一类新超混沌系统的产生、同步及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌作为一种复杂的非线性运动行为,在生物学、物理学和信息学等领域得到了广泛的研究。由于混沌具有内在的随机性、连续宽带谱和对初始值的高度敏感性等特点,使其特别适用于保密通信、信号处理、图像处理等方面。
     1979年,R?ssler首次提出了超混沌的概念,与一般的混沌系统相比较,超混沌系统具有两个或两个以上的正Lyapunov指数,其相轨在更多方向上分离,动力学行为更加复杂,用于诸如保密通信中具有更大的潜在应用价值。因此有关超混沌的产生是目前混沌研究领域中的一个热点,尤其是有目的地、利用简单的手段控制原有的混沌系统进入到超混沌状态。
     本学位论文研究了一类新四维超混沌系统的产生、广义投影同步、电路设计与实现(包括模拟电路设计与实现以及可编程逻辑器件中的设计与实现)及其在USB KEY中的应用,具体研究内容如下:
     (1)用状态反馈控制法获得了一类新四维自治超混沌系统。在一个具有一个鞍点、二个稳定结焦点的新三维自治系统基础上,提出用线性状态反馈控制法和非线性状态反馈控制法产生超混沌;在另一个新三维自治混沌系统的基础上,提出用非线性状态反馈控制法产生超混沌。线性状态反馈控制法的核心是设计一个简单的线性状态反馈控制器,用它和原三维系统构成一个满足产生超混沌必要条件的四维自治系统,并使得四维系统可以产生超混沌。类似原理,非线性状态反馈控制法的核心是设计一个非线性状态反馈控制器,并把非线性状态控制器反馈到原三维系统中,使四维系统可以产生超混沌。通过对这类四维自治系统的基本动力学行为进行研究,包括平衡点性质、Lyapunov指数谱、分岔图及MATLAB仿真等,从理论上证实了这类四维自治系统可以产生超混沌吸引子。
     (2)研究了有关分数阶四维超混沌系统。对提出的这类四维自治超混沌系统,以其中一个系统为例,用时频域转换分析方法和预估-校正时域方法,对这个分数阶四维系统进行了分析,结果表明q = 0.1时,系统仍然可以产生超混沌。在分数阶积分算子电路的基础上,设计了有关分数阶超混沌模拟电路,并进行了硬件电路实验。
     (3)实现了这类超混沌系统间的广义投影同步。用主动控制方法的思想,分别设计了合适的非线性反馈控制器,实现了这类四维自治超混沌系统的有关广义投影同步,包括同结构投影同步、异结构投影同步以及错位投影同步,并用MATLAB进行了相关数值仿真,结果表明同步方案的可行性,同步速度快且稳定。
     (4)根据这类四维超混沌系统状态方程的特点,基于电路理论,设计了这类四维自治超混沌系统的模拟电路,整个电路由反相求和电路、积分电路、反相电路和乘法器四部分组成。相同原理,设计了同结构投影同步电路、异结构投影同步电路、错位投影同步电路。对所设计的超混沌电路及投影同步电路进行了电路实验,并给出了相关实验结果。实验结果与数值仿真结果基本一致,在模拟电路上证实了超混沌吸引子的存在及投影同步方案的可行性。
     (5)可编程门阵列技术的超混沌系统实现。用模拟电路实现的超混沌系统及投影同步方案易受实际器件精度、外界干扰等影响,不利于工程上的应用,而采用现代数字信号处理技术则可以克服这些问题。为此,提出采用二阶Runge-Kutta法来离散这类四维自治超混沌系统,对离散化后的数字化超混沌系统用FPGA技术来实现。离散化后的数字化超混沌系统可采用DSP Builder工具箱来搭建,也可采用硬件描述语言中的状态机来描述。结合实例,详细阐述了这两种设计方法的具体实现过程,最后通过数字模拟转换器将数字序列转换为模拟信号,在示波器上能观察到超混沌吸引子。FPGA实验结果与数值仿真结果完全一致,证实了这两种设计方法的可行性。
     (6)在国民技术Z32安全芯片上,开发了相应的芯片操作系统(COS)、驱动程序等,并用可编程逻辑器件扩展了一种新的硬件加密算法,即超混沌加密算法。扩展的超混沌加密算法可以与芯片内部集成的DES等算法进行级联构成级联加密算法。将这种级联加密算法应用于Outlook 2007中,实现了电子邮件内容的加解密。
As we know, chaotic system can generate very complex nonlinear dynamic behavior, and has been intensively investigated in many fields such as biology, physics and information. Because of chaotic system possesses the following features: internal randomicity, wide band spectrum, high sensitivity to initial conditions, thus the application of chaos can be especially found in secure communication, signal processing and image processing.
     Historically, hyperchaos was firstly reported by R?ssler in 1979. As we know, the normal chaotic system has one positive Lyapunov exponent, but hyperchaotic system has at least two positive Lyapunov exponents, implying that its dynamics are expended in several different directions simultaneously. It means that hyperchaotic system has more complex dynamic behavior, which can be used to improve the security of chaotic communication. So about the generation of hyperchaos, especially purposefully designing a hyperchaotic system from a chaotic system with simple ways, becomes a focus of chaotic study. So far, there is no systematic theoretical method about the generation of hyperchaos.
     This thesis studies on a class of novel hyperchaotic systems including the generation, generalized projective synchronization, conventional analog circuit design and implementation, field programmable gate array based design and implementation, and its application. The main contributions are listed as follows:
     (1) A class of four-dimensional autonomous hyperchaotic systems are obtained by incorporating state feedback controller. By incorporating a simple dynamical linear state feedback controller and a simple dynamical nonlinear state feedback controller based on a new three-dimensional autonomous chaotic system with one saddle and two stable node-foci, two four-dimensional systems which can generate hyperchaos are obtained. Similarly, by incorporating another simple dynamical nonlinear state feedback based on another new three-dimensional autonomous chaotic system, a four-dimensional system which can generate hyperchaos is obtained. These four-dimensional systems are analyzed by investigating the Lyapunov exponent spectrum and bifurcation diagram.
     (2) Study on one four-dimensional hyperchaotic system with fractional order by time-frequency transformation approach and predictor-corrector approach, the results show that it still can generate hyperchaos when the fractional order q equals 0.1. The corresponding fractional order analog circuit is designed and implemented.
     (3) Using active control method, we present generalized projective synchronization of this class of hyperchatic systems, including the same hyperchaotic system, different hyperchaotic system, and dislocated projective synchronization. Some numerical simulations are show that the schemes of synchronization have a good performance.
     (4) According to the character of state equations for this class of hyperchaotic systems, a class of hyperchaotic analogue circuits are designed, which are composed of four parts: anti-adder, integrator, inverter and multiplier. Similarly, the generalized projective circuits are also designed. Some hardware platforms are built and some experiments are done. The observations are agreement with numerical simulations, which verify that hyperchaotic attractors exist and the schemes of synchronization are feasible.
     (5) Implementation of this class of hyperchaotic systems based on FPGA. As we know, the conventional analogue circuits will be easily influenced by the device accuracy and outside interference, but such problems can be overcome by modern digital signal processing technology. Two-step Runge-Kutta algorithm is used, in order to convert the continuous hyperchaotic systems into discrete hyperchaotic systems, which is appropriate for FPGA processing. We use two methods to realized discrete hyperchaotic systems, one is based on DSP Builder tool, another is based on hardware description language and state machine. We give the detail developing process of the two methods with examples. Using high-speed digital-to-analog converter (DAC), continuous analog hyperchaotic signal can be observed. The experimental observations are agreement with numerical simulations, which verify the two methods are feasible.
     (6) Based on Z32 secure chip, some applications are developed including chip operating system, drivers and so on. A hyperchaotic encryption and decryption algorithms is implemented by FPGA technology. It can be combined with DES algorithm, so a scheme of cascade can be obtained. Applying this scheme of cascade to Outlook 2007, we realize encryption and decryption in E-mail system.
引文
[1]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社, 2002.
    [2] Li T. Y., York J. A. Period three implies chaos[J]. American Mathematics Monthly, 2003, 82: 985-992.
    [3]闵富红.混沌系统同步控制的有关问题研究[D].南京:南京理工大学, 2007.
    [4]陈关荣,吕金虎. Lorenz系统族的动力学分析、控制与同步[M].北京:科学出版社, 2003.
    [5]李玉霞.连续系统超混沌反控制的研究[D].广州:广东工业大学, 2005.
    [6] Lorenz E. N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20: 130-141.
    [7]陈关荣,汪小帆.动力系统的混沌化——理论、方法与应用[M].上海:上海交通大学出版社, 2006.
    [8] Chen G. R., Ueta T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9 (7): 1465-1466
    [9] LüJ. H., Chen G. R., Cheng D. Z., et al. Bridge the gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos, 2002, 12 (12): 2917-2926.
    [10] Li Y. X., Tang W. K. S., Chen G. R. Hyperchaos evolved from the generalized Lorenz equation[J]. International Journal of Circuit Theory and Applications, 2005, 33 (4): 235-251.
    [11] Li Y. X., Tang W. K. S., Chen G. R. Generating hyperchaos via state feedback control[J]. International Journal of Bifurcation and Chaos, 2005, 15 (10): 3367-3375.
    [12] R?ssler O. E. An equation for hyperchaos[J]. Physics Letters A, 1979, 71A (2-3): 155-157.
    [13] Matsumoto T., Chua L. O., Kobayashi K. Hyperchaos: laboratory experiment and numerical confirmation[J]. IEEE Transactions on Circuits and Systems, 1986, 33 (11): 1143-1147.
    [14] Baranov S. V., Kuznetsov S. P. Hyperchaos in a system with delayed feedback loop based on Q-switched Van der Pol oscillator[J]. Applied Nonlinear Dynamics, 2010:111-120.
    [15] Hu G. S., Jiang S. Q. Generating hyperchaotic attractors via approximate time delayed state feedback[J]. International Journal of Bifurcation and Chaos, 2008, 18 (11): 3485-3494.
    [16] Chen A. M., Lu J. A., LüJ. H., et al. Generating hyperchaotic Lüattractor via state feedback control[J]. Physica A, 2006, 364: 103-110.
    [17] Correia M. J., Rech P. C. Hyperchaos in a new four-dimensional autonomous system[J]. International Journal of Bifurcation and Chaos, 2010, 20 (10): 3295-3301.
    [18] Niu Y. J., Wang X. Y., Wang M. G., et al. A new hyperchaotic system and its circuit implementation[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15 (11): 3518-3524.
    [19] Wang F. Q., Liu C. X. Hyperchaos evolved from the Liu chaotic system[J]. Chinese Physics, 2006, 15 (5): 963-968.
    [20]刘明华,冯久超.四维超混沌系统及其投影同步的电路实现[J].应用科学学报, 2010, 28 (4): 406-412.
    [21]刘明华,冯久超.一个新的超混沌系统[J].物理学报, 2009, 58 (07): 4457-4462.
    [22] Liu M. H., Feng J. C., Tse C. K. A new hyperchaotic system and its circuit implementation[J]. International Journal of Bifurcation and Chaos, 2010, 20 (4): 1201-1208.
    [23] Cafagna D., Grassi G. An approach for generating NxM-scroll attractors in hyperchaotic coupled chua circuits[C], 2002: 569-573.
    [24] Cafagna D., Grassi G. Hyperchaotic coupled chua circuits: An approach for generating new n x m-scroll attractors[J]. International Journal of Bifurcation and Chaos, 2003, 13 (9): 2537-2550.
    [25] Cafagna D., Grassi G. New 3D-scroll attractors in hyperchaotic Chua's circuits forming a ring[J]. International Journal of Bifurcation and Chaos, 2003, 13 (10): 2889-2903.
    [26] Li Y. X., Chen G. R., Tang W. K. S. Controlling a unified chaotic system to hyperchaotic[J]. IEEE Transactions on Circuits and Systems II, 2005, 52 (4): 204-207.
    [27] Zhou P., Cao Y. X., Cheng X. F. A new hyperchaos system and its circuit simulation by EWB[J]. Chinese Physics B, 2009, 18 (4): 1394-1398.
    [28] Hu G. S. Hyperchaos of higher order and its circuit implementation[J]. InternationalJournal of Circuit Theory and Applications, 2011, 39 (1): 79-89.
    [29]仓诗建.一个新四维非自治超混沌系统的分析与电路实现[J].物理学报, 2008, 57 (3): 1493-1501.
    [30] Barboza R. Hyperchaos in a Chua's circuit with two new added branches[J]. International Journal of Bifurcation and Chaos, 2008, 18: 1151-1159.
    [31] Barboza R. Dynamics of a hyperchaotic Lorenz system[J]. International Journal of Bifurcation and Chaos, 2007, 17: 4285-4294.
    [32] Ott E., Grebogi C., Yorke J. A. Controlling chaos[J]. Physical Review Letters, 1990, 64 (11): 1196-1199.
    [33] Carroll T. L., Pecora L. M. Synchronizing chaotic circuits[J]. IEEE Transactions on Circuits and Systems, 1991, 38 (4): 453-456.
    [34] Pecora L. M., Carroll T. L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64 (8): 821-824.
    [35]方锦清.非线性系统中混沌的控制与同步及其应用前景(一)[J].物理学进展, 1996, 16 (1): 1-13.
    [36]方锦清.非线性系统中混沌的控制与同步及其应用前景(二)[J].物理学进展, 1996, 16 (2): 137-159.
    [37] Rosenblum M. G., Pikovsky A. S., Kurths J. Phase synchronization of chaotic oscillators[J]. Physical Review Letters, 1996, 76 (11): 1804-1807.
    [38] Parlitz U., Junge L., Lauterborn W., et al. Experimental observation of phase synchronization[J]. Physical Review E, 1996, 54 (2): 2115-2117.
    [39] Taherion S., Lai Y. C. Observability of lag synchronization of coupled chaotic oscillators[J]. Physical Review E, 1999, 59 (6): R6247-R6250.
    [40] Shahverdiev E. M., Sivaprakasam S., Shore K. A. Lag synchronization in time-delayed systems[J]. Physics Letters A, 2002, 292 (6): 320-324.
    [41]马铁东,张化光,王智良.一类参数不确定统一混沌系统的脉冲滞后同步[J].物理学报, 2007, 56 (7): 3796-3802.
    [42] Abarbanel H. D. I., Rulkov N. F., Sushchik M. M. Generalized synchronization of chaos: The auxiliary system approach[J]. Physical Review E, 1996, 53 (5): 4528-4535.
    [43] Kocarev L., Parlitz U. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems[J]. Physical Review Letters, 1996, 76 (11):1816-1819.
    [44] Rulkov N. F., Sushchik M. M., Tsimring L. S., et al. Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Physical Review E, 1995, 51 (2): 980-994.
    [45] Mainieri R., Rehacek J. Generalized projective synchronization in three-dimensional chaotic systems[J]. Physical Review Letters, 1999, 82 (15): 3042–3045
    [46] Yan J. P., Li C. P. Generalized projective synchronization of a unified chaotic system[J]. Chaos Solitons and Fractals, 2005, 26 (4): 1119-1124.
    [47] Li G. H. Generalized projective synchronization between Lorenz system and Chen's system[J]. Chaos, Solitons and Fractals, 2007, 32 (4): 1454-1458.
    [48]刘明华,禹思敏.多涡卷高阶广义Jerk电路[J].物理学报, 2006, 55 (11): 5707-5713.
    [49] Elwakil A. S. Integrator-based circuit-independent chaotic oscillator structure[J]. Chaos, 2004, 14 (2): 364-369.
    [50] Elwakil A. S., Kennedy M. P. Improved implementation of Chua's chaotic oscillator using current feedback op amp[J]. IEEE Transactions on Circuits and Systems I, 2000, 47 (1): 76-79.
    [51] LüJ. H., Chen G. R. Generating multiscroll chaotic attractors: Theories, methods and applications[J]. International Journal of Bifurcation and Chaos, 2006, 16 (4): 775-858.
    [52] Suykens J. A. K., Vandewalle J. Generation of n-double scrolls (n=1,2,3,4, . . .)[J]. IEEE Transactions on Circuits and Systems I, 1993, 40 (11): 861-867.
    [53] Tang W. K. S., Zhong G. Q., Chen G., et al. Generation of n-scroll attractors via sine function[J]. IEEE Transactions on Circuits and Systems I, 2001, 48 (11): 1369-1372.
    [54] Yalcin M. E., Suykens J. A. K., Vandewalle J. Experimental confirmation of 3-and 5-scroll attractors from a generalized Chua's circuit[J]. IEEE Transactions on Circuits and Systems I, 2000, 47 (3): 425-429.
    [55] Yalcin M. E., Suykens J. A. K., Vandewalle J., et al. Families of scroll grid attractors[J]. International Journal of Bifurcation and Chaos, 2002, 12 (1): 23-41.
    [56] Yu S. M., Chen G. R., LüJ. H., et al. A general multiscroll Lorenz system family and its realization via digital signal processors[J]. Chaos, 2006, 16 (3): 033126.
    [57] Yu S. M., LüJ. H., Chen G. R. A familyof n-scroll hyperchaotic attractors and their realization[J]. Physics Letters A, 2007, 364: 244-251.
    [58] Yu S. M., Tang W. K. S., LüJ. H., et al. Design and implementation of multi-wing butterfly chaotic attractors via Lorenz-type systems[J]. International Journal of Bifurcation and Chaos, 2010, 20 (1): 29-41.
    [59] Yu S. M., Tang W. K. S. , LüJ. H., et al. Generating 2n-wing attractors from Lorenz-like systems[J]. International Journal of Circuit Theory and Applications, 2010, 38: 243-258.
    [60] Yu S. M., Tang W. K. S., LüJ. H., et al. Generation of n x m-wing Lorenz-like attractors from a modified Shimizu-Morioka model[J]. IEEE Transactions on Circuits and Systems II, 2008, 55 (11): 1168-1172.
    [61] Zhong G. Q., Man K. F., Chen G. R. A systematic approach to generating n-scroll attractors[J]. International Journal of Bifurcation and Chaos, 2002, 12 (12): 2907-2915.
    [62]李亚,禹思敏,戴青云,等.一种新的蔡氏电路设计方法与硬件实现[J].物理学报, 2006, 55 (8): 3938-3944.
    [63] Yu S. M., LüJ. H., Chen G. R. A module-based and unified approach to chaotic circuit design and its applications[J]. International Journal of Bifurcation and Chaos, 2007, 17 (5): 1785-1800.
    [64] Yu S. M., LüJ. H., Chen G. R. Theoretical design and circuit implementation of multi-directional multi-torus chaotic attractors[J]. IEEE Transactions on Circuits and Systems I, 2007, 54 (9): 2087-2098.
    [65] Yu S. M., LüJ. H., Chen G. R. Multifolded torus chaotic attractors: design and implementation[J]. Chaos, 2007, 17 (1): 013118-013119.
    [66]杨晓松,李清都.混沌系统与混沌电路[M].北京:科学出出版社.
    [67]徐煜明,包伯成,徐强.基于微控制器数字硬件实现的网格涡卷超混沌系统[J].物理学报, 2010, 59 (09): 5959-5965.
    [68]张钰,禹思敏,刘明华.用FPGA技术产生多涡卷超混沌吸引子的研究[J].电路与系统学报, 2007, 12 (1): 39-43.
    [69]周武杰,禹思敏.基于IEEE-754标准和现场可编程门阵列技术的混沌产生器设计与实现[J].物理学报, 2008, 57 (8): 4738-4747.
    [70]周武杰,禹思敏.基于现场可编程门阵列技术的混沌数字通信系统——设计与实现[J].物理学报, 2009, 58 (1): 113-119.
    [71] Wang G. Y., Bao X. L., Wang Z. L. Design and FPGA Implementation of a new hyperchaotic system[J]. Chinese Physics B, 2008, 17 (10): 3596-3602.
    [72]王忠林.基于FPGA的一个超混沌系统设计与电路实现[J].山东大学学报(理学版), 2008, 43 (12): 93-96.
    [73] Yang Qigui, Chen Guanrong. A chaotic system with one saddle and two stable node-foci[J]. International Journal of Bifurcation and Chaos, 2008, 18 (5): 1393-1414.
    [74]蔡国梁,谭振梅,周维怀,等.一个新的混沌系统的动力学分析及混沌控制[J].物理学报, 2007, 56 (11): 6230-6237.
    [75] Eckmann J. P., Ruelle D. Ergodic theory of chaos and strange attractors[J]. Reviews of Modern Physics, 1985, 57 (3): 617-656.
    [76]胡国四.一类具有四翼吸引子的超混沌系统[J].物理学报, 2009, 56 (06): 3734-3741.
    [77] Hilfer R. Applications of fractional calculus in physics[M]. New Jersey: World Scientific, 2001.
    [78]孙克辉.分数阶混沌系统的动力学特性分析与同步控制研究[D].广州:华南理工大学, 2010.
    [79] Cafagna D., Grassi G. Fractional-order Chua's circuit: time-domain analysis, bifurcation, chaotic behavior and test for chaos[J]. International Journal of Bifurcation and Chaos, 2008, 18 (3): 615-639.
    [80] Hartley T. T., Lorenzo C. F., Qammer H. K. Chaos in a fractional order Chua's system[J]. IEEE Transactions on Circuits and Systems I, 1995, 42 (8): 485-490.
    [81] Hao Zhu, Shangbo Zhou, Jun Zhang. Chaos and synchronization of the fractional-order Chua's system[J]. Chaos, Solitons and Fractals, 2009: 1595-1603.
    [82] Liu L., Liu C. X., Zhang Y. B. Experimental verification of a four-dimensional Chua's system and its fractional order chaotic attractors[J]. International Journal of Bifurcation and Chaos, 2009, 19 (8): 2473-2486.
    [83] Arena P., Caponetto R., Fortuna L., et al. Chaos in a fractional order Duffing system[C]. Budapest, 1997: 1259-1262.
    [84]曹军义,谢航,蒋庄德.分数阶阻尼Duffing系统的非线性动力学特性[J].西安交通大学学报, 2009, 43 (3): 50-54.
    [85] Ge Z. M., Ou C. Y. Chaos in a fractional order modified Duffing system[J]. Chaos Solitons and Fractals, 2007, 34 (2): 262-291.
    [86] Ahmad W. M., Sprott J. C. Chaos in fractional-order autonomous nonlinear systems[J].Chaos Solitons and Fractals, 2003, 16 (2): 339-351.
    [87] Deng W. H. Generating 3-D scroll grid attractors of fractional differential systems via stair function[J]. International Journal of Bifurcation and Chaos, 2007, 17 (11): 1845-1863.
    [88] Li C. G., Chen G. R. Chaos and hyperchaos in the fractional-order R?ssler equations[J]. Physica A, 2004, 341 (1-4): 55-61.
    [89] Zhang R. X., Yang S. P. Chaos in fractional-order generalized Lorenz system and its synchronization circuit simulation[J]. Chinese Physics B, 2009, 18 (8): 3295-3303.
    [90] Sun K. H., Wang X., Sprott J. C. Bifurcations and chaos in fractional-order simplified Lorenz system[J]. International Journal of Bifurcation and Chaos, 2010, 20 (4): 1209-1219.
    [91] Li C. P., Peng G. J. Chaos in Chen's system with a fractional order[J]. Chaos, Solitons and Fractals, 2004, 22 (2): 443-450.
    [92] Cafagna D., Grassi G. Bifurcation and chaos in the fractional-order Chen system via a time-domain approach[J]. International Journal of Bifurcation and Chaos, 2008, 18 (7): 1845-1863.
    [93] Lu J. G. Chaotic dynamics of the fractional-order Lüsystem and its synchronization[J]. Physics Letters A, 2006, 354 (4): 305-311.
    [94]闵富红.分数阶Qi混沌系统投影同步和电路实现[J].东南大学学报(自然科学版), 2009, 29 (增刊(I)): 158-162.
    [95]陈向荣,刘崇新,王发强,等.分数阶Liu混沌系统及其电路实验的研究与控制[J].物理学报, 2008, 57 (03): 1416-1422.
    [96] Wu X. J., Lu H. T., Shen S. L. Synchronization of a new fractional-order hyperchaotic system[J]. Physics Letters A, 2009, 373 (27-28): 2329-2337.
    [97] Zhang H. B., Li C. G., Chen G. R. Hyperchaos in the fractional-order nonautonomous chen's system and its synchronization[J]. International Journal of Modern Physics C, 2005, 16 (5): 815-826.
    [98]张若洵,杨世平.一个分数阶新超混沌系统的同步[J].物理学报, 2008, 57 (11): 6837-6843.
    [99] Podlubny I. Fractional Differential Equations[M]. New York: Academic Press 1999.
    [100] Li C. P., Deng W. H. Remarks on fractional derivatives[J]. Applied Mathematics andComputation, 2007, 187 (2): 777-784.
    [101] Charef A., Sun H. H. Fractal system as represented by singularity function[J]. IEEE Transactions on Automatic Control, 1992, 37 (9): 1465-1470.
    [102] Diethelm K. An algorithm for the numerical solution of differential equations of fractional order[J]. Electronic Transactions on Numerical Analysis, 1997, 5: 1-6.
    [103] Diethelm K., Ford N. J. Analysis of fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2002, 265: 229-248.
    [104] Diethelm K., Ford N. J., Freed A. D. A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dynamics, 2002, 29 (1-4): 3-22.
    [105] Diethelm K., Ford N. J., Freed A. D. Detailed error analysis for a fractional Adams method[J]. Numerical Algorithms, 2004, 36 (1): 31-52.
    [106]王发强,刘崇新.分数阶临界混沌系统及电路实验的研究[J].物理学报, 2006, 55 (8): 3922-3927.
    [107]闵富红,余杨,葛曹君.超混沌分数阶Lü系统电路实验与追踪控制[J].物理学报, 2009, 58 (03): 1456-1461.
    [108]刘崇新.一个超混沌系统及其分数阶电路仿真实验[J].物理学报, 2007, 56 (12): 6865-6873.
    [109] Li C. P., Yan J. P. Generalized projective synchronization of chaos: The cascade synchronization approach[J]. Chaos Solitons and Fractals, 2006, 30 (1): 140-146.
    [110] Li G. H. Generalized projective synchronization of two chaotic systems by using active control[J]. Chaos Solitons and Fractals, 2006, 30 (1): 77-82.
    [111] Li G. H. Modified projective synchronization of chaotic system[J]. Chaos Solitons and Fractals, 2007, 32 (5): 1786-1790.
    [112]陶朝海,陆君安,陈士华. Lorenz混沌系统的错位自适应控制[J].系统工程与电子技术, 2004, 26 (1): 81-83.
    [113]胡满峰,徐振源. Lorenz混沌系统的非线性反馈错位同步控制[J].系统工程与电子技术, 2007, 29 (8): 1346-1348.
    [114]闵富红,王恩荣.超混沌Qi系统的错位投影同步及其在保密通信中的应用[J].物理学报, 2010, 59 (11): 7657-7662.
    [115]杨帆. USB KEY体系研究与技术实现[D].武汉:武汉大学, 2004.
    [116]刘红明.基于SSX45安全芯片的USB Key设计与实现[D].上海:上海交通大学, 2009.
    [117]丘水生,陈艳峰,吴敏,等.一种新的混沌加密系统方案原理[J].电路与系统学报, 2006, 11 (1): 98-103.
    [118] Benantar M. Introduction to the public key infrastructure for the internet[M].北京:人民邮电出版社, 2003.
    [119]李翔.智能卡研发技术与工程实践[M].北京:人民邮电出版社, 2003.
    [120] Shannon C. E. Communication theory of secrecy systems[J]. Bell Systems Technical Journal, 1949, 28: 656-715.
    [121] Cruz-Hernandez C., Lopez-Gutierrez R. M., Aguilar-Bustos A. Y., et al. Communicating encrypted information based on synchronized hyperchaotic maps[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11 (5): 337-349.
    [122] Sobhy M. I., Shehata A.-E. R. Methods of attacking chaotic encryption and countermeasures[C]. Salt Lake City, UT , USA, 2001: 1001-1004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700