巴朗山隧道涌突水灾害危险性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内交通基础设施的建设和发展,复杂地质环境条件下的基岩裂隙型隧道的涌水量预测和危险性评价愈来愈受到重视。拟建的巴朗山隧道位于小金、汶川、宝兴三县交界处的巴朗山,是省道S303线的一段,是连接九环线和卧龙大熊猫自然保护区及东方圣山四姑娘山的唯一道路。由于越岭段地势十分险峻,气候恶劣,海拔高,拟建巴朗山隧道工程是为改善越岭公路的行车条件,提高行车安全,提升卧龙大熊猫自然保护区及东方圣山四姑娘山旅游资源而设计的。
     本文从隧址区岩性构造出发,查明地下水系统的补、径、排条件和运移规律及其水动力特征,分析地下含水介质类型,评价岩体渗透性,在此基础上选取隧道涌水危险性指标,分析隧道施工过程中可能出现的集中涌水段与突水点,再通过隧道涌水计算分析,验证危险性指标选取的合理性,从而进一步评价隧道涌水对工程与环境的影响。
     论文主要的研究内容和成果如下:
     (1)含水层岩性组合特征。本区地下水分为第四系松散岩类孔隙水和基岩裂隙水两种类型。其中松散孔隙水因地形起伏大,切割深,无法形成大片的补给径流区,主要以潜水或上层滞水形式存在,其富水性弱-中等,且受季节和气候的影响显著;基岩裂隙水主要由大气降水补给,其次接受高山地区的冰雪融化水的补给,动态季节变化明显,一般在沟底或低洼的地方出露。
     (2)岩体渗透性研究。通过深孔的压水试验以及岩芯室内渗透率测试,结果显示了砂岩的渗透系数比板岩的大;渗透系数随着深度的增加呈逐渐减小的趋势,到达一定深度后趋于稳定。
     (3)地下水水动力场、水化学场的研究。通过泉点调查追踪以及深孔揭示的地下水信息、水化学组分和氢氧稳定同位素分析,研究地下水补径排条件和循环交替规律。巴朗山南坡地下水循环以浅循环为主,岩石介质对于地下水化学类型的改造作用不明显,矿化程度普遍不高;巴朗山北坡以深部循环为主,主要原因是北坡“U”型谷更加发育、斜坡坡度较缓的缘故。
     (4)水系统研究分析。根据隧址区地下水的补径排特征划分地下水一级系统,即巴朗山北坡地下水系统和巴朗山南坡地下水系统,进而依据含、隔水层组的空间展布进一步划分次级地下水系统,初步判断海子沟口和高店子沟地下水系统对隧道的危险性较大。
     (5)隧道涌突水危险性指标的选取。本文主要通过收集整理关于隧道涌水量危险性分级的相关资料以及已有的研究成果,结合隧道的地质构造、水文地质条件等相关因素,初步选取了基岩裂隙型隧道的危险性评价指标,推测了隧址区的危险段。
     (6)隧道涌水量计算。利用传统的、经典的隧道涌水量计算公式(如降雨入渗法、水动力学法等),对已分段的巴朗山隧道进行典型地段涌水量计算,同时结合Visual ModFlow数值模拟计算,初步获得隧址区典型地段涌水量的范围。
     (7)隧道涌突水危险性综合评价。通过评价指标推测出巴朗山隧道危险段,利用涌水量计算结果进行校核,得出隧道危险段与该段隧道涌水量的值较为匹配。隧道整体涌水量较小,危险性小;仅在褶皱转折端和破碎带危险性相对较大,在施工和运营阶段需要特别注意。隧道开挖后将影响松散层孔隙水的径流、排泄条件,但隧道涌水漏失的主要为基岩裂隙水,对土壤含水、储水功能影响较小,对地表生态植被造的破坏较小。
With the construction and development of domestic transportation infrastructure, people pay more attention to water inflow forecasting and risk assessment of the tunnel in the fissured bedrock in complex geological environment conditions. The proposed Balang Mountain tunnel will be built in Balang Mountain which is at the junction of Xiaojin, Wenchuan and Baoxing counties. The tunnel is a section of Provincial highway line S303 and it is the only way to connect nine ring lines, Giant Panda Nature Reserve of the Wolong, and the East Sacred mountain --Siguniang Mountain. For the steep terrain, bad weather and high altitude, the proposed tunnel project is to improve the conditions of road crossing the mountain, improve the traffic safety and enhance Giant Panda Nature Reserve of Wolong and the travel resources of East Sacred mountain --Siguniang Mountain.
     This paper first introduces the rock structure in the tunnel site areas, identifies the recharge, runoff and discharge conditions, the rule of migration and hydrodynamic characteristics of the groundwater system, analyses water-bearing media types of the underground water, evaluates the rock permeability, on this basis, the risk indicators of water inflow into the Tunnel is selected. Then analyses the probable water inflow sections and points during the tunnel construction, calculates and analyses water inflow in the tunnel for checking on rationality of the risk indicators, the influence of water inflow into the Tunnel on the project and the environment is further evaluated.
     The main research contents and results are as follows:
     (1) Characteristics of lithological association in the aquifer. The groundwater in this area can be divided into pore water in the loose rocks of Quaternary and fissured water in the bedrock. Due to the large topographic relief and deep cut which make recharge and runoff areas not large, Pore water in the loose rocks is mainly in the form of phreatic or perched water, whose ability of containing water is weak - medium, and effected by seasons and climate significantly; fissure water in the bedrock is mainly recharged by rain, then supplied by water from ice and snow melting in the mountain areas, whose dynamic seasonal change is remarkable and exposure is generally in the ditches or low-lying areas.
     (2) Study the permeability of rock mass. Through the packer permeability test in the deep holes and the indoor core permeability test, the results of two tests show that the permeability coefficient in sandstone is larger than in slate, and the permeability coefficient is decreased with the depth gradually increased, when it reaches a certain depth, the permeability coefficient will be stable.
     (3)Study on dynamic field of the groundwater and field of water chemistry. Through survey and tracing spring points and analysis the information of underground water, chemical compositions and Hydrogen and Oxygen stable isotopes revealed by deep holes, we study the recharge, runoff and discharge conditions and the cyclic-alternating rule of the groundwater. The groundwater circulation in the southern slope of Balang Mountain is mainly shallow. The effect of the rock medium on hydrochemical type of the groundwater is not very clear, and the mineralization is generally not high; the groundwater circulation in the northern slope of Balang Mountain is mainly deep, mainly due to "U" shaped valleys in the northern slope are more developed, and the slope is gentle.
     (4) Analysis of water system. According to the recharge, runoff and discharge characteristics of groundwater in tunnel site areas, class 1 systems of the groundwater are divided: groundwater system in the northern slope of Balang Mountain and groundwater system in the southern slope of Balang Mountain. Then sub-groundwater systems of the groundwater are further divided, due to the spatial distribution of the confining layer groups. The groundwater systems of Haizi ditch and Gaodianzi ditch are risk for the tunnel by the initial judgement.
     (5) Risk indicators select of the water inflow. This article initially establishes the risk evaluation indexes of the fissured bedrock tunnel mainly by collecting and tidying related data on the risk classification of the water inflow and former research results, combined with the geological structure, hydrogeological conditions and other relevant factors of the tunnel, meanwhile, presume the risk segment of the tunnel site areas.
     (6) Calculation of the water inflow. The water inflow of typical sections of the Balang Mountain tunnel which has been segmented is calculated by traditional, classic formulas of the tunnel water inflow (such as rainfall infiltration method, hydrodynamics method, etc.), and combined with Visual ModFlow numerical simulation, the ranges of the water inflow in typical sections of the tunnel site areas are initially got.
     (7) Comprehensive evaluation of Tunnel water-busting risk. High-risk sections of Balang Mountain tunnel are obtained though risk indicators, then verified by water inflow calculations. It proves that the risk sections of the tunnel are matched with the values of water inflow. The water inflow of the tunnel is small, and the risk is small; only in the transitions of the foldings and in the broken belts, is the risk relatively large, which needs special attention during the construction and operation phases. Tunnel excavation will affect runoff and discharge conditions of the pore water in loose layers .But the leakage of the water inflow in the tunnel is main from the water in bedrock fissures, which affects little in the ability of soil containing and storing water and in the damage of surface vegetation.
引文
[1]徐则民,黄润秋.深埋特长隧道及其施工地质灾害[M],成都:西南交通大学出版社,2000.
    [2]余雪祯.公路隧道地质灾害预测及其处理措施数据库管理系统开发[D].成都:成都理工大学硕士论文,2009.
    [3]尹兴锋.洪屏抽水蓄能电站地下厂房涌水量预测研究[D].南京:河海大学硕士论文,2007.6.
    [4]候伟.公路隧道的渗流场与应力场的耦合分析[D].西安:西安理工大学硕士论文,2006.3.
    [5]王家好.公路建设对环境的影响与防护对策[J].交通科技与经济,2003(3):43-44.
    [6] Hartley,Peter.Tunneling across the world[J].T&T International,v29,n12,Dec,1997:36.
    [7]李苍松.岩溶地质分形预测方法的应用研究[D].成都:西南交通大学硕士论文,2006.
    [8]杨立铮,黄尚瑜等.水文地质学基础[M].成都理工大学出版社,2005.11.
    [9]周志芳,王锦国著.裂隙介质水动力学[M].北京:中国水利水电出版社,2004:13-40.
    [10]田开铭.对裂隙岩石渗透性的初步探讨[J].地质研究,1982(1).
    [11]张有天,张武功.裂隙岩体渗透特性渗流数学模型及系统量测[J].岩石力学,1982.8.
    [12]杜延龄,许国安等.复杂岩基三维渗流分析研究[J].水利学报,1984.3.
    [13]刘光亚.基岩地下水[M].地质出版社,1979.12.
    [14]于青春.岩体三维不连续裂隙网络及其逆建模方法[J].地球科学一中国地质大学学报,2003,28(5):522-526.
    [15]于青春,刘丰收等.岩体非连续裂隙网络三维面状渗流模型[J].岩石力学与工程学报,2005,24(4):662-667.
    [16]卢波,葛修润等.节理岩体表征单元体的分形几何研究[J].岩石力学与工程学报,2005,24(8):1355-1361.
    [17] Alireza Baghbanan,Lanru Jing.Hydraulic properties of fractured rock masses with correlated fracture length and aperture[J].International Journal of Rock Mechanics &Mining Sciences,2007:44.
    [18]荣冠,周创兵等.裂隙岩体渗透张量计算及其表征单元体积初步研究[J].岩石力学与工程学报,2007,26(4):740-746.
    [19]徐恒力等.水资源开发与保护[M].地质出版社,2001.
    [20]地质矿产部水文地质工程地质技术方法研究队编.水文地质手册[M].北京:地质出版社,1983,379-380.
    [21]王芃.数值法预测隧道涌水量及工程措施效果量化评估研究[D].成都:西南交通大学硕士论文,2008.5.
    [22]朱大力,李秋枫.预测隧道涌水量的方法[J].工程勘察,2000,(4).
    [23]蒙彦.岩溶区隧道涌水研究现状及建议[J].中国岩溶,2003,22(4):287-292.
    [24] Anon.Recommendations for the treatment of water inflows and outflows in operated underground structures[J].Tunneling and underground space Technology,1989,4(3):343-407.
    [25]张宏仁等编译.地下水水力学的发展.地质出版社,1992.
    [26] Renard , Philippe . Approximate discharge for constant head test with recharging boundary[J].Ground Water,v43,n3,May/June,2005:439-442.
    [27] Oda,Masanobu.Equivalent continuum model for coupled stress and fluid flow analysis injointed rock masses[J].Water Resources Research,1986,22(13):1845-1856.
    [28] Heuer,Ronald E.Estimating rock tunnel water inflow.Proceedings Rapid Excavation and Tunneling Conference,1995:41-60.
    [29]李兴高,刘维宁.隧道渗涌水的随机模型预测[J].中国安全科学学报,2002,8(4).
    [30]陈伟君.雅沪高速公路泥巴山隧道及断层涌突水预测分析[D].成都:西南交通大学硕士论文,2009.5.
    [31]邓聚龙.灰色预测与决策[M].武汉:华中工学院出版社,1985.
    [32]郑黎明.隧道涌水灾害预测的随机性数学模型方法[J].西南交通大学学报,1998,33(3):273-278.
    [33]刘丹,李启彬.秦岭特长隧道涌水量的预测研究.煤田地质与勘测,2005,2(1).
    [34]杨艳娜.西南山区岩溶隧道涌突水灾害危险性评价系统研究[D].成都:成都理工大学博士论文,2009.12.
    [35]朱珍德,郭海庆.裂隙岩体水力学基础[M].科学出版社,2007.
    [36]王芳.陡倾断裂带深埋隧道涌水的模型研究[D].北京:中国地质大学(北京)硕士论文,2009.6.
    [37]杨远.城市地下空间多灾种安全综合评价指标体系与方法研究[D].重庆:重庆大学硕士论文,2009.6.
    [38]吴亚子.山区公路地质灾害危险性评估方法研究[D].成都:成都理工大学硕士论文,2009.5.
    [39]刘文剑.裂隙水对越岭隧道的影响及综合防治技术研究[D].长沙:中南大学硕士论文,2005.5.
    [40]许模,康小斌,钟金先,等.省道303线巴朗山隧道水文地质专项研究报告[R].成都理工大学地质灾害防治与地质环境保护国家重点实验室,2010.
    [41]四川省交通厅公路规划勘察设计研究院.省道303线巴朗山隧道工程可行性研究阶段工程地质勘察报告[R].2009.
    [42]贺同兴,卢良兆,李树勋,等.变质岩岩石学[M].北京:地质出版社,1988.
    [43]王仁民,游振东,富公勒.变质岩石学[M].北京:地质出版社,1989.
    [44]周创兵,熊文林.地应力对裂隙岩体渗透性的影响[J].地震学报,1997(3):154-163.
    [45]张美静,万力,王芳,等.隔水边界附近围岩渗透性变化对隧道涌水的渗流模型[J].长江科学院院报,2008(10):75-78.
    [46]傅雪海,秦勇,姜波等.煤割理论压缩实验及渗透率数值模拟[J].煤炭学报,2001(12):573-577.
    [47]陈俊合,江涛,陈建耀.环境水文学[M].北京:科学出版社,2007.
    [48]许模,屈科,苟定才等.圆梁山隧道毛坝向斜段岩溶水同位素组分特征[J].成都理工学院学报,2001(4):120-124.
    [49]张世殊,崔长武,陈奎,等.溪洛渡水电站坝区过河斜硐地下水环境同位素分析[J].水文地质工程地质,2002(1):35-37.
    [50]向喜琼.区域滑坡地质灾害危险性评价与风险管理[D].成都:成都理工大学博士论文,2005.3.
    [51]李显伟.隧道水害与地质灾害相互作用及综合防治研究[D].成都:西南交通大学工程硕士论文,2007.12.
    [52]邬强.齐岳山隧道涌水量预测的研究[D].成都:西南交通大学硕士论文,2006.4.
    [53]宋嶽,边建峰,贾国臣.深部原始地应力特征与预测方法[J].水利水电工程设计,2009,28(4):42-45.
    [54]周林.九区石炭系火山岩油藏地质特征综合研究[D].南充:西南石油学院硕士论文,2005.4.
    [55]王连捷,潘里审,廖椿庭等.地应力测量及其在工程中的应用[M].北京:地质出版社,1991.11.
    [56]倪兴华.地应力研究与运用[M].北京:煤炭工业出版社,2007.1.
    [57]陈超.边台油田潜山油藏天然裂缝预测方法研究[D].大庆:大庆石油学院工程硕士论文,2006.6.
    [58] Waterloo Hydrogeologie公司.Visual ModFlow用户使用手册[M].2000.5.
    [59]田劲杰.铁路长隧道生态环境影响综合评价[D].成都:西南交通大学硕士论文,2005.3.
    [60]徐忠卫.特长隧道施工环境问题研究[J].青海环境,2009(9):144-146.
    [61]张卓元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [62]钟桂彤.铁路隧道[M].北京:中国铁道出版社,1993.
    [63]铁道部第一勘察设计院.中华人民共和国行业标准铁路工程水文地质勘察规范[M].北京:中国铁道出版社,2004.4.
    [64]曹伯勋.地貌学及第四纪地质学[M].武汉:中国地质大学出版社,1995.
    [65]赵存明,沈斐敏等.公路隧道施工特大涌水的防治技术探讨[J].中国安全生产科学技术,2008,Vol.4(5):151~154.
    [66]马建超.蓝商高速公路李家河隧道岩体渗流观测与分析[D].西安:西安理工大学硕士论文,2008.3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700