吩噻嗪衍生物在硫醇与碳纳米管修饰金电极上的伏安行为及测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吩噻嗪及其衍生物是一类具有抗抑郁作用的药物,广泛用于精神类疾病的治疗。有关其性质和功能及其测定方法的研究已有诸多报道。电化学方法简单、灵敏,在该类药物的研究中具有重要作用。本论文采用巯基自组装膜及碳纳米管修饰金电极对三氟拉嗪、氟奋乃静、丙氯拉嗪等几种吩噻嗪类药物的电化学行为进行了研究并提出了相应的伏安分析方法。具体研究内容包括下述几个方面:
     (1)研究了三氟拉嗪在十烷基硫醇自组装膜修饰金电极(C_(10)H_(21)SH/Au SAM)上的电化学行为,发现三氟拉嗪能有效地在此修饰电极上富集并能在0.63 V(vs.SCE)左右产生一灵敏的阳极峰。该峰峰电流与三氟拉嗪浓度在一定范围内呈良好的线性关系,可用于实际样品的测定。十二烷基硫酸钠(SDS)对该峰有很强的增敏作用,而阳离子表面活性剂、非离子表面活性剂、有机溶剂均使峰电流急剧降低。在SDS存在下,0.63 V左右的阳极峰分裂成两个峰,电子转移由一步变为两步。由于三氟拉嗪进入膜内后难以分离,因此,该电极较难再生。
     (2)将羧基化的多壁碳纳米管固定到3-巯基丙基-三甲氧基硅烷自组装膜修饰金电极上,制备出多壁碳纳米管/3-巯基丙基-三甲氧基硅烷双层修饰金电极(MWNTs/MPS/Au)。利用该修饰电极对氟奋乃静的电化学行为进行了研究,发现氟奋乃静在该电极上能有效富集并在0.78 V和0.93 V(vs.SCE)左右产生两个阳极峰。其中0.78 V的阳极峰比较灵敏,适合分析测定。将其用于药物制剂的测定,结果令人满意。该电极具有良好的抗干扰能力,容易再生。
     (3)在十二烷基硫醇自组装膜修饰金电极表面,滴加微量羧基化的多壁碳纳米管,制备出多壁碳纳米管/十二烷基硫醇双层修饰金电极(MWNTs/DDT/Au),对丙氯拉嗪在该双层修饰电极和十二烷基硫醇自组装膜修饰金电极上的电化学行为进行了比较研究。研究发现,该电极具有良好的稳定性及再生性,且制备程序相对(2)而言更为简单。与传统的碳纳米管修饰玻碳电极相比较,该电极的响应性能更好。同时,也提出了丙氯拉嗪在DDT/Au及MWNTs/DDT/Au两种修饰电极上的预富集机理。
Phenothiazine and its derivatives are a kind of antidepressive drugs and widely used in the treatment of psychotic diseases. There have been many reports about their characteristics and functions. Electrochemical methods are very important due to the simple procedures and high sensitivity. In this paper, the thiol self-assembled monolayers (SAM) and carbon nanotubes (CNTs) modified gold electrodes were used to study the electrochemical behaviors of trifluoperazine, fluphenazine, prochlorperazine and their voltammetric determinations were proposed. The thesis includes the following researches:
    (1) The electrochemical behavior of trifluoperazine at decanethiol self-assembled monolayer modified gold electrodes (i.e. C10H21SH/Au SAM) was studied. Trifluoperazine could effectively accumulate at this electrode and generate a sensitive anodic peak at about 0.63 V (vs. SCE). The anodic peak current was linear to trifluoperazine concentrations over a certain range. This method was successfully applied to the determination of trifluoperazine in drug samples. In addition, it was found that SDS could make the anodic peak current increase while cation surfactants, nonionic surfactants and organic solvents make it reduce greatly. In the presence of SDS, the peak at about 0.63 V turned into two peaks, suggesting the electron transfer changed from one-step to two-step. Because trifluoperazine could not easily get out of the monolayer, the regeneration of this electrode was rather difficult.
    (2) The carboxylic multi-walled carbon nanotubes were immobilized on the (3-mercaptopropyl)trimethoxysilane self-assembled monolayer modified gold electrodes. Thus a novel MWNTs/MPS/Au bilayer modified electrode was fabricated. By means of this electrode, the electrochemical behavior of fluphenazine was studied and it was found that fluphenazine could effectively accumulate at this bilayer modified electrode and generate two anodic peaks at about 0.78 V and 0.93 V (vs. SCE) respectively. The peak at 0.78 V was more sensitive and fit for the analysis. This method was applied to the determination and the result was satisfying. This electrode had good selectivity and could be easily regenerated.
    (3) Minor amount of carboxylic multi-walled carbon nanotubes was dropped on the surface of the dodecanethiol self-assembled monolayer modified gold electrodes. Thus the MWNTs/DDT/Au bilayer modified electrode was fabricated. The electrochemical behaviors
    
    
    of prochlorperazine at the two different modified electrodes were comparatively investigated. It was found that the bilayer modified electrode had good stability and reproducibility. Compared with (2), the preparation of the bilayer modified electrodes was much simpler. In comparison with the traditional GNTs modified glassy carbon electrodes, the response of the bilayer modified electrode was more sensitive. Meanwhilei the different accumulation mechanisms of prochlorperazine at DDT/Au and MWNTs/DDT/Au were proposed.
引文
[1] 李景虹,程广金,董绍俊,自组装膜技术在电分析化学中的研究和应用.分析化学,1996,24(9),1093-1079.
    [2] 杨生荣,任嗣利,张俊彦,张绪寿,自组装单分子膜的结构及其自组装机理.高等学校化学学报,2001,22(3),470-476.
    [3] 方程,周性尧,自组装膜研究进展及其在传感器技术中的应用.分析科学学报,2003,19(1),81-85.
    [4] W.C. Bigelow, D.L. Pickett, W.A. Ziman, Oleophobic Monolayers. Ⅰ. Films Adsorbed from Solution in Non-Polar Liquids. J. Colloid & Interface Sci., 1946, 1(6), 513-538.
    [5] J. Sagiv, Organized Monolayers by Adsorption. 1. Formation and Structure of Oleophobic
    
    Mixed Monolayers on Solid Surfaces. J. Am. Chem .Soc., 1980, 102 (1), 92-98.
    [6] R.G. Nuzzo, D.L. Allarra, Adsorption on Bifunctional Organic Disulfides on Gold Surfaces. J. Am. Chem. Soc., 1983, 105 (13), 4481-4483.
    [7] 王俊,曾百肇,周性尧,自组装膜技术在电分析化学中的应用.分析科学学报,2000,16(3),253-258.
    [8] G. Hahner, C.H. Woll, M. Buck, et al. Investigation of Intermediate Steps in the Self-Assembly of n-Alkanethiols on Gold Surfaces by Soft X-Ray Spectroscopy. Langmuir, 1993, 9 (8), 1955-1958.
    [9] 李景虹,程广金,董绍俊,一种新型有序超薄有机膜-自组膜.化学通报,1995,10,11-18.
    [10] L.R. Sharpe, W.R. Heineman, R.C. Elder, EXAFS Spectroelectrochemistry. Chem. Rev., 1990, 90 (5), 705-722.
    [11] 董绍俊,车广礼,谢远武,化学修饰电极,2003,修订版,北京:科学出版社,pp31.
    [12] C.J. Miller, M. Majda, Microporous Aluminum Oxide Films at Electrodes.3. Lateral Transport in Self-Assembled Mnolayers of N-Methyl-N'-Octadecyl-4,4'-Bipyridinum Chloride. J. Am. Chem. Soc., 1986, 108 (11), 3118-3120.
    [13] N. Tillman, A. Ulman, T.L. Penner, Formation of Multilayers by Self-Assembly. Langmuir, 1989, 5 (1), 101-111.
    [14] A. Ulman. An Introduction to Organic Ultra Thin Films. 1991, Boston: Academic Press, pp237.
    [15] 杨玉霞,吩噻嗪衍生物和肾上腺素在硫醇自组装膜修饰金电极上的电化学行为.2003,武汉大学硕士学位论文,pp4.
    [16] 董献堆,陆君涛,查全性,巯基化合物自组装单分子层的研究进展.电化学,1995,1(3),249-258.
    [17] M.D. Porter, T.B. Bright, D.L. Allara, C.E.D. Chidsey, Sopntaneously Organized Molecular Assembles. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry. J. Am. Chem. Soc., 1987, 109 (12), 3559-3568.
    [18] L.H. Dubois, B.R.Zegarski, R.G. Nuzzo, Fundamental Studies of Microscopic Wetting on Organic Surfaces. 2. Interaction of Secondary Adsorbates with Chemically TexTured Organic Monolayers. J. Am. Chem. Soc., 1990, 112 (2), 570-579.
    
    
    [19] G.E. Poirier, Characterization of Organosulfur Molecular Monolayers on Au(111) Using Scanning Tunneling Microscopy. Chem. Rev., 1997, 97 (4), 1117-1127.
    [20] J. Pan, N. Tao, S.M. Lindsey, An Atomic Force Microscopy Study of a Self-Assembled Octadecyl Mercaptan Monolayer Adsorbed on Gold (111) under Potential Control. Langrnuir, 19-93, 9 (6), 1556-1560.
    [21] M. Salmeron,G. Neubaner, A. Folch, et al. Viscoelastic and Electrical Properties of Self-Assembled Monolayers on Au (111) Films. Langmuir, 1993, 9 (12), 3600-3611.
    [22] M.A. Bryant, J.E. Pemberton, Surface Raman Scattering of Self-Assembled Monolayers Formed from 1-Alkanethiols: Behavior of Films at Au and Comparison to Films at Ag. J. Am. Chem. Soc., 1991, 113 (22), 8284-8293.
    [23] D.G. Samant, C.S. Brown, I.G. J. Gordon, Structure of an Ordered Self-Assembled Monolayer of Doeosyl Mercaptan on Gold (111) by Surface X-Ray Diffraction. Langmuir, 1991, 7 (3), 437-439.
    [24] R.G. Nuzzo, B.R. Zegarski, L.H. Dubois, Fundamental Studies of the Chemisorption of Organsulfur Compounds on Au (111). Implication for Molecular Self-Assembly on Gold Surfaces. J. Am. Chem. Soc., 1987, 109 (3), 733-740.
    [25] R.C. Thomas, L. Sun, R.M. Crooks, A.J. Ricco, Real-Time Measurement of the Gas-Phase Adsorption of n-Atkylthiol Mono- and Multilayers on Gold. Langmuir, 1991, 7 (4), 620-622.
    [26] H.Q. Finldea, D.A. Snider, J. Fedyk, Passivation of Pinholes in Octadecanethiol Monolayers on Gold Electrodes by Electrochemical Polymerization of Phenol. Langmuir, 1990, 6 (2), 371-376.
    [27] N. Nakashima, T. Taguchi, Y. Takada, et al. An Ion Gate Lipid Monolayer Membrane on Gold Electrode. J. Chem. Soc. Chem. Commun., 1991, 2, 232.
    [28] K. Takehara, Y. Ide, An Ion-Gate Response of the Glutathione Monolayer Assembly Formed on a Gold Electrode. Part 2. The Effect of Alkaline Earth Ions. Bioelectrochem. Bioenerg., 1991, 29 (1),113-120.
    [29] S. Berchmans, S. Arivukkodi, V. Yegnaraman, Self-Assembled Monolayers of 2-Mercaptobenzimidazole on Gold: Stripping Voltammetric Determination of Hg(Ⅱ). Electrochem.Commun., 2000, 2 (4), 226,229.
    
    
    [30] J.J. Xu, H.Q. Fang, H.Y. Chen, The Electrochemical Characteristics of an Inorganic Monolayer Film Modified Gold Electrode and Its Molecular Recognition of Alkali Metal Cation. J. Electroanal. Chem., 1997, 426 (1), 139-143.
    [31] B.Z. Zeng, Y.X. Yang, X.G. Ding, F.Q. Zhao, Electrochemical Study and Detection of Perphenazine Using a Gold Electrode Modified with Decanethiol SAM. Talanta, 2003, 61 (6), 819-827.
    [32] M. Collinson, E.F. Boeden, M.J. Tarlov, Voltammetry of Covalently Immobilized Cytochrome c on Self-Assembled. Monolayer Electrodes. Langmuir, 1992, 8 (5), 1247-1250.
    [33] I. Willner, A. Rildin, Electrical Communication between Electrodes and NAD(P)~+-Dependent Enzymes Using Pyrroquinolinequinone-Enzyme Electrodes in a Self-Assembled Monolayer Configuration: Design of a New Class of Amperometric Biosensors.Anal. Chem., 1994, 66 (9), 1535-1539.
    [34] B.Z. Zeng, X.G. Ding, F.Q, Zhao, Y.X. Yang, Electrochemical Determination of Copper (Ⅱ) by Gold Electrodes Modified with N-Acetyl-L-Cysteine. Anal. Lett., 2002, 35 (14), 2245-2258.
    [35] T. Mizutani, T. Murakami, N, Matsumi, et al. Molecular Recognition of Carbohydrates by Functionalized Zinc Porhyrins. J. Chem. Soc. Chem. Commun., 1995, 12, 1257-1258.
    [36] J. Wang, B.Z. Zeng, C. Fang, X.Y. Zhou, Voltammetric Study of a Cupric Hexacyanoferrate Monolayer Immobilized on Mixed Dodecanethiol-Glutathione Self-Assembled MonolayerModified Gold Electrode. Electroanalysis, 2000, 12 (10), 763-766.
    [37] C. Henke, D. Steinem, A. Janshoff, et al. Self-Assembled Monolayers of Monofunctionalized Cyclodextrins onto Gold: a Mass Spectrometric Characterization and Impedance Analysis of Host-Guest Interaction. Anal. Chem., 1996, 68 (18), 3158-3165.
    [38] H.M. Zhang, N.Q. Li, Z.W. Zhu, Electrocatalytic Response of Dopamine at a Self -Assembled DL-Homocysteine Gold Electrode. Microchem. J., 2000, 64 (3), 277-282.
    [39] J.H. Yan, J.H. Li. Synthesis of N-(n-Octyl)-N'-(10-Mercaptodecyl)-4,4'-Bipyridinium Diobromide and Electrochemical Behavior of Its Monolayers on a Gold Electrode.
    
    J. Chem. Soc., Faraday Tran., 1996, 92 (6), 1001-1006.
    [40] 孙长青,刘国晶,张鸿安,钒氧酞菁分子沉积自组膜电极的组装及其对肼的电催化研究.高等学校化学学报,1998,19(3),382-384.
    [41] K. Takethara, H. Takemura, Y. Ide, Electrochemical Studies of Permeation of FAD and UQ_0 into the Self-Assembled n-Alkanethiol Monolayer Formed on a Gold Electrode. J. Colloid & Interface Sci., 1993, 156 (2), 274-278.
    [42] C.E.D. Chidsey, C.R. Bertozzi, T.M. Putvinski, et al. Coadsorption of Ferrocane-Terminated and Unsubstitudes Alkanethiols on Gold: Electroactive Self-Assembled Monolayers. J. Am. Chem. Soc., 1990, 112 (11), 4301-4306.
    [43] K. Uosaki, H. Kita, Electrochemical Characteristics of a Gold Electrode Modified with a Self-Assembled Monolayer of Ferrocenylalkanethiols. Langmuir, 1991, 7 (7), 1510-1514.
    [44] S.E. Creager, G. K. Rowe, Redox Properties of Ferrocenylalkane Thiols Coadsorbed with linear n-Alkanethiols on Polycrystalline Bulk Gold Electrodes. Anal. Chim. Acta, 1991, 246 (1), 233-239.
    [45] P.M. Allen, H.A.O. Hill, N.J.J. Walton, Surface Modifiers for the Promotion of Direct Electrochemistry of Cytochrome c. J. Electroanal. Chem., 1984,178 (1), 69-86.
    [46] K.M. Millan, S.R. Mikkelsen, Sequence-Selective Biosensor for DNA Based on Electroactive Hybridization Indicators. Anal .Chem., 1993, 65 (17), 2317-2323.
    [47] 邓文礼,杨林静,王琛,白春礼,烷基硫醇分子自组装研究进展.科学通报,1998,43(5),449-456.
    [48] H.L. Zhang, Y. Guo, H.L. Li, et al. AFM Controlled Selective Deposition 1-Octadecanethiol on Gold. Chem. J. Chinese Universities, 1999, 20 (9), 1460-1462.
    [49] Y. Xia, G.M. Whitesides, Soft Lithography. Angew. Chem. Int. Ed., 1998, 37 (5), 550-575.
    [50] B. Zhishan, L. Zhang, X. Zhang, et al. Self-Assembled Monolayers of Dendron on Solid Substrate. Chem. Lett., 1998, 12, 1197-1198.
    [51] J.C. Shen, J.Q. Sun, X. Zhang, et al. Polymeric Nanostructured Compsite Films. Pure Appl. Chem., 2000, 72 (1), 147-155.
    [52] L. Zhang, F.W. Huo, X. Zhang, et al. Investigation into Self-Assembled Monolayers of a Polyether Dendron Thiol: Chemisorption, Kinetics, and Patterned Surface. Langmuir, 2000, 16 (8), 3813-3817.
    
    
    [53] 林贤福,陈志春,吕德水,何琳,张大同,大分子自组装及其应用的研究与进展.高分子材料科学与工程,2000,16(4),5-7.
    [54] T. Fukuda, Y. Maeda, H. Kitano, Stereoselective Inclusion of DOPA Derivatives by a Self-Assembled Monolayer of Thiolated Cyclodextrin on a Gold Electrode. Langmuir, 1999, 15 (5), 1887-1890.
    [55] Y.Q. Wang, H.Z. Yu, Z.E Liu, et al. End-Group-Dominated Electrochemical Kinetics of Azobenzene Self-Assembled Monolayers on Gold. Langmuir, 1996, 12 (22), 5466-5471.
    [56] S.L. Ren, S.R. Yang, Q.J. Xue, Academic in Conference of Biologic Tribology and Artificial Joint, 2000, Shanghai, pp15.
    [57] Q.J. Xue, J. Zhang, Ultra Thin films of Ordered Molecular Systems and Their Applications in Tribology, 1996, Shenyang: Liaoning Science Press, pp144.
    [58] 王宗花,罗国安,碳纳米管在分析化学领域的研究进展.分析化学,2003,31(8),1004-1009.
    [59] H.M. Cheng, F. Li, X. Sun, Bulk Morphology and Diameter Distribution of Single-Walled Carbon Nanotubes Synthesized by Catalytic Decomposition of Hydrocarbons. Chem. Phys. Lett., 1998, 289 (5-6), 602-610.
    [60] J. Kong, A.M. Cassel, H.J. Dai, Chemical Vapor Decomposition of Methane for Single-Walled Carbon Nanotubes.Chem. Phys. Lett., 1998, 292 (4-6), 567-574.
    [61] T.E. Muller, D.G. Reid, W.K. Hsu, Synthesis of Nanotubes via Catalytic Pyrolysis of Acetylene: A Sem Study. Carbon, 1997, 35 (7), 951-966.
    [62] E. Ruckenstein, Y.H. Hu, Catalytic Preparation of Narrow Pore Size Distribution Mesoporous Carbon. Carbon, 1998, 36 (3), 269-275.
    [63] A.T. Matveev, D. Gollberg, V.P. Novikov, Synthesis of Carbon Nanotubes below Room Temperature. Carbon, 2001, 39 (1), 155-158.
    [64] Z.J. Jia, Z.Y. Wang, L. Liang, Production of Short Multi-Walled Carbon Nanotubes. Carbon, 1999, 37 (6), 903-906.
    [65] H.X. Luo, Z.J. Shi, N.Q. Li, Q.K. Zhuang, Investigation on the Electrochemical and Electrocatalytical Behavior of Chemically Modified Electrode of Single Wall Carbon Nanotube Funtionalized with Carboxylic Acid Group. Chem. J. Chinese Universities, 2000, 21 (9), 1372-1374.
    
    
    [66] H.X. Luo, Z.J. Ski, N.Q. Li, Z.N. Gu, Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode. Anal Chem., 2001, 73 (5), 915-920.
    [67] C.Y. Liu, A.J. Bard, F. Wudl, I. Weitz, J. R. Heath, Electrochemical Characterization of Films of Single-Walled Carbon Nanotubes andTheir Possible Application in Supercapacitors. Electrochem. Solid State Lett., 1999, 2 (11), 577-578,
    [68] J.J. Davis, R.J. Coles, H.A.O. Hill, Protein Electrochemistry at Carbon Nanotube Electrodes. J. Electroanal. Chem., 1997, 440 (1), 279-285.
    [69] Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, Electrocatalytic Oxidation of Cysteine at Carbon Nanotube Powder Microelectrode and Its Detection. Sens. Actuators B, 2003, 92 (3), 279-282.
    [70] J.X. Wang, M.X. Li, Z.J. Ski, N.Q. Li, Z.N. Gu, Investigation of the Electrocatalytic Behavior of Single-Wall Carbon Nanotube Films on an Au Electrode. Microchem. J., 2002, 73 (3), 325-333.
    [71] J.M. Xu, Y.P. Wang, Y.Z. Xian, L.T. Jin, K. Tanaka, Preparation of Multiwall Carbon Nanotubes Film Modified Electrode and Its Application to Simultaneous Determination of Oxidizable Amino Acids in Ion Chromatography. Talanta, 2003, 60 (6), 1123-1130.
    [72] G. Zhao, S.Q. Zang, K.Z. Liu, et al. Determination of Xanthine by Anodic Stripping Voltammetry with Carbon Nanotube Modified Glassy Carbon Electrode. Anal, Lett., 2002, 35 (14), 2233-2244.
    [73] X.N. Cao, L. L, G.Y. Ski, et al. Amperometric Determination of 6-Mercaptopurine on Functionalized Multi-Wall Carbon Nanotubes Modified Electrode by Liquid Chromatography Coupled with Microdialysis and Its Application to Pharmacokinetics in Rabbit. Talanta, 2003, 60 (6), 1063-1070.
    [74] S.F. Lv, Electrochemical Behavior and Detection of Daunomycin at Multi-Walled Carbon Nanotubes Modified Electrode.Anal, Lett., 2003, 36 (12), 2597-2608.
    [75] Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, Anodic Oxidation of Hydrazine at Carbon Nanotube Powder Microelectrode and Its Detection. Talanta, 2002, 58 (3), 529-534.
    [76] K.B. Wu, J.J. Fei, S.S. Hu, Simultaneous Determination of Dopamine and Serotonin on a Glassy Carbon Electrode Coated with a Film of Carbon Nanotubes.Anal, Biochem.,
    
    2003, 318(1), 100-106.
    [77] J.X, Wang, M,X. Li, Z.J. Shi, N.Q. Li,Z.N. Gu, Electrocatalytic Oxidation of 3,4-Dihydroxyphenylacetic Acid at a Glassy Carbon Electrrode Modified with Single-Wall Carbon NanotUbes. Electrochem. Acta, 2001, 47 (5), 651-657.
    [78] P.F. Liu, J.H. Hu, Carbon Nanotube Powder Microelectrodes for Nitrite Detection, Sens. Actuators B, 2002, 84 (2-3), 194-199.
    [79] 蔡称心,陈静,包建春,陆天虹,碳纳米管在分析化学中的应用.分析化学,2004,32(3),381-387.
    [80] J. Karpinsk, B. Starczewska, H. Puzamowska-Tarasiewcz, Analytical Properties of 2-and-10-Disubstited Phenothiazine Derivatives. Anal, Sci., 1996, 12 (2), 161-169.
    [81] C. Mou, N. Ganju, K.S. Sridhar, A. Krishan, Simultaneous Quantitation of Plasma Doxorubicin and Prochlorperazine Content by High Performance Liquid Chromatography. J. Chromatogr. B: Biomed. Appl., 1997, 703(1-2), 217-224.
    [82] R.Y. Wang, X.N. Lu, M.J. Wu, et al. Separation of Promethazine and Thioridazine Using Capillary Electrophoresis with Endcolumn Amperometdc Detection J. Chromatogr. B: Biomed. Sci. Appl., 1999, 721 (2), 327-332.
    [83] P.G. Ramappa, A.N. Nayak, K. Basavaiah, Spectrophotometric Determination of Phenazine Drags Using Vanadoboric Acid. Indian Drugs, 1984, 21 (10), 448-454.
    [84] K. Basavaiah, G. krishnamurthy, Titrimetrie Micro Determination of Some Phenothiazine Neuroleptics with Potassium Hexacyano-Ferrate (Ⅲ). Talanta, 1998, 47 (1), 59-66.
    [85] T. Perez-Ruiz, C. Martinez-lozano, V. Tomas, et al. Flow-Injection Fluorimetric Determination of Trimeprazine and Trifluoperazine in Pharmaceutical Preparations. Talanta, 1993, 40 (9), 1361-1365.
    [86] F.A. Aly, N.A. Alarfaj, A.A. Alwarthan, Flow-injection-Chemiluminometric Determination of Some Phenazines in Dosage Forms and Biological Fluids. Anal. Chim. Acta, 1998, 358(3), 255-262.
    [87] D.M. Shingbal, S. Sariyotish, B.G. Shivananda, Colorimetric Quantitation of Fluphenazine Hydrochloride and Its Formulations. Indian Drugs, 1989, 26 (9), 523-524.
    [88] F. Belal, J.L. Anderson, Flow-Injection Analysis of Three N-Substitude Phenazine Drugs
    
    with Amperometric Detection at a Carbon-Fibre Array Electrode., Analyst, 1985,110 (12), 1493-1496.
    [89] E. Bioshop, W. Hussein, Electroanalytical Studies of Phenazine Neuroleptics at Gold and Platinum Electrodes. Analyst; 1984,109 (3), 229-234.
    [90] T.B. Jarbawi, W.R. Heineman, Anal. Chim. Acta, Preconcentration of Tranquilizers by Adsorption/Extraction at a Wax-Impregnated Graphite Electrode. 1986,186, 11-19.
    [91] Y. Xiao, H.X. Ju, H.Y. Chen, Hydrogen Peroxide Sensor Based on Horseradish Peroxidase-Labeled Au Colloids Immobilized on Gold Electrode Surface by Cysteamine Monolayer. Anal .Chim. Acta, 1999, 391 (1), 73-82.
    [92] J. Jia, B. Wang, A. Wu, G. Cheng, Z. Li, S. J. Dong, A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network. Anal. Chem., 2002, 74 (9), 2217-2223.
    [93] X.L. Nan, J. Zhang, Z.F. Liu, Z.N. Gu, Patterned Assembly of Shortened Single-Walled Carbon Nanotubes on Gold Electrodes. Acta Phys. Chim. Sinica, 2001, 17 (5), 393-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700