深海ROV及组合结构设计与分析关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了深海无人遥控潜水器(ROV)耐压电子舱结构设计中涉及的力学分析技术。利用有限元数值分析方法校核了耐压电子舱在深水条件下的强度、刚度与稳定性。根据深海耐压电子舱受力特点,优化其结构形式和尺寸,获得最优结构拓扑构型。对于耐压电子舱上下壳体接合面间接触问题,将非线性接触分析和简化分析法的计算结果进行比较。文中还探讨了加工误差与初始缺陷对耐压电子舱力学性能的影响。计算结果表明,本文耐压电子舱结构优选设计方案满足力学性能和重量要求,并且对加工误差与初始缺陷的影响不十分敏感。本文同样利用有限元数值分析方法校核了ROV载体框架在出水回收及甲板系固工况下的强度和刚度,结果表明本文设计方案下ROV载体框架满足使用要求。
     以金属-复合材料组合结构动力学设计问题为研究对象,建立了以材料类型(钢材、碳纤维层合复合材料)和结构尺寸为设计变量,振级落差、结构强度及位移约束条件下,结构重量最小化为目标函数的金属-复合材料组合浮筏结构材料选型优化设计数学模型。对提出的三种材料选型结构动力学优化模型进行了比较,采用遗传算法求解。研究表明,金属-复合材料组合结构确实能够得到比全金属结构或全复合材料结构更优异的减振降噪性能。鉴于材料选型优化模型求解的困难性,本文采用磨光函数法对该优化模型进行连续化,对构造出的六种不同形式磨光函数下优化模型计算结果与离散变量优化模型计算结果进行比较研究。结果表明,Sigmoid磨光函数、反正切函数和分段磨光函数应用于材料选型优化模型连续化的效果最佳。
The mechanical analysis technologies involved in the design of pressured electric cabin for deepwater ROV are investigated. Finite element method is employed to verify the strength, stiffness and stability of pressured electric cabin. According to the surrounding load conditions, the topology and the sizes of the cabin are optimized and the optimal topology configuration is obtained. To investigate the contact mechanism of the joint surface between the upper and lower part of pressured electric cabin, the computation results are compared between nonlinear contact analysis and simplified analysis. In addition, the impact of mismachining tolerance and initial imperfection on the mechanical performance are discussed too. Computation results showed that the final design scheme satisfied the requirements on the mechanical properties and weight, and the mechanical properties are insensitive to the mismachining tolerance and the initial imperfection. Similarly, finite element method is employed to verify the strength, stiffness of ROV framework under retrieve and fixed condition. Caculation results showed that the design scheme satisfied the operating requirements.
     Materials selection optimization design for the steel-compostie hybrid structures under dynamics constraints is investigated. The material types (steel and composite material), elastic modules of the materials and structural sizes (thickness of the plate) in the steel-composite hybrid structures are defined as design variables respectively. Different mathematical optimization models with mixed continuous and discrete design variables are established under vibration level difference, stress and displacement constraints. The genetic algorithm is employed to solve the presented optimization problems. Computational results show high effectiveness of materials allocation than that of the common dynamics optimization with size design variables and single material. Because of the non-diiferential difficulties in the materials selection optimization problems, the polish function transformation method is applied for the continuity of the mathematical formulations. The optimization results of the proposed six polish function transformation models are compared with that of the discrete variable optimization model, it showed that Sigmoid polish function, arctan polish function and piecewise polish function are more suitable for the continuity of the mathematical formulations of materials selection optimization model.
引文
[1]蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁科学技术出版社,2000.
    [2]施德培,李长春.潜水器结构强度[M].上海:上海交通大学出版社,1991.
    [3]中国船级社.潜水系统及潜水器入级与建造规范[S].北京:人民交通出版社,1996.
    [4] Russian Maritime Register of Shipping. Rules for the Classification of Manned Submersibles and Diving Systems[S]. 1994.
    [5]刘涛.大深度潜水器结构分析与设计研究[D].中国船舶科学研究中心,2001.
    [6] George Z.Voyiadjis, Pawel Woelke. A refined theory for thick spherical shells[J]. International Journal of Solids and Structures,2004,41(14):3747-3769.
    [7] K. K. Vo,C. M. Wang,Y. H. Chai. Buckling analysis of moderately thick rotational shells under uniform pressure using the Ritz method[J]. Journal of Structural Engineering,2008,134(4): 593-601
    [8]李良碧,王仁华,俞铭华,等.深海载人潜水器耐压球壳的非线性有限元分析[J].中国造船,2005,46(4):11-18.
    [9]俞铭华,王仁华,王自力,等.深海载人潜水器有开孔耐压球壳的极限强度[J].中国造船,2005,46(4): 92-96.
    [10] Li Xiang-yang,Cui Wei-cheng. Contact finite element analysis of a spherical hull in the deep manned submersible[J]. Journal of Sheep Mechanics,2004,8(6):85-94.
    [11]黄建城,胡勇,冷建兴.深海载人潜水器载体框架结构设计与强度分析[J].中国造船,2007,48(2):51-59.
    [12]宋辉. ROV的结构设计及关键技术研究[D].哈尔滨工程大学,2008.
    [13]严济宽,柴敏,陈小琳.振动隔离效果的评定[J].噪声与振动控制, 1997,(06):22-30
    [14] Yang Deqing, Luo Fang. Dynamic optimization design of metal-nonmetal combined structure under power flow and vibration level difference constraints[C]. 8th World Congresses of Structural and Multidisciplinary Optimization, 1348-1357, Lisbon, June 1– 5, 2009, Portugal.
    [15] Gutteridge PA, Waterman NA. Computer-aided materials selection. In: Bever MB, editor. Encyclopedia of Material Scienceand Engineering. Oxford: Pergamon Press; 1986.
    [16] Ashby M F. Materials selection in mechanical design[M]. Oxford:Butterworth-Heinemann, 1999.
    [17] Ashby M F. Multi-objective optimization in materials design and selection[J]. Acta Material, 2000, 48:359-369.
    [18] S. M. Sapuan. A knowledge-based system for materials selection in mechanical engineering design[J]. Materials and Design, 2001, 22(8):687-695.
    [19] S.M. Sapuan, H.S. Abdalla. A prototype knowledge-based system for the material selection of polymeric-based composites for automotive components. Composites Part A: Applied Science and Manufacturing ,1998,29(7):731-742.
    [20] Abdulrezak Mohameda, Tahir Celik. An integrated knowledge-based system for alternative design and materials selection and cost estimating[J]. Expert Systems with Applications, 1998, 14(3): 329-339.
    [21] Natalia S. Ermolaeva, Maria B. G. Castro, Prabhu V. Kandachar. Materials selection for an automotive structure by integrating structural optimization with environmental impact assessment[J]. Materials and Design, 2004, 25(8):689-698.
    [22] Natalia S. Ermolaeva, Kirill G. Kaveline, Jan L. Spoormaker. Materials selection combined with optimal structural design: concept and some results[J]. Materials and Design, 2002, 25(3):459-470.
    [23]牛晓明.工程分析中的材料选择方法[ [J].光学与精密工程, 1997, 5(6):54-58
    [24]周长春,殷国富,胡晓兵,刘丽.面向绿色设计的材料选择多目标优化决策[J].计算机集成制造系统, 2008, 14 (5):1023-1028+1035.
    [25] Kien-Ming Ng. A continuation approach for solving nonlinear optimization problems with discrete varibales[D]. Stnaford: StnafordUniversity, 2002.
    [26]谭涛.离散变量优化设计的连续化方法研究[D].大连理工大学,2006.
    [27] Sui YK, Yang DQ. A new method for structural topological optimization based on the concept of indepdent continuous variables and smooth model. Acta Mechanica Sinica,1998, 14(2): 179-185
    [28]隋允康,杨德庆,孙焕纯.统一骨架与连续体的结构拓扑优化的ICM理论与方法[J].计算力学学报,2000, 17(1):28-33.
    [29]隋允康,彭细荣.结构拓扑优化ICM方法的改善[J].力学学报,2005,37(2):190-198.
    [30]隋允康,宣东海,叶红玲,铁军.阶跃函数高精度逼近的结构拓扑优化方法[C].结构及多学科优化工程应用与理论研讨会’2009,大连,2009.
    [31]王仁华,俞铭华,李良碧,等.初始缺陷对深海载人潜水器耐压球壳塑性稳定性影响[J].海洋工程,2005,23(4):111-115.
    [32] Cho-Chung Liang,Tso-Liang Teng,Wen-Hao Lai. A study of diving depth on deep-diving submersible vehicle[J]. International Journal of Pressure Vessels and Piping,1998,75(6):447-457
    [33]朱继懋.潜水器设计[M].上海:上海交通大学出版社,1992.
    [34]俞铭华,王自力,李良碧,王仁华.大深度载人潜水器耐压壳结构研究进展[J],华东船舶工业学院学报(自然科学版),2004,18(4):1-6.
    [35]徐芝纶.弹性力学(上册)[M].北京:高等教育出版社,1982.
    [36]陈火红. Marc有限元实例分析教程[M].北京:机械工业出版社,2002.
    [37]刘涛.深海载人潜水器耐压球壳设计特性分析[J].船舶力学,2007,11(2):214-220
    [38]叶彬,刘涛,胡勇.深海载人潜水器外部结构设计研究[J].船舶力学,2006,10(4):105-114.
    [39] Yang De-qing, Guo Feng-jun. Topological Optimal Design of a Gearbox Mounting with Vibration Level Difference Constraints [J], Journal of Vibration and Shock, 2008, 27(6):173-177.
    [40] Yang Deqing, Luo Fang. Dynamic optimization design of metal-nonmetal combined structure under power flow and vibration level difference constraints[C]. 8th World Congresses of Structural and Multidisciplinary Optimization, 1348-1357, Lisbon, June 1– 5, 2009, Portugal.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700