电力系统日发电计划的模型和算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发电计划是节能优化调度的重要组成部分,在当前建立节约型社会的大背景下,对发电计划进行优化,降低运行成本,具有重要的社会和经济意义。在实际系统中为了兼顾经济性和安全性,发电计划一般分为发电计划编制和电网安全校核两个阶段。基于此,本文对日发电计划编制的模型和算法进行了研究;同时还对电网安全校核的重要组成部分-潮流计算进行了研究,以提高安全校核的计算速度。具体研究内容如下:
     首先,建立了考虑机组出力调节频繁程度目标的日发电计划编制新模型,并提出了基于启发式规则的多种群遗传算法进行该问题的求解。针对优化模型中总发电费用最低和降低发电设备调节次数的双重目的,采用系统负荷曲线优化分段、机组出力曲线近似合并等措施来分别降低系统负荷的有效时段数和机组的出力调节次数。其中,为保证算法更好的全局寻优性,对系统负荷曲线进行了多次段数不等的划分,从而形成多条有效时段数不等的等值曲线,之后采用遗传算法的多种群方式来协同寻优。对于上述曲线等值过程中产生的不平衡量由指定的细调机组来承担。另外,针对优化模型中的多种约束条件,尤其是机组合同电量和功率平衡这两个交叉约束,提出了完善的个体初始化和可行性调整策略,保证相关约束的满足,使寻优在可行域中进行。以上措施,保证了优化模型的有效求解,使机组出力更加平稳高效。
     其次,在对电网安全校核的重要组成部分-潮流计算的研究中,基于高压电网中环网和辐射分支并存的特性,提出了复杂电网的逆流分层拓扑搜索法及对应的分层解耦潮流算法。通过拓扑搜索将原电网分解成拥有共同边界节点的主环网和辐射子网2部分,并自动形成辐射子网的支路层次结构。分解后将辐射子网等效为主环网对应边界节点的负荷,而将主环网中边界节点的电压等效为辐射子网的电源电压,然后采用P-Q分解法和前推回代法交替求解主环网与辐射子网,并通过等效负荷和等效电压的交互修正来实现分解协调,从而达到一体化计算的目的。其中,辐射子网的前推回代计算按其支路层次结构分层进行。
     经过IEEE标准系统和实际系统的仿真计算,验证了本文模型和算法的正确性和有效性。
Generation scheduling is an important part of energy-saving optimal scheduling. According to the national call for the establishment of conservation-oriented society, it is of great social and economic significance to reduce operation cost by generation scheduling optimization. Consideration to economy and safety, generation scheduling is generally divided into two stages: making generation schedule and security checking in practical system. Based on this point, the model and algorithm of daily generation scheduling have been studied in this paper; and power flow algorithm, the important part of security checking, has also been studied to enhance the security checking speed. The contents presented in the paper are as follows:
     Firstly, an optimization model for daily generation scheduling is established considering the unit regulating times as one of the targets, and an improved multi-population genetic algorithm (GA) based on heuristic rules is proposed to solve the problem. Consideration to minimizing total generation cost and reducing generator unit regulating times, system load curve optimizing division and unit output curve approximate merging are adopted to reduce effective time periods of system load and unit regulating times respectively. To enable better global optimization ability of the algorithm, the system curve is divided several times to form several equivalent curves with different effective time periods, and then multi-population strategy of GA is adopted to collaborative optimization. Finally, the appointed fine adjustment unit is used to undertake the power imbalance appeared within the curve equivalent progress. Moreover, according to the constrains in the optimization model, especially the unit energy contract and power balance as two cross constrains, suitable individual initialization and feasibility adjustment strategy are proposed to ensure the optimization searching in the feasible region. The above measures enable effective solving of the optimization model, and the unit output should be more stable and efficient.
     Secondly, during the study of power flow algorithm, the important part of security checking, an countercurrent-layered topological search method and layer-decoupled power flow algorithm for complex networks are proposed based on the characteristic of meshed network and radial branches coexisting in the high voltage grid. Through topological search, the original grid is disintegrated into two parts with common boundary nodes, a main meshed network and some radial subnets, and the branch hierarchy of the radial subnets is formed automatically. Then, the radial subnets are assumed to be equivalent to the nodal load of the main meshed network, and the boundary nodes voltage of the main meshed network equivalent to the supply voltage of the radial subnets. The fast decoupled method and the back/forward sweep method are employed to calculate the main meshed network and the radial subnets alternately, and the integrated calculation is realized by the alternate modification of the equivalent load and equivalent voltage. The back/forward sweep calculation for radial subnets is made layer-by-layer according to the branch hierarchy.
     The model and algorithms presented in this thesis have been verified by IEEE standard systems and practical power systems, the simulation results proved that they are correct and effective.
引文
[1]柳进,封嘉爱,王漪.偶对优化潮流及其在电力市场的应用[J].中国电机工程学报,2008,28(4):83-87.
    [2]初壮,于继来.初期电力市场确定电网日发电计划的模型和方法[J].电力系统自动化,2006,30(22):43-47.
    [3]蔡建章,蔡保锐,蔡华祥等.过渡期电力市场条件下日发电计划编制研究[J].云南电力技术,2003,31(32):4-6.
    [4]彭春华,孙惠娟.基于非劣排序微分进化的多目标优化发电调度[J].中国电机工程学报,2009,29(34):71-76.
    [5]徐致远,罗先觉,牛涛.综合考虑电力市场与节能调度的火电机组组合方案[J].电力系统自动化,2009,33(22):14-17.
    [6]杨明,韩学山,梁军,等.基于等响应风险约束的动态经济调度[J].电力系统自动化,2009,33(1):14-17.
    [7]杨明,韩学山,梁军,等.计及用户停电损失的动态经济调度方法[J].中国电机工程学报,2009,29(31):103-108.
    [8]陈之栩,谢开,张晶,等.电网安全节能发电日前调度优化模型及算法[J].电力系统自动化,2009,33(1):10-13,98.
    [9]徐田,於益军,钱玉妹.能量管理系统中发电计划安全校核功能的设计[J].电力系统自动化,2006,30(10):88-92.
    [10]张扬,武亚光,张志刚等.电力市场中考虑安全校核的发电计划生成策略[J].电力系统自动化,2001,9:6-8.
    [11]温步瀛.电力市场条件下发电计划偏差的优化校正研究[J].中国电机工程学报,2007,27 (13):111-116.
    [12]陈珩.电力系统稳态分析[M].水利电力出版社,1995.
    [13]李文沅.电力系统安全经济运行——模型与算法[M].重庆大学出版社,1988.
    [14] Padhy N P.Unit commitment—a bibliographical survey[J].IEEE Trans on Power Systems,2004,19(2):1196-1205.
    [15] Lee FN.Short-Term Unit Commitment——A New Method[J].IEEE Transactions on Power Systems,1988,3(2):423-428.
    [16]于尔铿,周京阳,吴玉生.发电竞价算法(一)——排队法.电力系统自动化[J],2001,23(5):16-19.
    [17]王锡凡,陈皓勇.机组组合问题的优化方法综述[J].电力系统自动化,1999,23(5):51-56.
    [18] Samer Takriti and John R.Birge.Using Integer Programming to Refine Lagrangian-based Unit Commitment Solutions[J].IEEE transactions on power systems,2000,15(1):151-156.
    [19] Nacearino J.R.,CheungR.T.BriggsW. Real-time monitoring optimization and control of a hydroelectric generation complex .IEEE Transactions on Power Systems,1988,3(4):1769-1783.
    [20] Hernandez H.M.,Diaz J. A.,Sanehex G. A. operations planning of colombian hydro-thermal interconnected system .IEEE Transactions on Power Systems,1991,6(2):778-786.
    [21] R H Hicks,C R Gagnon.Large scale nonlinear optimization of energy capability for the pacific northwest hydroelectric system[J].IEEE Transactions on PAS,1974,5(7):1010—1015.
    [22]夏清,强金龙,于尔铿.网流法在电力系统梯级水电站的短期经济调度中的应用.中国电机工程学报,1985,5(4):48-56.
    [23]周京阳,吴玉生,王功涛,等.发电竞价算法(四)——网络流规划法.电力系统自动化,2001,25(7):23-27.
    [24]袁燕玲,邓长虹.基于动态规划法的电力市场下最优发电计划的实现[J].现代电力,2004,24(1):6-8.
    [25] Yuan-Yin Hsu,Chung-Ching Su,Chih-Chine Liang.Dynamic Security Constrained Multi-Area Unit Commitment[J].IEEE Transactions on Power Systems,1991,6(3):1049-1050.
    [26]王承民,郭志忠,于尔铿.电力市场中一种基于动态规划法的经济负荷分配算法[J].电力系统自动化,2000,11(1):19-26.
    [27]王承民,郭志忠,于尔铿.确定机组组合的一种改进的动态规划方法[J].电网技术,2001,25(5):20-24.
    [28] Victor H Q,Geraldo L T,et al.Interior point method and their application to power systems:a classification of publication and software codes. IEEE Trans. on power systems,15(1),Feb.2000:170-175.
    [29] M.Madrigal and V H Quintana. An interior-point/cutting-plane method to solve unit commitment problems. IEEE Trans. Power Syst.,2000,15(3):1022-1027.
    [30] Wu Y C,Debs A S,Marsten R E,A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows,IEEE Trans. on Power Systems,May 1994,9(2):876~883.
    [31] CHEN Hao-yong,WANG Xi-fan.Cooperative co-evolutionary algorithm for unit commitment [J].IEEE Trans on Power Systems,2002,17(1):128-133.
    [32] SWARUP KS,YAMASHIRO S.Unit commitment solution mythology using genetic algorithm [J].IEEE Trans on Power Systems,2002,17(1):87-91.
    [33]贾嵘,李阳,丁建河等.改进遗传算法在水电站日优化运行模型中的应用[J].电网技术,2005,29(14):77-80.
    [34]蔡兴国,初壮.用遗传算法解算机组组合的研究[J].电网技术,2003,27(7):36-39.
    [35]杨俊杰,周建中,喻菁等.一种求解大规模机组组合问题的混合智能遗传算法[J].电网技术,2004,28(19):47-50.
    [36]舒隽,张粒子,王雁凌等.基于竞价的日发电计划混合智能优化算法[J].电力系统自动化,2002,26(21):34-38.
    [37]孙力勇,张焰,蒋传文.基于矩阵实数编码遗传算法求解大规模机组组合问题[J].电机工程学报,2006,26(2):82-87.
    [38]康立山,谢云等.非数值并行算法(第二册)—模拟退火算法.北京:科学出版社,1994.
    [39] Annakkage U D,Numnonda T,Pahalawaththa N C.Unit Commitment by Parallel Simulated Annealing.IEE Proc-Gener T&D,1997,142(6):595-600.
    [40]王永骥,涂键.神经元网络控制.北京:机械工业出版社,1999.
    [41] Sendaula,M.H,Biswas,S.K,Eltom,A,et,al.Application of artificial neural networks to unit commitment.Proceedings of the First International Forum on Applications of Neural Networksto Power Systems 1991:255-260.
    [42] Ouyang Z,Shahidehpour S M.A hybrid artificial neural network-dynamic programming approach to unit commitment.IEEE Trans on PWRS,1992,7(1):236-242.
    [43] Shyh-Jier-Huang,Ching-Lien Huang.Application of genetic-based neural networks to thermal unit commitment.IEEE Trans on PWRS,1997,12(2):654-660.
    [44] Kim H,Hayashi Y,Nara K.An Algorithm for Thermal Unit Maintenance Scheduling Through Combined Use of GA SA and TS.IEEE Trans on Power Systems.1997,12(1):329-335.
    [45] F. Glover, M laguna, et al. Tabu search Basel, Switzerland: Science Publihers,1993.
    [46]赵波,曹一家.电力系统机组组合问题的改进粒子群优化算法[J].电网技术,2004,28(21):6-10.
    [47]韩恺,赵均,钱积新.电力系统机组组合问题的闭环粒子群算法[J].电力系统自动化,2009,33(1):36-40,69.
    [48]郝晋,石立宝,周家启.一种求解最优机组组合问题的随机扰动蚁群优化算法[J].电力系统自动化,2002,26(23):23-28.
    [49] OUYANG Z,SHAHIDEHPOUR S M.A multi-stage intelligent system for unit commitment [J].IEEE Trans on Power Systems,1992,7(2):639-646.
    [50] MARANNINO P,GRANELI I G P,MONTAGNA M,et al.Different time-scale approaches to the real power dispatch of thermal units. IEEE Trans on Power Systems,1990,5 ( 1):169-176.
    [51]王君亮,章健,姚敏昌.电网调度中运行时段的最优划分方法[J].电网技术,2007,31(2):40-41.
    [52]余加喜,白雪峰,郭志忠等.考虑负荷变化率的日发电计划[J].电力系统自动化,2008,32(18):39-43.
    [53]王锡凡.分段竞价的电力市场[J].电机工程学报,2001,21(12):1-6.
    [54]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [55]熊信银,吴耀武.遗传算法及其在电力系统中的应用[M].武汉:华中科技大学出版社,2002.
    [56]王永刚,李卫东,柳焯,等.动态优化调度走向实用的策略与段落全局优化[J].中国电机工程学报,1998,18 (6) :438-441.
    [57]魏萍,李乃湖,武寒等.基于遗传算法的电力系统日有功优化调度[J].电力系统自动化,1999,23(10):23-27.
    [58]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003:55-56.
    [59]张学松,柳焯,于尔铿,等.配电网追赶法潮流[J].中国电机工程学报,1997,17(6):382-385.
    [60] Ghosh S,Das D.Method for load-flow solution of radial distribution networks[J].IEE Proceedings:Generation,Transmission and Distribution,1999,146(6):641-648.
    [61]谢开贵,周家启.树状网络潮流计算的新算法[J].中国电机工程学报,2001,21(9):116-120.
    [62]颜伟,刘方,王官洁,等.辐射型网络潮流的分层前推回代算法[J].中国电机工程学报,2003,23(8):76-80.
    [63] Tinney W F,Brandwajn V,Chan S M.Sparse vector methods [J].IEEE Transactions on Power Apparatus and Systems,1985,104(2):295-301.
    [64]朱凌志,安宁.基于二维链表的稀疏矩阵在潮流计算中的应用[J].电网技术,2005,29(8):51-55.
    [65]徐得超,李亚楼,郭剑,等.消去树理论及其在潮流计算中的应用[J].电网技术,2007,31(22):12-16.
    [66]张学松,柳焯,于尔铿,等.配电网潮流算法比较研究[J].电网技术,1998,22(4):45-49.
    [67]孙宏斌,张伯明,相年德.配电潮流前推回推法的收敛性研究[J].中国电机工程学报,1999,19(7):26-29.
    [68]张明,毕鹏翔,刘健,等.辐射状配电网支路电流法潮流计算的收敛特性研究[J].中国电机工程学报,2003,23(6):41-44.
    [69] Luo G X,Semlyen A.Efficient load flow for large weakly meshed networks[J].IEEE Trans. on Power Systems,1990,5(4):1309-1315.
    [70]车仁飞,李仁俊.一种少环配电网三相潮流计算新方法[J].中国电机工程学报,2003,23(1):74-79.
    [71]刘伟良,黄纯,向为,等.基于叠加原理和前代后代法的环状配电网潮流计算[J].继电器,2005,33(4):17-21.
    [72]李晓明,李汉成,向铁元.复杂配电网分块降阶潮流算法[J].电力系统及其自动化学报,2001,13(4):24-27.
    [73]孙宏斌,张伯明,相年德.发输配全局潮流计算第1部分:数学模型和基本算法[J].电网技术,1998,22(12):39-42.
    [74]孙宏斌,张伯明,相年德,等.发输配全局潮流计算第2部分:收敛性、实用算法和算例[J].电网技术,1999,23(1):50-53.
    [75]苏津,阳育德,覃智君.基于矢量化运算模式的电力系统潮流计算[J].电网技术,2008,32(2):88-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700