分数阶信号合成与滤波技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先介绍带有重尾分布或长相关/局部相关性质的分数阶随机信号,然后介绍用于分析这些分数阶随机信号的分数阶信号处理技术。本文中的分数阶信号指具有重尾分布,长相关或局部相关特性的随机信号。科学和工程领域中很多信号都具有分数阶特性。典型的重尾分布信号包括水声信号,低频大气噪声,和许多人体生理信号等[1-3]。典型的长相关随机信号和局部相关随机信号包括金融数据,网络通信数据和人体生理信号等[4-61。这些特征,即重尾分布、长相关/长记忆和局部记忆特性的存在,导致很难准确估计这些复杂信号的统计特性并获取有价值信息。但是,这些分数阶特征不能被忽略,因为重尾分布的托尾厚度,长相关/长记忆,或局部记忆特性反映了自然现象及人体生理信号的重要本质特征。因此,一些分数阶信号处理技术逐渐被人们研究并应用于复杂分数阶随机信号的分析。分数阶信号处理技术的主要理论基础是分数阶微积分,alpha稳定分布和分数阶傅里叶变换。本文介绍的分数阶处理技术包括:可变阶次分数阶信号合成,可变阶次分数阶系统的物理实现,分布阶次滤波器以及最优分数阶阻尼器的研究。
     随机信号合成是随机信号分析、处理的一种重要手段。经典“信号与系统”分析中,对高斯白噪声在时域进行整数阶滤波可以得到整数阶随机信号[7,8]。同样,对高斯白噪声或alpha稳定分布噪声在时域进行分数阶滤波可以得到分数阶随机信号[9,10]。通过对高斯白噪声,可变阶次分数阶高斯噪声和可变阶次分数阶布朗运动三者之间关系的研究,本文提出一种基于可变阶次分数阶运算的可变阶次分数阶高斯噪声合成方法。此外,本文应用分数阶电容Fractor实现了固定阶次分数阶微/积分器和依赖温度的可变阶次分数阶微/积分器,并且深入研究了可变阶次分数阶微/积分器的阶次与温度之间的对应关系。
     本文讨论了几类分布阶次分数阶滤波器。对分布阶次分数阶滤波器的研究源于固定阶次分数阶滤波器具有整数阶滤波器所不具备的特殊性质,其中固定阶次分数阶滤波器是广义化的整数阶滤波器。分布阶次分数阶滤波器是固定阶次分数阶滤波器和整数阶的一种扩展形式。尤其,分布阶次分数阶滤波器是描述复杂性,复杂网络和多尺度特性的有效工具[11-15]。为了能够在控制、滤波和信号处理等领域中设计更加有效的滤波器,本文给出了分数阶滤波器的时域冲激响应及其数值离散化结果。
     本文探讨了三种类型最优分数阶阻尼器的性能。根据系统实际输出与理想系统输出之间的偏差分析,本文对最优无时延固定阶次分数阶阻尼器,最优时延固定阶次分数阶阻尼器和最优分布阶次分数阶阻尼器分别进行了研究。应用频域搜索方法,本文根据平方误差积分准则(ISE)系统性能指标搜索最优时延分数阶阻尼器和最优分布阶次分数阶阻尼器。应用时域搜索方法,本文根据ISE,时间乘平方误差积分准则(ITSE),绝对误差积分准则(IAE)和时间乘绝对误差积分准则(ITAE)搜索最优无时延固定阶次分数阶阻尼器,最优时延固定阶次分数阶阻尼器和最优分布阶次分数阶阻尼器。基于各种系统性能指标的最优整数阶阻尼器和三种最优分数阶阻尼器的搜索结果分别在文中给出。
     分数阶信号处理技术在生物医学信号分析中的应用实例在本文的最后给出。这三个应用实例为如何将传统的整数阶信号处理方法归纳为分数阶信号处理方法,以及如何有效应用分数阶信号处理技术提供了启发作用。
In this dissertation, we will introduce some complex random signals which are characterized by the presence of heavy-tailed distribution or non-negligible dependence between distant observations, from the'fractional'point of view. Furthermore, the analysis techniques for these fractional signals are investigated using the'fractional thinking'. The term'fractional signals'in this dissertation refers to some random signals which manifest themselves by heavy-tailed distribution, long range dependence (LRD)/long memory, or local memory. Fractional processes are widely found in science, technology and engineering systems. Typical heavy-tailed distributed signals include underwater acoustic signals, low-frequency atmospheric noises, many types of man-made noises, and so on[1-3]. Typical LRD/long memory processes and local memory processes can be observed in financial data, communications networks data and biological data[4-6]. These properties, i.e., heavy-tailed distribution, LRD/long memory, and local memory always lead to certain trouble in correctly obtaining the statistical characteristics and extracting desired information from these fractional processes. These properties cannot be neglected in time series analysis, because the tail thickness of the distribution, LRD, or local memory properties of the time series are critical in characterizing the essence of the resulting natural or man-made phenomena of the signals. Therefore, some valuable fractional-order signal processing (FOSP) techniques were provided to analyze these fractional processes. FOSP techniques are based on the fractional calculus, FLOM and FrFT basic theories. This dissertation concentrates on the synthesis of variable-order fractional signals, the realization of variable-order fractional systems, distributed-order fractional filters, and optimal fractional-order damping systems.
     Simulation of random signals is a valuable tool in random signal processing. Most random processes can be generated by performing time domain integer-order filtering on a white Gaussian process[7,8]. Similarly, the fractional random processes can be simulated by performing the time domain fractional-order filtering on a white Gaussian process or a whiteα-stable process[9,10]. In his dessertation, a synthesis method, which is based on variable-order fractional operators, for multifractional Gaussian noises (mGn) is proposed by studying the relationship of white Gaussian noise (wGn), mGn, and multifractional Brownian motion (mBm). Furthermore, a synthesis method for multifractionalα-stable processes, the generalization of mGn, is proposed in order to more accurately characterize the processes with local scaling characteristics and heavy-tailed distributions.
     The discussion of the distributed-order fractiona filters is presented in the dessertation. The distributed-order fractionla filter is motivated by the advantages of the classical fractional-order filter which is a generalized case of the integer-order filters. It can be proved that both integer and fractional-order systems are special cases of distributed-order fractional systems. Particularly when the complexity, networks, nonhomogeneous, multi-scale and multispectral are considered, the distributed-order fractional filter becomes a more precise tool to describe the above phenomena[11-15]. Therefore, motivated by the applications of the distributed-order fractional filters to control, filtering and signal processing, the distributed-order fractional filters are derived step by step in the dessertation.
     This dessertation also explores the potential benefits of three types of fractional-order damping systems using the performance criteria which are based on the step response error in frequency domain and time domain. Three types of fractional-order damping systems are: fractional-order damping without time delay; fractional-order damping with time delay, and distributedorder fractional damping. In frequency domain, the time-delayed fractional-order and distributed-order fractional damping systems were optimized by minimizing the integral of the squared step response error (ISE) performance criterion. In time domain, these three types of fractional-order damping systems were numerically optimized by finding the minimum of ISE, the integral of the time-weighted error squared (ITSE), the integral of absolute error (IAE), and the integral of time-weighted absolute error (ITAE) performance measures. The optimum coefficients and minimum performance indexes for ISE, ITSE, IAE and ITAE criteria of these three types of fractional-order damping systems are provided.
     Three application examples of FOSP techniques in biomedical signals are presented in the end of this dessertation. These application examples provide the instructions on how to generalize the conventional signal processing methods to FOSP techniques, and how to obtain more valuable information by using FOSP techniques.
引文
[1]Chrysostomos L. Nikias, Min Shao. Signal Processing with Alpha-Stable Distributions and Applications [M].1st ed. New York:Wiley-Interscience,1995.
    [2]邱天爽,张旭秀,李小兵,孙永梅.统计信号处理-非高斯信号处理及其应用[M].北京:电子工业出版社,2004.
    [3]Gennady Samorodnitsky, Murad S. Taqqu. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance [M].1st ed. Florida:Chapman and Hall/CRC,1994.
    [4]Jan Beran. Statistics for Long-memory Processes [M].1st ed. Florida:CRC Press, 1994.
    [5]Michel Beine, Sebastien Laurent. Structural change and long memory in volatility: New evidence from daily exchange rates [C]. Econometric Society World Congress 2000 Contributed Papers,2000.
    [6]Olivier Cappe, Eric Moulines, Jean-Christophe Pesquet, Athina Petropulu, Xueshi Yang. Long-range dependence and heavy-tail modeling for teletraff ic data [M]. IEEE Signal Processing Magazine,2002,19(3):14-27.
    [7]Michele Caputo. Elasticitae dissipazione [M]. Bologna:Zanichelli,1969.
    [8]Demetris Koutsoyiannis. Climate change, the Hurst phenomenon, and hydrological statistics [J]. Hydrological Sciences Journal,2003,48(1):3-24.
    [9]Y. Q. Chen, Rongtao Sun, Anhong Zhou. An improved Hurst parameter estimator based on fractional Fourier transform [J]. Telecommunication Systems,2010, 43(3-4):197-206.
    [10]Manuel Duarte Ortigueira. Introduction to fractional linear systems. Part 1: Continuous-timecase [C]//Vision, Image and Signal Processing, IEE Proceedings, 2000,147(1):62-70.
    [11]Joseph Arthur Connolly. The numerical solution of fractional and distributed order differential equations [D]. Liverpool:University of Liverpool,2004.
    [12]J. L. Adams, T. T. Hartley, C. F. Lorenzo. Identification of complex order distributions [J]. Journal of Vibration and Control,2008,14(9-10):1375-1388.
    [13]Teodor M. Atanackovic, Ljubica Oparnica, Stevan Pilipovic. On a nonlinear distributed order fractional differential equation [J]. Journal of Mathematical Analysis and Applications,2007,328(1):590-608.
    [14]Mingyu Xu, Wenchang Tan. Intermediate processes and critical phenomena:Theory, method and progress of fractional operators and their applications to modern mechanics [J]. Science in China:Series G Physics, Mechanics and Astronomy,2006, 49(3):257-272.
    [15]G. Carlson and C. Halijak. Approximation of fractional capacitors (1/s)(1/n) by a regular Newton process [J].IEEE Transactions on Circuit Theory,1964, 11(2):210-213.
    [16]Wenxia Ying, Gabriel Huerta, Stanly Steinberg, Martha Zuniga. Time series analysis of particle tracking data for molecular motion on the cell membrane [J]. Bulletin of Mathematical Biology,2009,71(8):1967-2024.
    [17]Leo Breiman. Probability [M]. New York:Addison Wesley,1968.
    [18]William Feller. An introduction to probability theory and its applications [M].2nd ed. New York:Wiley,1966.
    [19]张贤达.现代信号处理[M].第二版.北京:清华大学出版社,2002.
    [20]张旭东,路明泉.离散随机信号处理[M].第二版.北京:清华大学出版社,2005.
    [21]H. E. Hurst. Long-term storage capacity of reservoirs [J]. Transactions of the American Society of Civil Engineers,1951,116(3):770-799.
    [22]F. Harmantzis, D. Hatzinakos. Heavy network traffic modeling and simulation using stable FARIMA processes [C]//International Teletraffic Congress (ITC-19),2005.
    [23]P. J. Brockwell, R. A. Davis. Time Series:Theory and Methods [M].2nd ed. Springer, 1998.
    [24]Rongtao Sun, Y. Q. Chen, Qianru Li. The modeling and prediction of Great Salt Lake elevation time series based on ARFIMA [C]. Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2007.
    [25]Hu Sheng, YangQuan Chen. FARIMA with stable innovations model of Great Salt Lake elevation time series [J]. Signal Processing,2011,91(3):553-561.
    [26]Tim Bollerslev, Hans Ole Mikkelsen. Modeling and pricing long memory in stock market volatility [J]. Journal of econometrics,1996,73(1):151-184.
    [27]Romain Francois Peltier, Jacques Levy Vehe. Multifractional Brownian motion: Definition and preliminary results [R]. Institut National De Recherche En Informatique Et En Automatique,1995.
    [28]Bonnie K. Ray, Ruey S. Tsay. Bayesian methods for change-point detection in long-range dependent processes [J]. Journal of Time Series Analysis, 2002,23(6):687-705.
    [29]Mohamed Boutahar, Gilles Dufrenot, Anne Peguin-Feissolle. A simple fractionally integrated model with a time-varying long memory parameter dt [J]. Computational Economics,2008,31 (3):225-241.
    [30]Michael Mitzenmacher. A brief history of generative models for power law and lognormal distributions [J].Internet Mathematics,2003,1(2):226-251.
    [31]Didier Sornette. Critical Phenomena in Natural Sciences:Chaos, Fractals, Selforganization and Disorder:Concepts and Tools [M].2nd ed. New York:Springer, 2004.
    [32]R. K. Saxena, A. M. Mathai, H. J. Haubold. On fractional kinetic equations. [J]. Astrophysics and Space Science,2004,282(1):281-287.
    [33]P. Humbert, R. P. Agarwal. Sur la fonction de Mittag-Leffler et quelques-unes de sesgeneralisations [J].Bull. Sci. Math. Ser. II,1953,77:180-185.
    [34]Anatoly A. Kilbas, Megumi Saigo, R. K. Saxena. Generalized Mittag-Leffler function and generalized fractional calculus operators [J]. Integral Transforms and Special Functions,2004,15(1).
    [35]A. A. Stanislavsky. Probability interpretation of the integral of fractional order. [J]. Theoretical and Mathematical Physics,2004,138(3):418-431.
    [36]F. Mainardi, P. Paradisi, R. Gorenflo. Probability distributions generated by fractional diffusion equations [J/OL]. Computational Economics,2007. http://arxiv. org/abs/0704.0320v1.
    [37]Francesco Mainardi. Fractional Calculus and Waves in Linear Viscoelas-ticity:An Introduction to Mathematical Models [M].1st ed.New Jersey:World Scientific Publishing,2010.
    [38]Rudolf Hilfer. Applications of Fractional Calculus in Physics [M].1st ed. New Jersey:World Scientific Publishing Company,2000.
    [39]蒲亦非.分数阶微积分在现代信号分析与处理中应用的研究[D].成都:四川大学,2006.
    [40]周激流,蒲亦非,廖科.分数阶微积分原理及其在现代信号分析与处理中的应用[M].北京:科学出版社,2006.
    [41]S. G. Samko. Fractional integration and differentiation of variable order. [J]. Analysis Mathematica,1995,21(3):213-236.
    [42]Carl F. Lorenzo, Tom T. Hartley. Variable order and distributed order fractional operators [J]. Nonlinear Dynamics,2002,29(1-4):57-98.
    [43]D. Ingman, J. Suzdalnitsky. Application of differential operator with servo-order function in model of viscoelastic deformation process [J]. Journal of Engineering Mechanics,2005,131(7):763-767.
    [44]D. Ingman, J. Suzdalnitsky, M. Zeifman. Constitutive dynamicorder model for nonlinear contact phenomena [J]. Journal of Applied Mechanics,2000, 67(2):383-390.
    [45]C. F. M. Coimbra. Mechanics with variable-order differential operators [J].Annalen der Physik,2003,12(11-12):692-703.
    [46]Hu Sheng, Hongguang Sun, Y. Q. Chen, Tianshuang Qiu. Synthesis of multifractional Gaussian noises based on variable-order fractional operators [J]. Signal Processing,2011,91(7):1645-1650.
    [47]Michele Caputo. Mean fractional-order-derivatives differential equations and filters.[J]. Annali dell'Universita di Ferrara,1995,41(1):73-84.
    [48]R. N. Bracewell. The Fourier transforms and its applications [M],3rd ed. New York: McGraw-Hill Science,1999.
    [49]K. B. Oldham, J. Spanier. The Fractional Calculus [M].New York:Academic Press, 1974.
    [50]K. S. Miller, B. Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations [M]. New York:Wiley,1993.
    [51]Igor Podlubny. Fractional Differential Equations [M]. New York:Academic Press, 1999.
    [52]A. A. Kilbas, H. M. Srivastava, J. J. Trujillo. Theory and Applica-tions of Fractional Differential Equations, Volume 204 [M].New York:Elsevier Science Inc.,2006.
    [53]Tom T. Hartley, Carl F. Lorenzo. Fractional system identification:An approach using continuous order-distributions. NASA Technical Memorandum,209640:20 (pp), 1999.
    [54]Tom T. Hartley, Carl F. Lorenzo. Fractional-order system identification based on continuous order-distributions [J]. Signal Processing,2003,83(11):2287-2300
    [55]A. Oustaloup. La commande CRONE (in French) [M]. Paris:Hermes,1991.
    [56]Igor Podlubny. Fractional-order systems and PIλDμ-controllers [J]. IEEE Transactions on Automatic Control,1999,44(1):208-214.
    [57]J. Sabatier,0. P. Agrawal, J. A. Tenreiro Machado. Advances in Fractional Calculus-Theoretical Developments and Applications in Physics and Engineering [M]. Springer,2007.
    [58]李大字,曹娇,关圣涛,谭天伟.一种分数阶预测控制器的研究与实现[J].控制理论与应用,2010,27(5):658-662.
    [59]王振滨,曹广益.分数微积分的两种系统建模方法[J].系统仿真学报,2004,16(4):810-812.
    [60]Hongguang Sun, Wen Chen, Y. Q. Chen. Variable-order fractional differential operators in anomalous diffusion modeling [J].Physica A:Statistical Mechanics and its Applications,2009,388(21):4586-4592.
    [61]邱天爽,李小兵,孙永梅,王宏禹.分数低阶Alpha稳定分布及其应用中的若干问题[J].探测与控制学报,2004,26(2):5-9.
    [62]Ervin Sejdic, Igor Djurovic, L. Jubisa Stankovic. Fractional Fourier transform as a signal processing tool:An overview of recent developments. [J]. Signal Processing,2010, doi:10.1016/j. sigpro.2010.10.008.
    [63]陶然,奇林,王越.分数阶Fourier变换的原理与应用[M].北京:清华大学出版社,2004.
    [64]Rajiv Saxena, Kulbir Singh. Fractional fourier transform:A novel tool for signal processing [J]. Journal of the Indian Institute of Science,2005,85(1):11-26.
    [65]Ervin Sejdic, Igor Djurovic, L. Jubisa Stankovic. Fractional Fourier transform as a signal processing tool:An overview of recent developments. [J]. Signal Processing,2010, doi:10.1016/j. sigpro.2010.10.008.
    [66]陈恩庆,陶然,张卫强.一种基于分数阶傅里叶变换的时变信道参数估计方法[J].电子学报,2005,33(12):2101—2104.
    [67]Tomaso Erseghe, Peter Kraniauskas, Gianfranco Cariolaro. Unified fractional Fourier transform and sampling theorem [J]. IEEE Transactions on Signal Processing, 1999,47(12):3419-3423.
    [68]John A. Gubner. Probability and Random Processes for Electrical and Computer Engineers. [M].1st ed. England:Cambridge University Press,2006.
    [69]R. G. Clegg. A practical guide to measuring the Hurst parameter [J]. International Journal of Simulation:Systems Science and Technology,2006,7(2):3-14.
    [70]N. Kono, M. Maejima. Self-similar stable processes with stationary increments [M]//1st ed. Stable Processes and Related Topics Boston:Birkhauser,1991, 275-295.
    [71]S. Cambanis, M. Maejima, G. Samorodnitsky. Characterization of linear and harmonizable fractional stable motions [J].Stoch. Proc. Appl.,1992,42:91-110.
    [72]Benoit B. Mandelbrot, John W. Van Ness. Fractional Brownian motion, fractional noises and applications [J].SIAM Review,1968,10(4):422-437.
    [73]M. S. Taqqu, V. Teverovsky. Robustness of Whittle type estimators for time series with long-range dependence [J]. Stochastic Models,1997,13(4):723-757.
    [74]R. Navarro Jr., R. Tamangan, N. Guba-Natan, E. Ramos, A. D. Guzman. The identification of long memory process in the Asean-4 stock markets by fractional and multifractional Brownian motion [J].The Philippine Statistician,2006, 55(1-2):65-83.
    [75]Manuel Duarte Ortigueira, Arnaldo Guimar aes Batista. On the relation between the fractional Brownian motion and the fractional derivatives. [J]. Physics Letters A,2008,372(7):958-968.
    [76]Zhiyuan Huang, Chujin Li. On fractional stable processes and sheets:White noise approach [J]. Journal of Mathematical Analysis and Applications,2006, 325(1):624-635.
    [77]胡广书.数字信号处理-理论算法与实现[M].第二版.北京:清华大学出版社,2003.
    [78]M. E. Crovella, A. Bestavros. Self-similarity in world wide web traffic evidence and possible causes [J]. IEEE/ACM Transactions on Networking,1997,5(6):835-846.
    [79]D.0. Cajueiro, B. M. Tabak. Time-varying long-range dependence in US interest rates [J].Chaos, Solitons and Fractals,2007,34(2):360-367.
    [80]K. J. Falconer. The local structure of random processes. [J]. Journal of the London Mathematical Society,2003,67(3):657-672.
    [81]S. V. Muniandy, S. C. Lim. Modeling of locally self-similar processes using multifractional Brownianmotion of Riemann-Liouville type [J]. Physical Review E, 2001,63(4).
    [82]Jean-Francois Coeurjolly. Identification of multifractional Brownian motion [J]. Bernoulli,2005,11(6):987-1008.
    [83]Stilian Stoev, Murad S. Taqqu. Stochastic properties of the linear multifractional stable motion [J]. Advances in Applied Probability,2004,36(4):1085-1115.
    [84]Eugene F. Fama, Richard Roll. Parameter estimates for symmetric stable distributions. [J]. American Statistical Association,1971,66(334):331-338.
    [85]J. HustonMcCulloch. Simple consistent estimators of stable distribution parameters [J]. Communications in Statistics Simulation and Computation,1986, 15 (4):1109-1136.
    [86]M. S. Taqqu, V. Teverovsky, W. Willinger. Estimators for long range dependence: An empirical study [J]. Fractals,1995,3(4):785-788.
    [87]J. Geweke, S. Porter-Hudak. The estimation and application of long memory time series models [J]. Journal of Time Series Analysis,1983,4:221-238.
    [88]T. Higuchi. Approach to an irregular time series on the basis of the fractal theory. [J].Physica D:Nonlinear Phenomena,1998,31(2):277-283.
    [89]William Rea, Les Oxley, Marco Reale, Jennifer Brown. Estimators for long range dependence:An empirical study [J]. Electronic Journal of Statistics,2009, 3:785-798.
    [90]Paolo Grigolini, Luigi Palatella, Giacomo Raffaelli. Asymmetric anomalous diffusion:An Efficient Way to Detect Memory in Time Series [J]. Fractals,2001, 9(4):439-449.
    [91]Houssain Kettani, John A. Gubner. A novel approach to the estimation of the long-range dependence parameter [J]. IEEE Transactions on Circuits and Systems, 2006,53(6):463-467.
    [92]Patrice Abry, Darryl Veitch. Wavelet analysis of long-rangedependent traffic [J].IEEE Transactions on Information Theory,1998,44(1):2-15.
    [93]Stilian Stoev. Simulates fractional gaussian noise (fgn) by using the FFT-fftfgn. http://www.mathworks.com/matlabcentral/fileexchange/5702,2004.
    [94]Scott Miller, Donald Childers. Probability and Random Processes:With Applications to Signal Processing and Communications [M].2nd ed. Burlington:Academic Press, 2004.
    [95]奥本海姆.信号与系统[M].第二版.北京:电子工业出版社,2002.
    [96]吴大正,杨林耀,张永瑞.信号与线性系统分析[M].第二版.北京:高等教育出版社,1998.
    [97]J. A. Barnes, D. W. Allan. A statistical model of Flicker noise. [C]. Proceedings of the IEEE,1996,54(2):176-178.
    [98]Beatrice Pesquet-Popescu, Jean-Christophe Pesquet. Synthesis of bidimensional α-stable models with long-range dependence [J]. Signal Processing,2002, 82(12):1927-1940.
    [99]S. C. Lim. Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type [J]. Journal of Physics A:Mathematical and General,2001, 34:1301-1310.
    [100]Hongguang Sun. Predictor-correctormethod for variable-order, randomorder fractional relaxation equation [OL].MATLAB Central-File Exchange,2010, http://www.mathworks.com/matlabcentral/fileexchange/26407.
    [101]K. Kawaba, W. Nazri, H. K. Aun, M. Iwahashi, N. Kambayashi. A realization of fractional power-law circuit using OTAs [C]. Circuits and Systems,1998. The 1998 IEEE Asia-Pacific Conference on APCCAS,1998.
    [102]K. V. V. S. Reddy, B. T. Krishna. Active and passive realization of fractance device of order 1/2 [J].Active and Passive Electronic Components,2008. doi:10.1155/2008/369421.
    [103]A. Charef. Analogue realization of fractional-order integrator, differentiator and fractional PIλDμ controller [C]. IEE Proc., Control Theory Appl.,2006, 153:714-720.
    [104]Gary W. Bohannan. Analog realization of a fractional control elementrevisited [C]. IEEE CDC2002, http://mechatronics. ece. usu. edu/foc/cdc02tw/.
    [105]Gary W. Bohannan. Analog fractional order controller in temperature and motor control applications [J]. Journal of Vibration and Control,2008, 14(9-10):1487-1498.
    [106]V. Hugo Schmidt, John E. Drumheller. Dielectric properties of Lithium Hydrazinium Sulfate [J]. Physical review. B, Solid state,1971,4(2):4582-4597.
    [107]W. Smit, H. de Vries. Rheological models containing fractional derivatives [J].Rheologica Acta,1970,9(4):525-534.
    [108]W. G. Glockle, T. F. Nonnenmacher. A fractional calculus approach to self-similar protein dynamics [J]. Biophysical Journal,1995,68(1):46-53.
    [109]Shayok Mukhopadhyay. Fractional order modeling and control:Development of analog strategies for plasma position control of the STOR-1M Tokamak [D]. Utah:Utah State University,2009.
    [110]Takanori Fukami, Ruey-Hong Chen. Crystal structure and electrical conductivity of LiN2H5SO4 at high temperature [J]. Japanese Journal of Applied Physics,1998, 37(3A):925-929.
    [111]Quanser. Heat flow experiment system identification and frequency domain design. [OL]. Heat Flow Experiment System Manuals,2002, http://www.quanser.com/english/ downloads/products/Heatflow.pdf.
    [112]J. A. Tenreiro Machado. Analysis and design of fractional-order digital control systems [J]. Systems Analysis-Modelling-Simulation,1997,27(2-3):107-122.
    [113]B. M. Vinagre, I. Petras, P. Merchan, L. Dorcak. Two digital realization of fractional controllers:Application to temperature control of a solid [C]. Proceedings of the European Control Conference (ECC2001),2001,1764-1767.
    [114]Y. Q. Chen. Impulse response invariant discretization of fractional order integrators or differentiators.2008, http://www.mathworks.com/matlabcentral/ fileexchange/21342,.
    [115]Y. Q. Chen. A new IIR-type digital fractional order differentiator.2003, http://www. mathworks. com/matlabcentral/fileexchange/3518,.
    [116]Carlos Matos, Manuel Duarte Ortigueira. Fractional filters:An optimization approach [M]//Emerging Trends in Technological Innovation, IFIP Advances in Information and Communication Technology, IFIP International Federation for Information Processing 2010,2010,314:361-366.
    [117]I. M. Sokolov, A. V. Chechkin, J. Klafter. Distributed-order fractional kinetics [OL].2004, http://www. citebase. org/abstract?id=oai:arXiv. org:cond-mat/04011 46.
    [118]Sabir Umarov, Stanly Steinberg. Random walk models associated with distributed fractional order differential equations [J]. Institute of Mathematical Statistics, 2006,51:117-127.
    [119]Anatoly N. Kochubei. Distributed order calculus and equations of ultraslow diffusion [J].Journal of Mathematical Analysis and Applications,2008, 340(1):252-281.
    [120]Y. Q. Chen, K. L. Moore. Discretization schemes for fractional order differentiators and integrators [C]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2002,49(3):363-367.
    [121]S. C. Lim, L. P. Teo. The fractional oscillator process with two indices [J]. Journal of Physics A:Mathematical and Theoretical,2009,42:065208 (34 pp).
    [122]T.W. Parks, C. S. Burrus. Digital Filter Design [M]. New York:John Wiley & Sons, 1987.
    [123]Hu Sheng. Impulse response invariant discretization of distributed order integrator [0L]. http://www. mathworks. com/matlabcentral/fileexchange/26380, 2010.
    [124]K. Steiglitz, L. McBride. A technique for the identification of linear systems [J].IEEE Transactions on Automatic Control,1965,10(4):461-464.
    [125]Vadim Komkov. Optimal Control Theory for the Damping of Vibrations of Simple Elastic Systems [M]. New York:Springer,1972.
    [126]R. C. Koeller. Applications of fractional calculus to the theory of viscoelasticity [J]. Journal of Applied Mechanics,1984,51(2):299-307.
    [127]Alexander Lion. On the thermodynamics of fractional damping elements [J]. Continuum Mechanics and Thermodynamics,1997,9(2):83-96.
    [128]Mehdi Dalir, Majid Bashour. Applications of fractional calculus [J].Applied Mathematical Sciences,2010,4(21):1021-1032.
    [129]Y. A. Rossikhin, M. V. Shitikova. Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems [J].Acta Mechanica,1997,120(1-4):109-125.
    [130]Arsalan Shokooh. A comparison of numerical methods applied to a fractional model of damping materials [J]. Journal of Vibration and Control,1999,5 (3):331-354
    [131]F. Rudinger. Tuned mass damper with fractional derivative damping [J]. Engineering structures,2006,28(13):1774-1779.
    [132]J. J. De Espindola, Carlos Alberto Bavastri, Eduardo Marcio De Oliveira Lopes. Design of optimum systems of viscoelastic vibration absorbers for a given material based on the fractional calculus model [J]. Journal of Vibration and Control,2008, 14(9-10):1607-1630.
    [133]Richard C. Dorf. Modern Control Systems [M]. New York:Addison-Wesley Longman,1989.
    [134]Mohammad Saleh Tavazoei. Notes on integral performance indices in fractional-order control systems [J]. Journal of Process Control,2010,20(3): 285-291.
    [135]Tom T. Hartley, Carl F. Lorenzo. A frequency-domain approach to optimal fractional-order damping [J]. Nonlinear Dynamics,2004,38(1-2):69-84.
    [136]Katsuhiko Ogata. Modern Control Engineering [M]. New Jersey:Prentice-Hall,1970.
    [137]John J. D'Azzo, Constantine H. Houpis, Stuart N. Sheldon. Linear Control System Analysis and Design [M].5th ed. CRC Press,2003.
    [138]Y. Cao. Correcting the minimum ITAE standard forms of zero displaceemnt-error systems [J]. Journal of Zhejiang University,1989,23(4):550-559.
    [139]Lubomir Brancik. Programs for fast numerical inversion of Laplace transforms in MATLAB language environment [C]. Proceedings of the 7th Conference MATLAB'99, 1999,27-39.
    [140]Hu Sheng, Yan Li, Y. Q. Chen. Application of numerical inverse Laplace transform algorithms in fractional calculus [c].4th IFAC Workshop on Fractional Differentiation and Its Applications,2010.
    [141]Florian Mansfeld, Brenda Little. A technical review of electrochemical techniques applied to microbiologically influenced corrosion [J]. Corrosion Science,1991, 32(3):247-272.
    [142]Jorge J. Perdomo, Preet M. singh. Electrochemical noise (ECN) measurements as a corrosion monitoring tool:A review [J]. Corrosion Reviews,2002, 20(4-5):359-378.
    [143]J. F. Chen and W. F. Bogaerts. The physical meaning of noise resistance [J]. Corrosion Reviews,1995,37(11):1839-1842.
    [144]Nikita Zaveri, Rongtao Sun, Nephi Zufelt, Anhong Zhou, Y. Q. Chen. Evaluation of microbially influenced corrosion with electrochemical noise analysis and signal processing [J]. Electrochimica Acta,2007,52(9-10):5795-5807.
    [145]G. R. Holcomb, Jr. B. S. Covino, D. Eden. State-of-the-art review of electrochemical noise sensors [OL].2001. http://www.netl.doe.gov/scng/ publications/ENStateoftheArt.pdf.
    [146]David A. Eden. Electrochemical noise-The first two octaves [C]. Corrosion 98, 1998.
    [147]A. Nagiub, F. Mansfeld. Evaluation of microbiologically influenced corrosion inhibition using electrochemical noise analysis [R].Corrosion Science,2001, 43(11):2001-2009.
    [148]U. Bertocci, C. Gabrielli, F. Huet, M. Keddam. Noise resistance applied to corrosion measurements [J]. Journal of the Electrochemical Society,1997, 144(1):31-37.
    [149]David H. Bailey and Paul N. Swarztrauber. The fractional Fourier transform and applications [J]. SIAM Review,1991,33(3):389-404.
    [150]Ran Tao, Feng Zhang, and YueWang. Fractional power spectrum [J]. IEEE Trans on Signal Processing,2008,56(9):4199-4206.
    [151]M. A. Gonzaez-Nunez, J. Uruchurtu-Chavarin. R/S fractal analysis of electrochemical noise signals of three organic coating samples under corrosion conditio [J]. Corrosion Seience and Engineering,2003,6(2003).
    [152]M. Moon, B. Skerry. Interpretation of corrosion resistance properties of organic paint films from fractal analysis of electrochemical noise data [J]. Coatings Technology,1995,67(1995).
    [153]Cheolwoo Parkb George, Michailidisc Stilian Stoeva, Murad S. Taqqua et al. LASS: a tool for the local analysis of self-similarity [J]. Computational Statistics and Data Analysis,2006,50(9):2447-2471.
    [154]G. George Capps, Samuel Pine, Michael Edidin, Martha C. Zuniga. Short class I major histocompatibility complex cytoplasmic tails differing in charge detect arbiters of lateral diffusion in the plasma membrane [J]. Biophysical Journal, 2004,86(5):2896-2909.
    [155]Akihiro Kusumi, Hiroshi Ike, Chieko Nakada, et al. Single-molecule tracking of membrane molecules:plasma membrane compartmentalization and dynamic assembly of raftphilic signaling molecules [J]. Seminars in Immunology,2005,17(1):3-21.
    [156]Songwan Jin, A. S. Verkman. Single particle tracking of complex diffusion in membranes:Simulation and detection of barrier, raft, and interaction phenomena [J].The Journal of Physical Chemistry,2007,111(14):3625-3632.
    [157]Michael J. Saxton, Ken Jacobson. Single-particle tracking:Applications to membrane dynamics [J]. Annual Review of Biophysics and Biomolecular Structure, 1997,26:373-399.
    [158]Hazen P. Babcock, Chen Chen, Xiaowei Zhuang. Using singleparticle tracking to study nuclear trafficking of viral genes [J]. Biophysical Journal,2004, 87(4):2749-2758.
    [159]Hu Sheng, Hongguang Sun, Y. Q. Chen, Leslie C. Mounteer, Victoria G. Kmetzsch, Charles D. Miller, Anhong Zhou. A fractional order signal processing (FOSP) technique for chemotaxis quantification using video microscope [C]//IDETC/CIE, 2009.
    [160]Soeren Asmussen. Applied Probability and Queues (Stochastic Modelling and Applied Probability) [M].2nd e. Springer,2003.
    [161]Rudolph C. Hwa and Thomas C. Ferree. Scaling properties of fluctuations in the human electroencephalogram [J]. Physical Review E,2002,66(2):021901 1-8.
    [162]Ivan Osorio, Mark G. Frei. Hurst parameter estimation for epileptic seizure detection [J].Communications in Information and Systems,2007,7(2):167-176.
    [163]Md. Nurujjaman, Ramesh Narayanan, A. N. Sekar Iyengar. Comparative study of nonlinear properties of EEG signals of normal persons and epileptic patients [J]. Nonlinear Biomedical Physics,2009,3(1).
    [164]T. Lopez, C. L. Martinez-Gonzalez, J. Manjarrez, N. Plascencia, et al. Fractal analysis of EEG signals in the brain of epileptic rats, with and without biocompatible implanted neuroreservoirs [J]. Applied Mechanics and Materials, 2009,15:127-136.
    [165]Massimiliano Ignaccolo, Mirek Latka, Wojciech Jernajczyk, et al. The dynamics of EEG entropy [J]. Journal of Biological Physics,2010,36(2):185-196.
    [166]Alfred L. Loomis, E. Newton Harvey, Garret A. Hobart. Cerebral states during sleep, as studied by human brain potentials [J]. Journal of Experimental Psychology,1937, 21(2):127-144.
    [167]Allan Rechtschaffen and Anthony Kales. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. [M].1st ed. Washington:Public Health Service,1968.
    [168]C. Iber, S. Ancoli-Israel, A. Chesson, S. F. Quan. The AASM Man-ual for the Scoring of Sleep and Associated Events:Rules, Terminology and Technical Specifications [M].Westchester:American Academy of Sleep Medicine,2007.
    [169]K. Susmakova. Human sleep and sleep EEG [J].Measurement Science Review,2004, 4(2):59-74.
    [170]Kannathal Natarajan, Rajendra Acharya U., Fadhilah Alias, et al. Nonlinear analysis of EEG signals at different mental states [J]. Biomed Engineering Online, 2004,3(1).
    [171]Rajendra Acharya U., Oliver Faust, N. Kannathal, et al. Non-linear analysis of EEG signals at various sleep stages [J]. Computer Methods and Programs in Biomedicine,2005,80(1):37-45.
    [172]Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, et al. PhysioBank, PhysioToolkit, and PhysioNet:Components of a new research resource for complex physiologic signals [J]. Circulation,2000,101(23):e215-e220.
    [173]Y. Ichimaru, G. B. Moody. Development of the polysomnographic database on CD-ROM [J]. Psychiatry and Clinical Neurosciences,1999,53(2):175-177.
    [174]Francesco Serinaldi. Use and misuse of some Hurst parameter estimator sapplied to stationary and non-stationary financial time series [J]. Physica A:Statistical Mechanics and its Applications,2010,389(14):2770-2781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700