弧面凸轮等温挤压成形刚粘塑性三维有限元模拟与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弧面凸轮机构具有负载扭矩大、精度高、体积小、重量轻、传动效率高等优点,在数控机床、包装机械等高速自动化设备上得到广泛应用。弧面凸轮是弧面凸轮分度机构上的重要传动零件,其形状复杂,精度要求高、加工难度大,在目前实际生产中,采用棒料经多道机械切削加工成形,加工余量大,加工的绝大部分时间消耗在粗加工阶段,材料利用率和生产效率低,且由于金属流线被切断而影响零件综合机械性能,工艺成本高,严重制约了该机构的推广。因弧面凸轮结构的复杂性,精加工离不开先进的数控加工技术,唯有在制坯中采用等温挤压工艺,尽可能减少切削加工余量,才能使弧面凸轮在制造成本、生产效率、综合力学性能、使用寿命以及批量生产等各方面取得突破性改善。因此,开展高效、高精弧面凸轮毛坯制造工艺研究显得尤为重要。
     为此,本文从提高弧面凸轮成形精度、材料利用率及生产效率出发,利用刚粘塑性有限元分析方法深入研究了弧面凸轮等温挤压成形工艺,并利用DEFORM-3D软件进行了三维刚粘塑性有限元分析与优化。具体研究工作如下:
     1)综述了国内外弧面凸轮制造、精密成形技术及有限元模拟技术的研究现状,提出了弧面凸轮等温挤压成形制坯工艺。
     2)针对弧面凸轮的形状特点及成形工艺要求,分析了闭塞式模具双向主动加载等温挤压成形工艺。
     3)采用DEFORM-3D软件对弧面凸轮等温挤压成形进行三维刚粘塑性有限元数值模拟,验证了等温挤压成形弧面凸轮的可行性,为模具设计和设备选用提供可靠依据。
     4)分析并优化了等温挤压成形的关键工艺参数:挤压温度、凹模形状、挤压速度、润滑及摩擦条件等,为合理选择挤压工艺参数提供了科学依据。
     综上,本文针对弧面凸轮毛坯制造采用等温挤压成形工艺,利用三维刚粘塑性有限元对成形过程进行了模拟和优化,将使弧面凸轮制造的后序加工余量明显减少,材料利用率和生产效率提高,制造周期缩短,成本降低,零件综合机械性能得到改善。
Globoidal cams with load torque, and high precision, small size, light weight, high efficiency drive have been widely used in high-speed automation equipments such as the CNC machine tools and packaging machinery. The Globoidal cam is an important transmission part of Globoidal cam indexing mechanism, the complex shape and high precision caused the processing to be difficult, so in the current practical production of the Globoidal cams the bar is machined to shape by the use of multiple cutting operation, and the allowance for finish is large, the most of processing time is consumed in the rough machining stage, materials utilization and productivity efficency are very lower. As a result, the metal flow lines are cut off and the integrated mechanical properties of the part is impacted on, the high processing cost has seriously hampered the popularization of the mechanism. Due to the complexity of Globoidal cam structure, finishing can not be achieved without CNC machining technology, the isothermal extrusion process can be only applied for preforming in order to to minimize the cutting allowance as posssible, and gain a breakthrough improvement of manufacturing costs, productivity efficiency, comprehensive mechanical properties, service life, and mass production. Therefore, research on high efficiency and high precision preforming process of Globoidal cam appears to be particularly important.
     Therefore, proceeding from forming precision, material utilization and production efficiency in this paper, the Globoidal cam isothermal extrusion process is studied thoroughly by use of rigid-visco-plastic finite element method and 3D rigid-visco-plastic finite element optimization and analysis is carried out by use of the DEFORM-3D software.
     The detailed research work is as follows:
     1) The present situation about the globoidal cam manufacturing technology, precision forming technology and FEM simulation technology have been summarized. And an isothermal extrusion process was introduced for the globoidal cam preform.
     2) Aiming at the shape features and forming process requirements of the globoidal cam, isothermal extrusion forming process was analyzed with the blocking two-way active load-type mold.
     3) The isothermal extrusion forming for the globoidal cam was numerically simulated by 3D rigid-visco-plastic FEM of DEFORM-3D software, and verified effectively. The reliable laws was provided for die & mold design and equipment selection.
     4) The key process parameters of the isothermal extrusion were analyzed and optimized, including extrusion temperature, female die shape, extrusion speed, lubrication and friction conditions etc.. The scientific proof was provided for the preferred extrusion process parameters.
     In a word, the isothermal extrusion forming process was applied for globoidal cam preform, and was simulated and optimized by 3D rigid-visco-plastic FEM. The research work will enable the sequential allowance to be decreased significantly, the material utilization and productivity to be increased, the manufacturing cycle to be shortened, the cost to be reduced, and the comprehensive mechanical properties to be improved.
引文
[1]李敏贤,闵乃燕,安桂华,等.精密成形技术发展前沿[J].中国机械工程, 2000, 11(1-2): 183, 186.
    [2] B.I. Tomov, V I. Gagov. Modeling and Description of the Near-Net-Shape Forging of Cylindrical Spur Gears[J]. Journal of Materials Processing Technology. 1999, (92): 444~449.
    [3]王其超.滚子齿形凸轮分度机构的运动学与CAD/CAM[D].西安:西北轻工业学院, 1999. 10.
    [4]彭国勋,肖正扬,王其超.滚子齿形凸轮分度机构的CAD[J].西北轻工业学院学报, 1990, (2): 4~9.
    [5]王其超,肖正扬,曹巨江,等.滚子齿形凸轮机构的计算机辅助制造[J].西北轻工业学院学报, 1990, (4): 4~8, 33.
    [6]彭国勋,肖正扬,王其超.滚子齿传动机构空间凸轮的数控加工[J].组合机械与自动化技术. 1990, (6): 12~14.
    [7]国营第一钟表机械厂,西北轻工业学院.间歇运动凸轮传动装置产品样本[M]. 1991.
    [8]王其超.我国弧面分度凸轮机构研究的综述与展望[J].机械设计, 1996, (10): 1~3.
    [9]陈立群,王海军.弧面凸轮加工方法研究[J].制造技术与机床, 2002, (2): 24~26.
    [10] R KoPP. Current Development Trends in Metal Forming Technology[J]. Journal of Materials Processing Technology, 1996, 60: l~10.
    [11] V Magard. Cold Forging of Net or Near-Net-Shape Components[J]. Journal of Materials Processing Technology, 1992, 35:429~433.
    [12]冯冲前.浮动凹模墩挤直齿圆柱齿轮成形原理及工艺研究[D].秦皇岛:燕山大学, 2001.
    [13]陈贤杰,雷源忠,李敏贤.先进制造技术在我国的发展[C].先进制造技术发展战略学术研讨会论文集,上海1998: 81~85.
    [14]王勖成,邵敏.有限元法基本原理和数值方法[M].第2版.北京:清华大学出版社, 2001.
    [15]王玉.塑性加工技术前沿综述[J].塑性工程学报. 2003, (12): 1~4.
    [16]申荣华.金属塑性成形技术展望[J].机械工人(热加工), 2001, (6): 3~4.
    [17]杨先海,褚金奎,尹明富,等.有限元数值模拟技术及工程应用[J].机械设计与制造, 2003, (3): 107~108.
    [18]董湘怀,黄树槐,李志刚,等.塑性加工技术的发展趋势[J].中国机械工程, 2000, (9): 1074~1077.
    [19] Takuda H, Yoshii T, Hatta N. J Mater Proc Techn, 1999, 89-90.135.
    [20]周明智,薛克敏.方盒形件精密挤压成形三维弹塑性有限元模拟[J].合肥工业大学学报, 2005(8): 882~884.
    [21]刘明俊,孙友松.塑性加工的有限元模拟-工艺过程优化的新工具[J].机电工程技术, 2003,(5): 88-91.
    [22]张士宏,许沂,王忠堂.塑性加工技术的新进展[J].锻压技术. 2001, (6):58~61.
    [23]张德丰,陆建生,等.有限元法在板材热轧中的应用[J].南方金属.2006, (2): 18~20.
    [24] A.R.O. Abdel-Rahman and T.A.Dean. The quality of hot forged spur gears, Partl: Mecchnical and metallurical Properties[J]. Int.J.M.T.D.1981, (2l): 109~127.
    [25]陶学恒,王其超,肖正扬,等.点啮合弧面凸轮分度机构的啮合理论及分析[J].机械科学与技术, 1995, 15(4): 556-560.
    [26]彭国勋,肖正扬.自动机械的凸轮机构设计[M].北京:机械工业出版社, 1990.
    [27]张高峰.弧面凸轮三维CAD及其修形研究[D].湘潭:湘潭大学, 2003.
    [28]汪大年.金属塑性成形原理[M].北京:机械工业出版社, 1982.
    [29]李志刚.中国模具设计大典[M].南昌:江西科学技术出版社, 2003.
    [30]吕炎等.精密塑性体积成形技术[M].北京:国防工业出版社, 2003.
    [31] P V Marcal, I P King. Elastic-Plastic Analysis of Two-dimension Stress System by the Finite Element Method[J]. Int. J. Mech. Sci, 1967, (9):143~155.
    [32] C H Lee, S Kobayshi. New Solution to Rigid Plastic Deformation Problems Using a Method Trans[J]. ASME. J. Engin., 1973, 95:865~873.
    [33]杨浩强.实体轴承保持架超塑挤压数值模拟研究[D].洛阳:河南科技大学, 2003.
    [34] C.3菲格林等.金属等温变形工艺[M].北京:国防工业出版社, 1982.
    [35]洪慎章.温挤压工艺的应用[J].模具技术, 2004, (4): 43~45.
    [36]董湘怀,郑莹,兰箭,等.金属塑性成形计算机模拟的若干进展[J].金属成形工艺. 2000, (1): 26~28.
    [37]吴诗淳.温挤技术[M].北京:国防工艺出版社, 1979.
    [38]洪深泽.挤压工艺及模具设计[M].北京:机械工业出版社, 1996.
    [39]赵振铎,张召铎,王家安.金属塑性成形中的润滑材料[M].北京:化学工业出版社, 2005.
    [40]张海筹,胡自化.弧面凸轮毛坯制造方法探讨——温锻成形[J].热加工工艺, 2005, (11): 79,82.
    [41]李更新,杨永顺.圆柱直齿轮的温挤压数值模拟及凹模改良[J].河南科技大学学报, 2004, 25(2), 5~8.
    [42]李传民,王向丽,闫华军,等. DEFORM5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社, 2007.
    [43] http//www.simwe.com/art/tec/2003-11-13/tec0-9-178.shtml.
    [44]漆瑞.连续分度弧面凸轮的多轴数控加工理论研究[D].湘潭:湘潭大学, 2005.
    [45]王广春,赵国群.快速成型与快速模具制造技术及其应用[M].北京:机械工业出版社, 2004.
    [46]仇明侠.直齿圆柱齿轮开放式成形工艺研究[D].太原:中北大学, 2005.
    [47]杨冬香.弧面分度凸轮机构CAD/CAM/CNC集成研究[D].湘潭:湘潭大学, 2007.
    [48]杨宏芳.温挤压工艺及其应用[J].现代制造工程, 2001, (9): 39~40.
    [49]胡亚民,倪焕良.轴承钢不对称零件的正挤压成形[J].重庆工学院学报, 2000, (8): 5~10.
    [50]高锦张.塑性成形工艺与模具设计[M].北京:机械工业出版社, 2002.
    [51]夏巨谌.精密塑性成形工艺[M].北京:机械工业出版社, 1999.
    [52]徐进,陈再枝.模具材料应用手册[M].北京:机械工业出版社, 2002.
    [53]梅瑞斌,齐广霞,包立,等. In718合金杯形件等温挤压成形数值模拟[J].热加工工艺, 2005, (4): 50~52.
    [54]张治民,杨宝富,刘奎立. ZTC4合金筒形件等温挤压成形数值模拟[J].塑性工程学报, 2004, (6): 31~34.
    [55]孙正茂.基于FEM技术的齿轮轴温挤压成形数值模拟[D].合肥:合肥工业大学, 2006.
    [56]唐宝贵,杨永顺.铜合金实体轴承保持架结构优化及等温挤压成形[J].洛阳工学院学报, 2002, (12): 25~27.
    [57]刘建生,陈慧琴,郭晓霞,等.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社, 2003.
    [58]张凯锋,魏艳红,魏尊杰,等.材料热加工过程的数值模拟[M].哈尔滨:哈尔滨工业大学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700