IC制造装备中专用机器人运动学分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以一种可实现整周回转二平动自由度并联机构为对象,研究了机构的运动学建模、尺度综合、伺服电机参数预估、轨迹规划等关键技术,为硅片传输机械手样机的设计和建造奠定了基础,论文取得如下主要研究成果:
     运用矢量法原理,建立了并联机械的闭环矢量方程,由此推导出其位置正逆解分析模型,及速度、加速度模型。在此基础上考虑机构的速度雅克比矩阵的条件数、末端运动分辨率等因素,提出了一种综合评价指标并以其在工作空间内的均值和波动幅度值最小为优化目标,对机构进行了尺度综合,为机构机械设计奠定了基础。
     利用虚功原理推导了机构刚体逆动力学模型,借助奇异值分解原理,推导了关节变量上界与单位操作变量间的映射关系,在此基础上预估了机械手伺服进给电机参数。
     研究了一种以机械手的运行时间和搬运加加速度为综合优化目标的轨迹规划方法。采用分段多项式确定几何路径后,以关节转矩、关节转速为系统约束,同时分段设置路径加速度、加加速度上限等工作约束,利用三次参数样条进行了轨迹规划。
     上述研究成果为后续样机开发奠定了基础,对硅片传输机器人的设计开发具有指导作用。
This dissertation deals with the kinematic analysis, dimensional synthesis, servomotor parameters estimation and trajectory planning of a whole rotative 2-DOF planar parallel robot which is developed to transfer wafer in IC industry. As preparation for the prototype development, the following works have been completed.
     Based on the closed-loop constrained equation of the proposed robot, the inverse and forward kinematic analytical model is founded. Under constrains of free-singularity and the minimum pressure angle, an index, which is composed of the conditioning number of Jacobian matrix, velocity and motion resolution, is considered as the evaluation criterion. And a new index which is proposed by considering both the mean value and fluctuation of the pre-mentioned index in whole workspace is used to optimally design the dimension parameters. It is testified that the results confirm the integration kinematic behavior.
     With the aid of the principle of virtual work, the dynamic model of the robot has been formulated. An approach to estimate the servomotor parameters is proposed using the singular value decomposition technique, resulting in the mapping function between the maximum value of joint variables and the unit operation variables. The servomotor parameters including the moment of inertia, the maximum speed, torque, and power are estimated for the wafer robot.
     An approach for trajectory planning which takes the operation time and path jerk as the integration optimal object is proposed. After the piecewise-polynomial form of the geometric path is determined, the maximum joint velocity and torque constrains are applied and the upper bounds of the path velocity, acceleration and jerk are set, then the trajectory is planned in workplace via the three order parameterized spline. The trajectory planned by this approach has the advantages of short operation time and low jerk.
     The above results are fundamental for the following prototype development.
引文
[1] http://www.ic-china.org/Article/ShowInfo.asp?InfoID=188
    [2]朱贻玮.展望未来5年中国IC产业[J].电子工业专用设备, 2006, 35(3): 8-9
    [3] K. Hiromitsu.Wafer processing system including a robot [P]. U.S Patent, 568899B1, 2003.
    [4] http://www.yaskawa.com.co.jp/en/products/robot.htm#pagetop
    [5]丛明,于絮,徐晓飞.硅片传输机器人的发展及研究现状[J].机器人技术与应用, 2007, 4: 18-23.
    [6] N. Furuya, K. Soma, H. Makino. Research and development of selective compliance assembly robot arm.Ⅱ. Hardware and software of SCARA controller [J]. Japan Society of Precision Engineering, 1983, 49(7): 835-841.
    [7] http://www.peakrobotics.com
    [8] J. Angeles, A. Morozov, O. Navarro. A novel manipulator architecture for the production of SCARA Motions [C]. IEEE International Conference on Robotics & Automation, San Francisco, USA, 2000, 2371-2375.
    [9] F. Pierrot, F. Marquet, O. Company, et al. H4 parallel robot: modeling, design and preliminary Experiments [C]. IEEE International Conference on Robotics & Automation, Seoul, Korea, 2001, 325-326.
    [10] L. Rolland. The Manfa and the Kanuk: Novel 4 dof parallel mechanism for industrial handling [C]. Proc. OJ ASME and IMECE '99 Conference, Nashville, USA, 1999, 67: 831-844.
    [11] http://www.parallemic.org/Reviews/Review010.html.
    [12] S. Krut, O. Company, M. Benoit, et al. I4: A new parallel mechanism for SCARA motions [C]. Proc. Of IEEE ICRA: Int. Conf on Robotics and Automation, Taiwan, China, 2003, 2: 1875-1880.
    [13] S. Krut, V. Nabat, O. Company, et al. A high speed robot for SCARA motions [C]. Proc. of IEEE ICRA: Int. Conf on Robotics and Automation, New Orleans, USA, 2004, 4109-4115.
    [14] N. Vincent. Par4: very high speed parallel robot for pick and place [J]. Intelligent Robots and Systems, 2005, 553-558.
    [15] K. H. Hunt. Kinematic Geometry of mechanisms [M]. Oxford: Oxford University Press, 1978.
    [16] J.M. Herve. The Lie group of rigid body displacement, a fundamental tool for mechanism design [J]. Mechanism and Machine Theory, 1999, 34(55): 719-730.
    [17] R.J. Popplestone. Group theory and robotics in robotics research [M]. The First Int. Symp., M. Brady and R. Paul Eds. Cambridge, MA, MIT Press, 1984
    [18] J.M. Herve. Analyse structurelle des mecanismes par groupes de deplacements. Mechanism and Machine Theory [J].1978, 13(4): 437-450.
    [19]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社, 2005.
    [20] C. Innocenti, V P Castelli. Forward kinematics of the general 6-6 fully parallel mechanism: an exhaustive numerical approach via a monodimensional search algorithm [J]. ASME Journal of Mechanical Design .1993, 115(4): 932-937
    [21]沈辉,吴学忠.基于区间对分搜索法的并联机构位置正解问题求解[J].机械科学与技术, 2004, 23 (2) :185-188
    [22]刘安心,杨廷力.求一般6 - SPS并联机器人机构的全部位置正解[J].机械科学与技术,1996 , 15 (4) :543-546
    [23]黄真,曲义远.空间并联多环机构的特殊位形分析[C] .全国第五届机构学学术会议,卢山, 1987.
    [24] J. P. Merlet. Singular configurations of parallel manipulators and Grassmann geometry [J]. Int J Rob Res, 1989, 8 (5): 45-56
    [25] Z. Huang, Y. S. Zhao, J. Wang, et al. Kinematic principle and geometrical conditions of general-linear-complex special configuration of parallel manipulators [J]. Mechanism and Machine Theory, 1999, 34(8): 1171-1186.
    [26] J. C. Kieffer, J. C. Aidan. Fast pick and place at robot singularities [J]. IEEE International Conference on Robotics and Automation, 1995, 2236-2241.
    [27] T. Yoshikawa. Manipulability of Robotic Mechanisms [J]. Int. Journal Robot Research, 1985, 4(2): 3-9.
    [28] J. Salisbury, J. Craig. Artificial hands: force controls and kinematic issues [J]. International Journal of Robotic Research, 1983, 1(1): 4-17
    [29] J. Angeles. The Robust Design of Parallel Manipulators [C]. 1st Int.Colloquium, Collaborative Research Centre 562, Braunschweig, 2002, 9-30.
    [30] C. Gosselin, J. Angeles. A globe preference index for the kinematic optimization of robotic manipulator [J]. ASME Journal of Mechanical Design, 1991, 113(3): 220-226.
    [31] Huang T, Li, Z. X., Li, M., et al. Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations [J]. Mechanical Design, 2004, 126(5): 449-455.
    [32] F. Gao, X. Liu, W. Gruver, et al. Performance evaluation of two degree of freedom planar robots [J]. Mechanism and Machine Theory, 1998, 33(6): 661-668.
    [33]孙立宁,丁庆勇,刘新宇. 2自由度高速高精度并联机器人的运动学优化设计[J].机械工程学报, 2005, 41(7): 94-97.
    [34] R. S. Stoughton, T. Arai. A modified Stewart platform manipulators with improved dexterity [J]. IEEE Trans on Robotics and Automation. 1993, 9(2): 166-172
    [35] T. Huang, D. J. Whitehouse, J. S. Wang. Local dexterity,optimum architecture and design criteria of parallel machine tools [J]. Annals of the CIRP, 1998, 47(1):347-351.
    [36] X. J. Liu, J. S. Wang, F. Gao, et a1. The mechanism design of a simplified 6-DOF 6-RUS parallel manipulator [J].Robotics, 2002, 20(1): 81-91.
    [37]冯志友,李永刚,张策,等.并联机器人机构运动与动力分析研究现状及展望[J].中国机械工程,2005, 17 (9): 979-984
    [38] T. Huang. Determination of servomotor parameters of a tripod-based parallel kinematic machine [C]. Prog. Nat. Sci., 2001, 11(8): 612-621.
    [39] T. Huang, J. P. Mei, Z. X. Li, et al. A method for estimating servomotor parameters of a parallel robot for rapid pick-and-place operations [J]. ASME Journal of Mechanical Design, 2005, 127(4): 596-601.
    [40] C.H. Wang, J.G. Horng. Constrained minimum-time path planning for robot manipulators via virtual knots of the cubic B-Spline functions [J]. IEEE Transactions on Automatic Control, 1990, 35 (35): 573-577.
    [41] K.J. Kyriakopoulos, G.N. Saridis. Minimum jerk path generation [C]. Proceedings of IEEE International Conference on Robotics and Automation, Philadelphia, 1988, 1: 364-369.
    [42] A. Gasparetto, V. Zanotto. A technique for time-jerk optimal planning of robot trajectories [J]. Robotics and Computer-Integrated Manufacturing, 2008, 24: 415–426.
    [43]黄田,刘海涛,王攀峰,等.可实现整周回转的四自由度混联抓放式机器人机构[P].中国专利, CN1903520, 2008-08-13.
    [44]赵松年,张奇鹏.机电一体化机械系统设计[M].北京:机械工业出版社, 1996.
    [45] J.E. Bobrow, S. Dubowsky, J.S. Gibson. Time-optimal control of robotic manipulators along specified paths [J]. Int J Rob Res, 1985, 4(3): 554-561.
    [46] K.G. Shin, N.D. McKay. Minimum-time control of robotic manipulators with geometric Path Constraints [C], IEEE Trans Automat Ctrl, 1985, 30(6):531-541.
    [47] T. Huang, P. F. Wang, J.P. Mei. Time minimum trajectory planning of a 2-DOF translational parallel robot for pick-and-place operations [J]. Annals of the CIRP. 2007, 56(1):365-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700