by fractional Brownian motion, Stochastic analysis and applications, 2009,27(1):74-94.
    [125]Sperlich S., Wilke, M. Fractional white noise perturbations of parabolic Volterra equations, J. Appl. Analysis,2010,6(1):31-48.
    [126]Pardoux E. and Peng S., Adapted solutions of a backward stochastic differential equation, Systems Control Letter,1990,14(1):55-61.
    [127]Peng S., A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim.1990,28(4):966-979.
    [128]Peng S., Backward stochastic differential equations and Appli-cations to optimal control, Appl. Math. Optim.,1993,27(1):125-144.
    [129]Bahlali K., Backward stochastic differential equations with locally Lipschitz coefficient, C. R. Acad. Sci. Paris, Ser.1,2001,331 (): 481-486.
    [130]Bender C. and Kohlmann M., BSDEs with stochastic Lipschitz condition, http://ideas, repec. org/s/cau/wpaper. html,2000, pp.1-14.
    [131]Briand Ph. and Carmona R., BSDEs with polynomial growth generators, J. Appl. Math. Stochastic Anal.2000,13(2):207-238.
    [132]Briand Ph., Pierre J. and Martin J. S., One-dimensional backward stochastic differential equations whose coefficient is monotonic in y and non-Lipschitz in z, Bernoulli,2007,13(1):80-91.
    [133]Briand Ph., Delyon B., Hu Y., Pardoux E. and Stoica L., Lp solutions of backward stochastic differential equations, Stochastic Processes and its applications,2003,108(1):109-129.
    [134]Briand Ph. and Hu Y., BSDE with quadratic growth and unbounded terminal value, Probability Theory Related Fields,2006,136(4): 604-618.
    [135]Briand Ph. and Hu Y., Quadratic BSDEs with convex generators and unbounded terminal conditions, Probability Theory and Related Fields,2008,141(3):543-567.
    [136]Chen Q., Ran Q. and Wang J., Lp solutions of BSDEs with stochastic Lipschitz condition, Journal of Applied Mathematics and Stochastic Analysis, doi:10.1155/2007/78196,2007,1-14.
    [137]Coquent F., Hu Y., Memin J. and Peng S., Filtration-consistent nonlinear expectations and related g-expectations, Probab. Theory Related Fields,2002,123(1):1-27.
    [138]EI Karoui N., Backward stochastic differential equations:a general introduction, In Backward Stochastic differential equations (PARIS, 1995-1996),1997,364(1):7-26.
    [139]EI Karoui N. and Huang S.-J., A general result of existence and uniqueness of backward stochastic differential equations, Pitman Research Notes in Mathematics. Longman,1997,27-36.
    [140]EI Karoui N., Peng S. and Qunez M.-C., Backward stochastic differential in finance, Mathematical Finance,1997,7(1):1-71.
    [141]Elliott R. and van der Hoek J., A general fractional white noise theory and applications to finance, Mathematical Finance,2003, 13(2):301-330.
    [142]Fan S. J. and Jiang L., Uniqueness result for the BSDE whose generator is monotonic in y and uniformly continuous in z, C. R. Acad. Sci. Paris, SER.1,2010,348(1):89-92.
    [143]Haussman U., A stochastic maximum principal for optimal control of diffusions, Longman Scientific and Technical, New York,1986.
    [144]Hu Y. and Peng S., Maximum principle for optimal control of stochastic system of functional type, Stochastic Anal. Appl.1996, 14(2):283-301.
    [145]Jia G., A uniqueness theorem for the solution of backward stochastic differential equations, C. R. Acad. Sci. Paris., Ser.1,2008, 346(7-8):439-444.
    [146]Lepeltier J.-P. and Martin J. S., Backward SDE's with continuous coefficient, Statist. Probab. Lett.1996,32(4):425-430.
    [147]Lepeltier J.-P. and Martin J. S., Existence for BSDE with superlinear-quadratic coefficient, Stochastics Stochastics Rep. 1998,63(2):227-240.
    [148]Lepeltier J.-P. and Martin J. S., On the existence or non-existence of solutions for certain backward stochastic differential equations, Bernoulli,2002,8(1):123-137.
    [149]林清泉,倒向随机微分方程弱解,中国科学(A辑)2002,32(2):255-259.
    [150]Lin Q., The weak solution for backward stochastic differential equations, Chinese Journal of applied probability and statistics, 2002,18(2):205-208.
    [151]Ma J. and Yong J., Forward-backward stochastic differential equations and their applications, Lecture Notes in Mathematical (1702), Springer-Verlag, Berlin,1999.
    [152]Hu Y. and Peng S., Adapted solution of a backward stochastic evolution equation, Stochastic Anal. Appl.,1991,9(3):445-459.
    [153]Al-Hussein A., Strong, mild and weak solutions of backward stochastic evolution equations, Random Oper. And Stoch. Equ.,2005, 13(1):129-138.
    [154]Al-Hussein A., Time-dependent backward stochastic evolution equations, Bull. Malays. Math. Sci. Soc.,2007,30(1):159-183.
    [155]Al-Hussein A., Sufficient conditions of optimality for backward stochastic evolution equations, Communications on stochastic analysis,2010,4(2):433-442.
    [156]Briand Ph. and Confortola F., BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces, Stochastic Processes and their Applications,2008,118(5):818-838.
    [157]Briand Ph. and Confortola F., Differentiability of backward stochastic differential equation in Hilbert spaces with monotone generators, http://fr.arxiv.org/abs/math.PR/0603428,2006.
    [158]Confortola F., Dissipative backward stochastic differential equations in infinite dimensions, Infinite Dimensional analysis, quantum probability and related topics,2006,9(1):155-168.
    [159]Fuhrman M. and Tessitore G., Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces, Ann. Probab.,2004,32(3):607-660.
    [160]Hu Y. and Zhou X. Y., Stochastic control for linear systems driven by fractional noises, SIAM J. ControlOptim.,2005,43(6):2245-2277.
    [161]Kobylanski M., Backward stochastic differential equations and Partial differential equations with quadratic growth, Ann. Probab. 2000,28(2):259-276.
    [162]Bender C., Explicit solutions of a class of linear fractional BSDEs, Systems Control Lett.,2005,54(7):671-680.
    [163]Hu Y. and Peng S., Backward stochastic differentioa equation driven by fractional Brownian motion, SIAM J. ControlOptim.2009,48(5) 1675-1700.
    [164]Jing S., Leon J.A., Semilinear backward doubly stochastic differential equations and SPDEs driven by factional Brownian motion with Huret parameter in (0,1/2), arXiv:1005.2017vl [Math. PR],12 May,2010.
    [165]Black F., Scholes M., The pricing of options and corporate liability, J. Polit. Economy,1973,81(3):637-659.
    [166]Arriojas M., Hu Y., Mohammed S. E., Pap G., A Delayed Black and Scholes Formula 1, arXiv:math/0604640vl/,2007,1-10.
    [167]Hu Y., Option pricing in a market where the volatility is driven by fractional Brownian motions, Recent Developments in Mathematical Finance, World Scientific 2002,49-59.
    [168]Hu Y. and Oksendal B., Fractional white noise calculus and applications to finance, Inf. Dim. Anal. Quantum Probab. Rel. Top. 2003,6(1):1-32.
    [169]Jumarie G., Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise, application to fractional Black-Scholes equations, Insurance:Mathematics and Economics,2008,42(2):271-287.
    [170]Mishura Yu., Fractional stochastic integration and Black-Scholes equation for fractional Brownian model with stochastic volatility, Stoch. Stoch. Rep.2004,76 (3):363-381.
    [171]Necula C., Option pricing in a fractinal Brownian motion environment. Work papers, papers, ssrn. com,2002.
    [172]Stoica G., A stochastic delay financial model, Proceeding of the American mathematic society,2005,133(6):1837-1841.
    [173]钱晓松,跳扩散模型中的测度变换与期权定价,应用概率统计,2004,(1):91-98.
    [174]Bjork T. and Hult H., A note on the wick products and the fractional Black-Scholes model, Finance and Stochastics,9(2005),197-209
    [175]刘韶跃,数学金融的分数Black-Scholes模型及应用[D],博士学位论文,湖南师范大学,2004.
    [176]Sottinen T., Valkerila E., Fractional Brownian motion as a model in finance, Math. Helsinki Fi Preprint,2001,302-316.
    [177]Caraballo T., Liu K., Truman A., Stochastic functional partial differential equations:existence, uniqueness and asymptotic decay property, Proc. Roy. Soc. London,2000,456(1999):1775-1802.
    [178]Zhang Qi-min, Liu Wen-an, Nie Zan-kan, Existence, uniqueness and exponential stability for stochastic age-dependent population, Applied mathematics and computation,2004,15(1):183-201.
    [179]Zhang Qi-min, Han Chongzhao, Existence and uniqueness for a stochastic age-structured population system with diffusion, Applied mathematical modeling,2008,32(11):2197-2206.
    [180]Ma Wei-jun, Zhang Qimin, Han Chongzhao, Numerical analysis for stochastic age-dependent population equations with fractional Brownian motion, Commun Nonlinear Sci. Numer. Simulat.,2012,17(4) 1884-1893.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700