饲料中非淀粉多糖的微生物降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以酶活力为唯一评价指标,从实验室保藏的十个菌种中分别筛选出了β-葡聚糖酶、羧甲基纤维素酶和木聚糖酶高活力菌株三株:菌株3.316,菌株3.4265,菌株5.132。通过优化产酶条件,选择出各菌株的最适培养条件和培养方法,并对其酶作用特性进行了研究,通过发酵前后饲料原料中戊聚糖含量和浸提液粘度的变化来评价非淀粉多糖的微生物降解效果。另外,通过体外消化试验评价了三个菌株所产酶制剂的作用效果。试验结果表明:
     (1) 菌株3.316最适碳源为a-乳糖、浓度4%,最适氮源为牛肉膏、浓度0.1%,在25℃恒温培养72h后,β-葡聚糖酶活力高达736IU/ml,该酶的最佳缓冲液是柠檬酸缓冲液,最适pH是3.0,最适反应温度为60℃,该菌株纤维素酶活力达830IU/ml,发酵后饲料粘度降低了56.59%(P<0.01),戊聚糖含量下降了3.28%(P>0.05),添加该菌株NSP复合酶后,小麦千物质、粗蛋白、粗脂肪、粗纤维的体外消化率分别提高了8.08%(P<0.05)、6.72(P<0.05)、10.66%(P<0.01)、17.01%(P<0.05)。体外消化滤液粘度下降了2.49%(P>0.05)。
     (2) 菌株3.4265最适碳源为麸皮、浓度4%,最适氮源为柠檬酸氢二铵、浓度0.1%,28℃恒温培养84h后;木聚糖酶活力达445.73IU/ml,该酶的最佳缓冲液是磷酸氢二钠-柠檬酸缓冲液,最适pH为5.4,最
    
    广西人学了吹_卜学位论文
    饲料中非淀粉多糖的微生物降解研究
    适反应温度为50℃,该菌株p一葡聚糖酶和纤维素酶酶活也达到较高
    水平。发酵后饲料原料粘度下降了67.91%(p<0 .01),戊聚糖含量下
    降7 2.72%(p)0.05)。添加该菌株的Nsp复合酶后,小麦干物质、粗
    蛋白、粗脂肪、粗纤维的体外消化率分别提高了11.1%(p<0 .01),
    15.47%(P(0.01),14.70%(P(0.01),21.70%(P<0.05)。体外消化滤液
    粘度降低7 3.95%(P>.05)。
    (3)菌株5.132菌株最适碳源为数皮、浓度4%,最适氮源为酵母膏、
    浓度0.1%,在25一28℃恒温培养216h后,木聚糖酶活力达
    470.45!U/ml,该酶的最佳缓冲液是柠檬酸缓冲液,最适pHS.O,最
    适反应温度为50℃,该菌株p一葡聚糖酶和纤维素酶活力较低。发酵
    后饲料原料粘度降低了65.31%(P<0 .01),戊聚糖含量下降
    4.72%(p> .05)。添加该菌株的NsP复合酶后,小麦干物质、粗蛋白、
    粗脂肪、粗纤维的体外消化率分别提高了6.1%(p<0 .01),
    15.96%(p(0.01),11.67%(P(0.05),19.29%(P(0.05)。体外消化滤液
    粘度降低7 4.90%(P>0.05)。
In this paper, three strains (coded 3.316, 3.4265, 5.132, the same to the following) with high-producing B-glucanase , carboxymethyl cellulase and xylanasc were screened from our lab conserving ten strains ,which regarded the enzyme activity as the only index. The optimal culture conditions and methods of every strain were selected after optimazating enzyme-producing conditions, and their enzyme's action character were studied. Evaluated the microoganism degradation result of non-starch polysaccharide as the variation of pentosan and fluid extract viscosity in the feed material for the index. In addition , the action results of their enzyme preparation were assessed with the digestion test in vitro. The results were as follows:
    (1)Thc optimal carbon source of strain 3.316 was a -lactose with concentration of 4%, the optimal nitrogen source was beef extract with concentration of 0.1%. Cultured 72h at temperature 25C, the B -glucanase activity of strain 3.316 was 736IU/ml .The optimal buffer for B -glucanase was citric acid buffer, the optimal pH was 3.0 , the optimal reaction temperature was 60C, the cellulase activity of strain 3.316 was 830IU/ml .The viscosity of feed material reduced 56.59%(P<0.01), the content of pentosan reduced 3.28%(P>.05) after fermentating. Added the strain's NSP compound enzyme to wheat ,the digestion ratio in vitro of dry material ,coarse fat ,coarse protein, coarse fiber raised 8.08%(P<0.05), 6.72%(P<0.05), 10.66%(P<0.01) and 17.01 %(P<0.05) respectively. The filtrate viscosity of digestion in vitro reduced 2.49%(P>0.05). (2)The optimal carbon source of strain 3.4265 was wheat bran with concentration of 4%, the optimal nitrogen source was ammonium citrate dibasic with
    
    
    concentration of 0.1%. Cultured 84h at temperature 28C,the xylanase activity of strain 3.4265 was 445.73IU/ml .The optimal buffer for xylanase was sodium phosphate dibasic-citric acid buffer, the optimal pH was 5.4 , the optimal reaction temperature was 50C, the 3 -glucanase and cellulase activity of strain 3.4265 were also high .The viscosity of feed material reduced 67.91 %(P<0.01), the content of pentosan reduced 2.72%(P>.05) after fermentating. Added the strain's NSP compound enzyme to the wheat, the digestion ratio in vitro of dry material ,coarse fat ,coarsc protein, coarse fiber raised ll.l%(P<0.01), 15.47%(P<0.01), 14.70%(P<0.01) and 21.70%(P<0.05) respectively. The filtrate viscosity of digestion in vitro reduced 3.95%(P>0.05).
    (3)Thc optimal carbon source of strain 5.132 was wheat bran with concentration of 4%, the optimal nitrogen source was yeast extract with concentration of 0.1%. Cultured 216h at temperature 25-28C, the xylanase activity of strain 5.132 was 470.45IU/ml .The optimal buffer for xylanase was citric acid buffer, the optimal pH was 5.0 , the optimal reaction temperature was 50C, the B-glucanase and cellulose activity of strain 5.132were low .The viscosity of feed material reduced 65.31%(P<0.01), the content of pentosan reduced 4.72%(P>.05) after fermentating. Added the strain's NSP compound enzyme to the wheat, the digestion ratio in vitro of dry material ,coarse fat ,coarse protein, coarse fiber raised 6.1%(P<0.01), 15.96%(P<0.01), 11.67%(P<0.01) and 19.29%(P<0.05) respectively. The filtrate viscosity of digestion in vitro reduced 4.90%(P>0.05).
引文
[1] 谢占玲.草食动物饲料复合酶的研究与应用.中国草食动物.1999.2:40-43
    [2] Marquardt R R.酶制剂改进谷物对家禽的营养价值[C].饲料酶制剂国际学术研讨会论文集.南京:南京农业大学出版社.1996:7-19
    [3] 郭爱莲.刘海.王宏仓.产纤维素酶细菌的选育研究.[J]西北轻工业学院学报.1997.15:46-50
    [4] 韩正康.家禽及猪营养中的酶制剂.[S]饲料酶制剂国际学术研讨会论文集.南京:南京农业大学出版社.1996:3-6
    [5] 李德发.展望21世纪饲料工业发展趋势.中国饲料.1999 1:4-5
    [6] 王修启,张兆敏,李春群.加酶小麦日粮对猪生产性能的影响.中国畜牧兽医.2002 2:12-14
    [7] 韩正康,Marquardt R R.畜禽营养中的酶制剂.饲料酶制剂国际学术研讨会论文集.南京:南京农业大学出版社,1996.
    [8] 江儆等.抗营养因子研究进展,动物营养研究进展[M].北京:中国农业科技出版社,1994.58~170.
    [9] GruppenK,KormelinkPJM,AGJVoragen.DifferencesinefficencyofXylanasesinthebreakdownofwheatflourara-binoxylansduetotheirmodeofaction.EnzymesinAnimalNutrition.Proc1stSymposium.KartauseInttingansuitzen-land. 1993, 276~280
    [10] Trowell H Crude fiber, dietary fiber and at therosclerosis.Atherosclerosis, 1972 16: 138
    [11] Trowell H, Southgate DAT, Wolever TMS, Leeds A R and Jenkins D J A. Dietary fiber redefined Lancet 1976, 1: 967—971
    [12] Roberfroid M. Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Critical Reviews in Food Science and Nutrition, 1993, 33(2): 103-148
    [13] 孙德文.詹勇.许梓荣.非淀粉多糖的抗营养作用的研究.粮食与饲料工业 2001 11:31-33
    [14] 韩建林,阎晓东,关庆坤.饲料中的抗营养因子的分类作用机理及应用措施[J].当代畜牧,1999,2:1-5.
    [15] 卢峥,张日俊.非淀粉多糖对饲料营养价值的影响及其机理和消除方法[J].中国农业大学学报,1997,2(3):106-112.
    [16] MinganChoct著.王冉摘译.非淀粉多糖的化学结构和营养特性.国外畜牧科技.1998 6:9-14
    [17] 田新玉.王欣.硷性纤维素酶的生产条件和一般性质[J]微生物学通报.1997 4:195-198
    [18] Marx-Figioni M. The control of molecular weight and molecular weight distribution in the biogenesis of cellulose: in; brown R.M. Jrced cellulose and other natural polymer systems: biogenesis.Structure and degradation.ple-num[M].New york, 1982,234-268
    [19] 郭小权.胡国良.刘妹.β-葡聚糖的抗营养作用及β-葡聚糖酶在饲料中的应用.[J]江西饲料 2001 2:11-13
    [20] ChenL.FlncherGB.and HcfPB.Evolution of polysaccharide hydrolase substrate specificity: catalytic amino acid are conseved in barley 1,3-1,4-β-glucanaese. J Biol., Chem., 1993,268: 13318~13326
    [21] Beer M.U., Wood,P.J., and Fillion,N. 1997.Molecular weight distribution and(1-3),(1-4)-β-D-glucan content of consecutive extracts of various oat and barley cultivars.Cereal Chem 74:476-490
    
    
    [22] Woodward J. R. Findher GB and Stonde BA Water-soluble(1-3),(1-4)-β-D-glucans barely(Hordeum Vnlgare) endospprm, Ⅱ. fine structure, Carbohydrate polymers 1983,3:207-225
    [23] Edney M.J. Marchylo B.A. and Macgregor A. W., Structure of total barely-glucan, J Inst Brew 1991,97:39-44
    [24] Wood,P.J..,Weisz.,J.and Blackweel.A.1991 Structural studies of(1-3)(1-4)-β-D-glucans by~(13)C-nuelear magnetic resonance spectroscopy and rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosacchridies released by lichenase Cera; Chem, 71: 301~307
    [25] 田福利.许辉曹世明.谷物中非淀粉多糖组糖醛酸的分光光度测定.内蒙古大学学报(自然科学版).1998.4:534-536
    [26] Sungsoo D, Lee Flo Rodriguez and Maureen Storey. Determination of soluble and insoluble dietary fiber in psyllium containing cereal products. Journal of AOAC International 1995(78)3: 724-729
    [27] 许辉.福利.曹世明.内蒙古产荞麦和莜麦中淀粉及非淀粉多糖的含量研究.内蒙古农牧学院学报.1998.19(4):80-83
    [28] 高安社.白涛.其本格等.小麦麸、玉米中非淀粉多糖(NSP)及杭营养组分含量分析.动物营养学报.1996.8(4):62
    [29] 田福利.陶克.肖贵斌等稻子、小麦麸皮中可溶性非淀粉多糖的气相色谱法测定.色谱.1998 2:123-115
    [30] 杨一.赵国良.薛俊.糖的毛细管电泳.食品与发酵工业.1995.3:57-59
    [31] 丁侃.方积年.多糖类药物的毛细管电泳分析方法及其应用.色谱.1999.17:346-350
    [32] 毛秀丽.林炳承.糖类的毛细管电泳及芯片毛细管电泳.色谱.2001.19:309-313
    [33] 甘宾宾.高效液相色谱法测定低聚果糖的组分.色谱.1999.17:87-89
    [34] 刘云惠.高效液相色谱内标法分离和测定植物中的单糖色谱.2000.18:556-558
    [35] 刘燕强.韩正康.大麦的营养特性及其抗营养因子—β-葡聚糖的研究进展.[J]1998 2,1-8
    [36] 李春喜,邱宗波,姜丽娜,河南若干小麦品种籽粒戊聚糖含量的初步研究.西北植物学报 2002,22(5):1185—1190
    [37] 陈惠萍,谭支良等.混合糠中戊聚糖的化学分析测定方法[J].饲料研究,1996,7:22-23.
    [38] 李春喜,邱宗波,姜丽娜等.不同生态条件下小麦子粒中戊聚糖含量的研究.华北农学报 2002,17(2):1~4
    [39] 周素梅.王璋.许时婴.面粉中戊聚糖含量测定方法的探讨[J]食品工业科技,2000 6:70-72
    [40] 李昌文.欧阳韶晖.孙小凡.小麦面粉中戊聚糖的化学分析测定法[J]西部粮油科技 2003 4:64-65
    [41] 郝晓宏,韩琼水溶性多糖3种测定方法的探讨.山西职工医学院学报.[J]2003 1:2-4
    [42] Jeroch H, Flachowsky G, Schubert R. Efficiency of non starch polyaccharide—degrading enzymes In fowl feeding.Vtamine und Weiters Zusatzstoffe bei Mensch und Tie,1993:342~353
    [43] Englyst H N et al. Dietary fibre(non-starch polysaccharides) in cereal products. J Hum Nut Diet, 1989, 2: 253~271
    
    
    [44] Englyst H N, Michael E.,Q et ai Determination of dietary fiber as non starch polysaccharides by gsa-liquid chromatography Analyst. 1992 117:1707-1714
    [45] Choct M and Annison G.Anti-nutritive activity of wheat pentosans in broiler diets.Brit Poult Sci, 1990, 30: 811~821
    [46] 虞泽鹏.金征宇.非淀粉多糖与畜禽营养.[J]饲料研究 2002 6:14-15
    [47] 卢峥,张日俊.非淀粉多糖对饲料营养价值的影响及其机理和消除方法[J].中国农业大学学报,1997,2(3):106-112.
    [48] 田新玉.王欣.硷性纤维素酶的生产条件和一般性质[J]微生物学通报.1997 4:195-198
    [49] 杨人奇.呙于明.非淀粉多糖的营养生理作用.中国饲料[J]2001 1:16-19
    [50] 伍喜林.杨凤.饲料非淀粉多糖与寡糖的抗营养及营养作用机制.绵阳经济技术高等专科学校学报 2001 4:18-30
    [51] 许民强,徐国武.β-葡聚糖和木聚糖应用研究[J].中国饲料,1999,2:6-8.
    [52] 高峰.周光宏.非淀粉多糖酶制剂促进家禽生长及其神经内分泌机理.[J]研究饲料研究 2001 5:13-15
    [54] 计成.蔡青.胥传来.木聚糖酶与白腐真菌.粮食与饲料工业.2003.12:51-52
    [55] 余东游.冯杰.纤维素酶在动物营养上的研究进展[J]饲料研究 2000 5:20-22
    [56] 李卫芬.孙建义.许梓荣NSP酶在大麦日粮中的应用研究进展.大麦科学 2000 2:1-4
    [[57] 李孝辉.费笛波.许尧兴饲用β-葡聚糖酶固体发酵的研究.粮食与饲料工业 1998 10:27-28
    [58] 方洛云.邹晓庭.许梓荣.木聚糖酶基因的分子生物学与基因工程.[J]中国饲料 2002 7:11-13
    [59] 张红莲.姚斌.范云六.木聚糖酶的分子生物学及其应用.[J]生物技术通报 2002 3:23-26
    [60] Tilbeugh H V, Tomme P, Cloeyssens M, et al. FEBBS LETT[J], 1986,204:223-227
    [61] Muller JJ.Thomsen K.H..and Heinemann U.Crystal structure of barely 1,3-1,4-β-glucanaese at 2.0 A resolution and Comparison with Bacillus 1,3-1,4-β-glucanaese. J Biol.,Chem., 1998, 273(6): 3438~3446
    [62] Varghese J N, Garrett TPJ., Ciolman P M. et al Three dimensional structures of two plant β-glucan endohydrolases with distict substrate speccificites.Proc Natl., Aacd., Sci USA 1994,91:2785-2789
    [63] Chen L., Garrett TPJ., and Fincher G B, et al, A tetrad of ionizable amino acids is importantfor catalysis in barely β-glucanaese. J Biol., Chem., 1995, 270(14):8093-8101
    [64] 刘瑞田.曲音波.扬建云.木聚糖酶分子结构研究进展 纤维素科学与技术 1997 3:1-6
    [65] 刘瑞田.曲音波.木聚糖酶基因克隆、表达及序列分析研究,微生物学通报,1997,24(5):293-295
    [66] 李卫芬.孙建义.许梓荣NSP酶在大麦日粮中的应用研究进展.大麦科学 2000 2,1-4
    [67] 汪儆.饲用酶制剂的作用机制.饲料工业.2001 11:1-3
    [68] 冯定远.张莹.余石英.含有木聚糖酶和β-葡聚糖酶的酶制剂对猪日粮消化性能的影响 饲料博览 1997 6:5-7
    [69] 许梓荣,卢建军,稻谷型日粮添加非淀粉多糖酶对生长猪消化道结构和功能的作用研究中
    
    国农业科学 2003,36(2):201-207
    [70] 喻涛.大麦日粮添加粗酶制剂对鸡生长、消化和甲状腺激素水平的影响.1995.南京农业大学硕士论文
    [71] 刘燕强,韩正康粗酶制剂添加于大麦日粮中对雏鸡生产性能的影响中国饲料,1994(7):19-21
    [72] 许梓荣,王振来,王敏奇.高麦麸饲粮中添加酶类物质对仔猪生长性能和胴体组成的影响[J].浙江农业大学学报,1998,24(6):643-646.
    [73] 江儆,Tapio Juokslahti.木聚糖酶制剂对生长肥育猪次粉日粮饲养效果的影响[J].中国饲料,1997(3):17-19.
    [74] 王修启,郑海刚,安汝义,等.小麦型日粮添加复合酶对猪生产性能的影响[J].中国饲料,2000(21):12-13.
    [75] 王修启,张兆敏,李春群.加酶小麦日粮对猪生产性能的影响中国畜牧兽医.2002 2:12-14
    [76] 石军.陈安国.木聚糖酶的应用研究进展 中国饲料.2002 4:10-12
    [77] 司玉萍.非淀粉多糖酶在猪饲料中的应用.青海畜牧兽医杂志.2003 2:19
    [78] 艾晓杰.韩正康米糠日粮添加酶制剂对雏鹅消化器官发育的影响,西南农业大学学报 2002 3:243-246
    [79] 艾晓杰,韩正康.粗酶制剂对雏鹅消化器官发育的影响[J].西南农业大学学报,2000,22(3):211-213.
    [80] 王修启,陈杰,林东康.皖麦38添加木聚糖酶对鸡表观代谢能值和氮基酸表观消化率的影响.华北农学报 2003,1:116-118
    [81] Classen HL, Campbell GL,Grootwassink JWD. Improved feeding value of Saskatchewan-grown barley for broiler chickens with dietary enzyme supplementation. Canadian Journai of Animal Science,1988,68 (4): 1253-1259
    [82] 汪儆,雷祖玉,应朝刚.戊聚糖酶对小麦、次粉日粮肉仔鸡饲养效果及表观代谢能的影响[J].中国饲料,1996,13:14~16
    [83] 孙哲.汪儆.雷祖玉.小麦可溶性非淀粉多糖对肉仔鸡小肠粘膜二糖酶活性的影响.动物营养学报[J].2003 1:26-30
    [84] 王海英.呙于明.袁建敏.小麦日粮中添加戊聚糖酶对肉仔鸡生产性能的影响.饲料研究2003 12:1-4
    [85] 崔朝霞.林东康.王若军等.戊聚糖酶在肉鸡小麦豆柏日粮中的应用.2003 8:4-7
    [86] Choct M, Hughes R J, Trimble R P, et al. Non starch polysaccharide degrading enzymes in crease the performance of broiler chicken fed wheat of low apparent metabolizable energy[J] Journal of Nutrition, 1995,125:485-492
    [87] 王卫国,杨刚小麦在鸡饲料中的应用研究进展.粮食与饲料工业.2002.4:17-20
    [88] Choct M, Annison, G. Anti Nutritive effect of Wheat pentosans in broiler chickens: roles of viscosity and gut microflora. Brit Poult Sci. 1992,33:821-834.
    [89] 刘强,汪儆,雷祖玉.小麦粘滞性及小麦黏度的研究[J].动物营养学报.1999,11(4):44~50
    [90] 许梓荣.李卫芬.孙建义NSP酶对大麦体外消化的影响.中国粮油学报 2002 5:51-54
    [91] 刘永举.王清吉.王江青等.DNS法测定饲用β-葡聚糖酶活力[J]中国饲料.1999 18:6
    [92] 刘德海.杨玉华.张发旺等.饲用纤维素酶活力测定方法的探讨.[J]饲料工业.2002 4:34-35
    
    
    [93] 李彩霞.房桂干等木聚糖酶酶活的具体测定方法.[J]林产化工通讯.2001.1:20-22
    [94] 聂国兴.李春喜.张建新等.底物浓度、DNS量对术聚糖酶活性测定的影响.[J]饲料工业.2002.11:24-25
    [95] 聂国兴.李春喜.明红等.不同浸提方案对饲用木聚糖酶活性测定结果的影响.饲料工业2003 9:35-37
    [96] 徐抗震.宋纪蓉.黄沽等激光选育混合菌发酵苹果渣生产饲料蛋白.粮食与饲料工业.200212:17-19
    [97] 王淑军.杨从发.陈静.用于降解秸杆的纤维素酶产生菌的筛选研究.粮食与饲料工业.2001 12:21-23
    [98] Joachim., k et al Determination of xylanse, β-glucanse, and cellulose activity 2002 Anal Bioanal., Chem 374:80-87
    [99] BAILEYMJ,et al. Interloboratory tesing of methods for assay of xylanase of activity [J].Biotechnol, 1992,23:257-270.
    [100] BRECCIAJD,CastroGR, et al. Screening of xylanolytic bacteria using a colour plate method[J].Journal of Applied Bacteriology. 1995,78:469~472.
    [101] WANGYi-lei, DENGZhen-xu. Rapid screening of xylanolytic bacteria using transparent halos[J].Biotechnology,2000,10(1):37~39(in Chinese).
    [102] 王杰.体外黏度法评定小麦非淀粉多糖的含量.内蒙古农业大学,2002 论文
    [103] 刘强,汪儆,雷祖玉.小麦粘滞性及小麦黏度的研究[J].动物营养学报.1999,11(4):44~50
    [104] Rotter B A. et al. 1989. In vitro viscosity measurements of barley extracts as predictors of growth response in chicks fed Icy-based diets supplemented with afungal enzyme preparation. Can, J Ani., Sci.,69:431-439
    [105] 于连富.姜艳春.金宁.应用改进消化法检测冷冻猪肉中旋毛虫.黑龙江畜牧兽.1998 9:3-5
    [106] 人工胃液、人工肠液,中华人民共和国药典.1990年第一部.
    [107] Gruppen K, Kormelink PJM., A G J Voraagen. Differences in efficency of xylyanases in the breakdown of wheat flour arabinoxyylans due to action.Enzymes in Animial Nutrition.Proc 1st Symposium. Kartanuse Inttingan Suitzenland. 1993:276-280
    [108] 陆文消.李德发影响饲料酶活力测定的因素分析饲料研究.2002 5:15-18
    [109] 堵苑苑.饲用非淀粉多糖酶活性分析方法的研究进展.动物营养学报.1998 4:11-17
    [110] Erfle I D, Teather R M,Wood R M. Purification and properties of a 1,3-1,4-β-D-glucanase (lichenase, 1,3-1,4-β-D-glucanohydrolase,EC3.2.1.73) from bacteroidea saccinogenes cloned in E. coli. Biochem, j. 1998.255(3):833-841
    [111] Frieden O D, Guenter W, Marquardt R. R, et al The effect of enzyme supplement on the apparent metabolizable energy and nutrient digestibility of wheat, barley, oats and rye for the young broiler chick[J]. Poultry Sci., 1992 38:1710-1720
    [112] Marromichalis. I, Hancock J.D, Sene. B.W, Enzyme supplement and particle size of wheat in diets for nursery and finishing pigs[J]. Animal Sci., 2001,5:3086-3095

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700