面向可靠性概率设计的数控机床载荷谱建立方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控机床是装备制造业实现现代化的基本装备,是具有高科技含量的工作母机,能否研发功能先进、精度高和质量可靠的数控机床,反映了一个国家制造业水平的高低。国产数控机床与国外欧、美、日等发达国家制造的数控机床相比,功能和精度水平逐渐接近,但在可靠性方面尚有较大的差距,致使国内中高端机床及其关键功能部件市场、尤其高端数控机床产品市场长期大量被国外品牌占领。可靠性水平低已成为制约我国机床行业发展的瓶颈,因此提高国产数控机床及其关键功能部件的可靠性水势在必行。
     进行数控机床和关键功能部件可靠性设计是提高数控机床可靠性水平的主要途径之一,目前采用的主要是基于故障分析的可靠性综合设计,概率设计是机床可靠性设计的必然趋势,而机床载荷谱是可靠性概率设计的客观依据。目前各机床及功能部件制造企业的载荷信息积累严重不足,无法编制科学、合理的数控机床载荷谱。因此为使机床产品具有一定的设计阈值,往往依靠经验来选择相应的安全系数。然而,机床载荷和零件强度不是恒定值,而是随机变量,利用安全系数法设计的机床对可靠性而言缺少客观依据,所以设计出的机床缺乏可靠性保证。上世纪90年代,吉林工业大学针对当时的数控车床产品开展了一些载荷谱技术的研究,但载荷谱编制过程并没有考虑机床快速移动和切削过程中机床自身重力、摩擦力及惯性力的作用、刀具磨钝对切削力的影响等,导致载荷谱的建立方法不完善;同时,随着机械、控制、液压和测量传感技术的发展,机床与上世纪90年代产品相比结构更加简化,功能更加完善。当今机床多采用伺服电机驱动丝杠进给,传动链更短;采用交流或直流控制单元驱动主轴旋转,摒弃了采用多级齿轮副变速的复杂结构,且实现了主轴的无级变速;同时,为了实现精密切削,机床刚度也有了很大的提高。机床结构的改变导致载荷的传递规律也发生了变化;同时近年来随着切削工艺的改进,机床的使用工况与90年代相比也有很大不同,因此原有载荷谱已不能反映当今机床产品的实际工作情况。针对上述情况,本文结合国家科技重大专项课题“高速/精密数控机床可靠性设计与性能试验技术”和“数控机床可靠性考核试验方法的研究”的研究工作,对数控机床进行了故障机理分析,研究了数控机床载荷的传递规律、刀具磨钝量与机床切削力的映射关系,并研究了数控机床的载荷谱编制方法,最终形成了一套适用于数控机床的载荷谱编制方法,论文的主要研究工作如下:
     (1)论述了国内外数控机床的发展、数控机床可靠性技术、载荷谱技术的研究现状及其研究进展。对数控机床可靠性建模、故障分析、可靠性设计和试验技术进行了综述和分析,归纳了数控机床可靠性技术研究的状况和主要动态,分析了现阶段我国数控机床可靠性技术研究存在的问题。通过分析和研究我国数控机床可靠性技术的研究现状,总结凝练了数控机床可靠性研究的主要技术路线。论述了机械产品载荷谱技术的研究现状和载荷谱的编制流程,指出了数控机床载荷谱编制方法的不足,为此提出了考虑机床快速移动过程重力、摩擦力及惯性力等载荷,切削过程重力、摩擦力等载荷和刀具磨钝对切削力影响的载荷谱编制方法。
     (2)开展了数控机床现场可靠性试验,并收集了大量的故障信息。采取功能独立、功能共享和行业共识的原则,划分了数控机床子系统。基于此,利用主次分析方法对现场可靠性试验获得的故障信息进行了分析,得到了数控机床故障的频发部位。针对在故障危害度分析时没有考虑故障模式频率比、故障影响概率、故障率和难以定量表示故障影响概率的精确值的权重导致分析结果与实际不符的问题,本文提出采用数据包络分析方法为故障模式频率比、故障影响概率、故障率的权重客观赋予值、用三角隶属度函数表示对故障影响概率的评判值的求取危害度的方法。利用该方法对故障模式进行了分析,得到了影响数控机床可靠性的关键部位。最后,对关键子系统进行了故障机理分析:元器件、零部件和轴承损坏主要是载荷交变或冲击作用使其产生疲劳损伤或断裂;松动主要是载荷冲击和振动作用使其发生联接松动或引线松动;渗漏主要是摩擦和热应力使密封圈产生裂纹和磨损。通过故障机理分析可知,大部分故障是由于载荷作用造成的,因此提出对机床载荷传递规律及载荷谱技术进行研究。
     (3)分析了数控车床和加工中心的组成和结构。在此基础上,开展了机床切削载荷传递规律的研究。研究了数控车床在快速移动、车削、钻孔过程中载荷(切削力和切削扭矩)的传递规律,得到了车床主轴轴承、丝杠、导轨的受力模型和主轴电机、丝杠电机的扭矩模型;研究了加工中心在快速移动、立铣削、面铣削、钻孔过程中载荷(切削力和扭矩)的传递规律,得到了加工中心主轴轴承、丝杠、导轨的受力模型和主轴电机、丝杠电机的扭矩模型。
     (4)分析了数控机床切削载荷信息的获取方法,制定了载荷信息的收集流程,基于该流程,进行了数控机床现场载荷试验,并收集了大量的载荷信息。对机床切削力的演化规律进行了论述和分析,机床切削力除了受切削工艺参数影响外,还受刀具磨钝因素的影响。基于此,利用正交试验方法设计了切削力与刀具磨钝映射关系的试验方案。在数控车床和加工中心上搭建了切削力试验系统,并开展了试验研究。利用多元线性回归方法求出了考虑刀具磨钝影响的切削力经验公式,建立了刀具磨损量和切削力之间的映射关系。
     (5)论述了机械产品载荷谱的编制方法。在此基础上,根据数控机床的工作特点,对机床产品载荷谱的编制方法进行了研究,数控机床载荷谱编制的关键是切削载荷数据的获取、载荷循环的计数以及载荷分布模型的优选。以机床切削长度与进给量的比值作为载荷循环次数,机床切削力(或扭矩)与机床设计的最大切削力(或扭矩)的比值为相对切削载荷,相对切削载荷对应的循环次数与总循环次数比值为相对循环次数。以数控车床为对象,对数控机床载荷谱的编制进行了案例说明。分别利用威布尔、对数正态、伽玛和贝塔分布分别对数据进行了拟合。针对载荷数据服从多个分布的情况,提出以多种误差信息融合为评价因素,采用数据包络分析方法优选出了载荷的分布模型。
     通过本文的研究,提出了一套适用于数控机床载荷谱的编制方法,为后续进行数控机床多维、多层次载荷谱的编制和可靠性设计提供了方法和依据。
NC machine tools are the basic device to modern manufacturing industry, which are themanufacturers with the high-technology. Whether the advanced functional machine tools thathave the high machining precision and reliability are developed reflects the level ofmanufacturing industry of one country. Comparing to NC machine tools made by Europeancountries, Japan, America, etc, Chinese ones have relatively low level of reliability, and stillit is a huge gap. The markets for high and mid-grade machine tools productions and keyfunctional parts, especially high-end NC machine tools, are secured by foreign brands in along period. Market share for NC machine tools made by china is low, high and mid-grademachine tools productions and key functional parts mainly depend on import. The majorreason in the low market share is the relative lower reliability level of machine tools, and thisrestrains the development of machine tools industry in our country. Therefore, it is necessaryto improve the reliability of domestic machine tools and key functional parts.
     To carry out the reliability design for machine tools and key functional parts is onemain way to improve the reliability of machine tools, and load spectra are the foundation ofreliability design. However, there is no scientific and accurate load spectra because of thatdata are deficient in many companies, so workers always design production by choosingsafety factors based on their experience, and productions designed by this method may betoo larger. However, NC machine tools cutting load and strength of materials are notconstant, they are random variables. And those machine tools designed by experientialmethod doesn’t have the high inherent reliability and it make machine tools low level ofreliability and congenital defect. In the last century90’s, Jilin Technique Institute developeda serials of research on load spectrua for NC machine tools, but the method of these did notconsider the load influence to machine tools spectra during dry run, and the machiningcutters wear influence to machining load, which leaded the load spectra that built was notcompleted. Meanwhile, with the development of control, mechanics and sensing technology,machine tools have been improved a lot, especially the structure of machine tools have beenmore simplified comparing to productions made in last century. Feed system is driven byservo motor, so the chain of transmission becomes more shorter and AC or DC control unitmakes spindle rotation contiuously variable, so it abandoned the former step-by-step variable speed transmission. As well as, stiffness of machine tools improves a lot in order to realizehigh precision. The changes of structure of machine tools make machining load transfer lawsdifference to the former machine tools and the machine tools’ working conditions alteredmuch as well. Hence, load spectra cannot be applied to the reliability design of machinetools anymore now. To sum up, according to the project of “the Technology of Reliabilitydesign and Performance Testing for High speed/Precision NC machine tools” and project of“Research on Reliability Testing of NC machine tools”, which projects are founded byNational science and technology major special projects, failures analysis for machine toolsare analyzed, then obtained that the reliability design is the main reason that cause machinetools fail from that study. Research on machining load tranfer laws, the cutting loadinfluence by machining cutter wear and the establishing method of load spectra have beenconducted. The detailed work are as follows:
     (1) The development of machine tools, the technolgy of reliablity for machine tools andload spectra are analyzed, emphasizing the state and the hot research spots of reliability ofmachine tools in China. In this part, the reliability modelling method of machine tools,failure analysis technology, reliability design and tests are reviewed and analyzed. The maindynamic states of reliability technology study are summarized, the existing problems areproposed. The technology roadmap of machine tools reliability is presented.
     (2) The method of reliability data collection is drawn up,then the field reliabilitytestings are carried out and lots of failure data were collected. Based on the principles offunctional independences, functional shares and the conventions, the machine tools aredivided into several subsystems. Then the subsystems with high frequent failures areobtained by eareto diagram method. The criticality effect factors don’t take into accout whenFMECA and it is difficult to give a quantify for those factors, so the analysis result is notreasonable. To overcome this issue, the triangle-shape mbership functions are used toperform the fuzzy evaluation of researchers, the weight of factos are determined byfuzzy-DEA method. Based on this, a new criticality evaluating method is executed and thekey subsystems which have main effect on reliabiltiy are got. And then failure mechanism isanalyzed briefly.
     (3) The performance and structures of abundant NC machine tools are investigated,based on this, the load transfer laws during dry running, turning and drilling of NC machinetools are studied, then the laws of force and torque transfer are obtained and models of forceand torque are developed. The force models include force of axis bearing, force of leadscrew and pressure of guide rails. The torque models include torque of spindle motor and screw motor. Similarly, the load trasfer laws of machining center are obtained.
     (4) The load data collections of machine tools is determined. Based on this process thefield load tests were conducted, then the lots of load information were collected. Withstudying and analyzing on laws of machining force, the cutting force is also influenced bywear of tools. Then, the experiment of machining force affected by wear of tools wereperformed using the orthogonal experiment method. Finally, the experiential formulation ofmachining force are got by adopting multiple linear regression model.
     (5) The development of load spectra of machine tools are studied. According tofunctional performance of NC machine tools, the methods of establishing load spectrum arestudied. The key is to obtain data of machining load, accounting of circulation of machiningload and selecting of load model. Take the ratio of feeding length to the feed speed ascirculation amount, and the ratio of machining force or torque to the maximum machiningforce and torque as the relative load. On the basis of this, the relative load is the variable of xaxis and the relative circulation is the variable of y axis. After that, the data are fitted tolognormal distribution, Weibull distribution and the distribution of Beta and gamma. Finally,the best model is determined by data envelopment analysis.
     This study summarized the reliability characteristic of machine tools and gave the studydynamic spots. As shown there, the new FMECA considered the critically effects weightswas proposed and it would be a great complements to FMECA. Moreover, empirical formulaconsidered the wear of cutters was developed and then the load spectra establishing methodwas presented based on the new load transfer laws. Through this study, it would provide anestablishing load spectra method and a foundation for reliability design.
引文
[1]中国机械工业联合会.中国机床消费额连续十年居全球第一[EB/OL].[2013-02-28].http://www.cmiao.com. cn/cms/hyzx/263.htm.
    [2]徐树滋.2002年世界机床生产和销售统计[J].世界制造技术与装备市场,2003,6:56-59.
    [3] http://skzx.miit.gov.cn/n11293472/n12731633/n12731694/12732089.html
    [4] http://mep128.mofcom.gov.cn/mep/sjtj/306808.asp
    [5] http://mep128.mofcom.gov.cn/mep/yjfx/307712.asp
    [6] http://mep128.mofcom.gov.cn/mep/yjfx/307710.asp
    [7]国务院办公厅.16个科技重大专项陆续启动[EB/OL].[2007-03-19]. http://wwww.nmp.gov.cn/mtjj/200902/t20090202_1907.htm
    [8] http://mep128.mofcom.gov.cn/mep/xwzx/cyzx/272379.asp
    [9] Bo B. On reliability theory and its applications(with discussion and reply)[J]. ScandinavianJournal of Statistics,1985(12):1-41.
    [10] Bo B. The Development of Reliability Techniques: a Retrospective Survey[J]. ReliabilityEngineering And System Safety,1992(36):3-6
    [11] http://baike.baidu.com/view/9884.htm
    [12]盛伯浩.数控机床功能部件的特点及发展[J].现代制造,2005(04):40-41.
    [13] http://www.c-cnc.com/mj/news/news.asp?id=37313&page=3
    [14] http://www.c-cnc.com/mj/news/news.asp?id=37313&page=8
    [15]机经网.数机床质量的可靠性成为行业市场发展的重点[EB/OL].[2012-10-25].http://www.mei.net.cn/jcgj/201210/458624.html.
    [16]中国机床工具工业协会.机床工具行业“十二五”发展规划[M].北京:工业和信息化部装备工业司,2011.
    [17]郑国伟.机床工具进出口情况与需要关注的问题[J].制造技术与机床,2011(7):17-18.
    [18]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[EB/OL].新华社,(2006-02-09),[2011-10-01]. http://www. gov.cn/jrzg/2006-02/09/content_183787.htm
    [19]牟致忠.机械可靠性—理论方法应用[M].北京:机械工业出版社,2011:3-5.
    [20]刘惟信.机械可靠性设计[M].北京:清华大学出版社,1995
    [21]国防科技网.可靠性工程发展动向[EB/OL].[2009-12-18]. http://www.81tech.com/jishu/200912/18/jishu16067.html
    [22]杨绍文.可靠性工程的发展[J].核标准计量与质量,1997.
    [23]侯郁.国内外可靠性工程发展概况[J].质量可靠性,1996,12(6),24-25.
    [24]野中保熊(日本).可靠性数据的收集与分析方法[M].高金忠,译.北京:机械工业出版社,1988.
    [25] Department of Defense,United States of America. MIL-STD-1629A Procedures for performing aFailure Mode,Effects,and Criticality Analysis[S]//Washington: Military Standard,2000.
    [26]贾亚洲.提高国产数控机床可靠性水平[J]数控机床市场,2006(5):92-99.
    [27]王志刚.可靠性技术的发展与应用[J].环境适应性和可靠性,2009(2),27-29.
    [28] Stewart E. A survey of machine tool breakdowns[R]. MTIRA:Macclesfield,1977.
    [29] Проников А С. Точность и надежность станков с числовий[M]. Москва:МАШИНОСТРОЕНИЕТ,1982.
    [30]普罗尼科夫A. C..机床的可靠性(二)[J].贾亚洲,译.国外机械加工技术,1987(6):55-58.
    [31]普罗尼科夫A. C..机器可靠性[M].四川机械工程协会设备维修专业委员会,译.成都:四川人民出版社,1983.
    [32]树志.对数控系统可靠性、稳定性的一些认识-谈数控系统抗干扰措施[J].机床,1976,3:1-4.
    [33]蔡亲民.试论数控机床及数控系统可靠性的特征量[J].机床,1992,7:49-51.
    [34]贾亚洲.机床滚动轴承的动力分析与疲劳计算[J].机械强度,1987,4:66-72.
    [35] Jia Y Z. Analysis and calculation of fatigue loading of machine tool gears[J]. International Journalof Fatigue.,1991,13(6):483-487.
    [36]机械电子工业部机床工具司.加工中心可靠性评定方法(试行)[S].//中华人民共和国机械行业标准.北京:机械工业出版社,1990(内部使用).
    [37]机械电子工业部机床工具司. JB/GQ1153-90数控车床可靠性的评定方法[S].//中华人民共和国机械行业标准.北京:机械工业出版社,1990.
    [38]贾亚洲,杨兆军.数控机床可靠性国内外现状与技术发展策略[J].中国制造业信息化,2008(08):35-37.
    [39]北京机床研究所. GB/T23567.1-2009数控机床可靠性评定第1部分:总则[S].北京:中国标准出版社,2009.
    [40]北京机床研究所. GB/T23568.1-2009机床功能部件可靠性评定第1部分:总则[S].北京:中国标准出版社,2009.
    [41] Keller A Z,Kamath A R. Reliability analysis of CNC machine tools[J]. Reliability Engineering,1982,3(6):449-473.
    [42] Jia Y Z,Wang M L,Jia Z X. Probability distribution of machining center failures[J]. ReliabilityEngineering and System Safety,1995,50:121-125.
    [43] Wang Y Q,Jia Y Z,Yu J Y,et al. Failure probabilistic model of CNC lathe[J]. ReliabilityEngineering and System Safety,1999,65:307-314.
    [44] Charles E E. An introduction to reliability and maintainability engineering[M]. Long Grove,Illinois:Waveland Press Inc,2005.
    [45] Dai Y,Zhou Y F,Jia Y Z. Distribution of time between failures of machining center based on typeI censored data[J]. Reliability Engineering and System Safety,2003,79:377-379.
    [46]戴怡,周云飞,陈学东,等.加工中心故障分布规律及其研究方法[J].系统工程与电子技术,2004,26(3):413-415.
    [47]陈殿生,王田苗,魏洪兴.数控车床故障分布的两重威布尔分段模型[J].北京航空航天大学学报,2005,31(7):766-769.
    [48]王智明,杨建国,王国强,等.多台数控机床最小维修的可靠性评估[J].哈尔滨工业大学学报,2011,43(7):127-130.
    [49]王智明,杨建国.数控机床可靠性评估中的边界强度过程[J].上海交通大学学报,2012,46(10):1623-1631.
    [50]许彬彬,杨兆军,陈菲,等.非齐次泊松过程的数控机床可靠性建模[J].吉林大学学报(工学版),2011,41(sup2):210-214.
    [51]杨兆军,李小兵,许彬彬,等.加工中心时间动态可靠性建模[J].机械工程学报,2012,48(2):16-22.
    [52] Jeffrey P K,Steven M C,Mark E O,et al. Reliability of manufacturing equipment in complexenvironments[J]. Annals of Operations Research,2011,10:1-26.
    [53]张君一,谢里阳,李兵,等.基于Petri网的非串行制造系统的可靠性分析[J].机械工程学报,2009,45(12):95-101.
    [54]贾志新,张宏斌,郗安民.基于径向基函数神经网络的电火花线切割机床可靠性数据模拟生成[J].机械工程学报,2010,46(2):145-149.
    [55]贾志新,张宏斌.利用神经网络扩充数据机床可靠性数据[J].吉林大学(工学版),2011,41(2):403-407.
    [56] Amzen H E. Failure mode and effect analysis:a powerful engineering tool for component andsystem optimaization[C]. Proceedings of the Fifth Reliability and Maintainability Conference,NewYork,March,1966:355-371.
    [57] International Electrotechnical Commission. IEC60712Analysis techniques for system reliability–Procedure for failure mode and effects analysis[S]//Geneva:International Standard,2006.
    [58] Fleischer J,Schopp M. Increasing the reliability of machine tools by use of an FMEA-basedcondition monitoring system[J]. VDI Verlag GMBH,2007:55-64.
    [59]张宏年.金属切削机床故障分析法[J].机床,1981,3:5-13.
    [60]张集盛.组合机床可靠性问题初探[J].组合机床与自动化加工技术,1987,9:7-11.
    [61]朱永志,刘道新. MZ2015型全自动内圆磨床的故障分布及其可靠性分析[J].上海机床,1989,4:33-39.
    [62]国家标准局. GB7826-87系统可靠性分析技术失效模式和效应分析程序故障模式、影响及危害性分析程序[S]//北京:中华人民共和国国家军用标准,1987.
    [63] Mcgoldrick P F,Kulluk H. Machine tool reliability-A critical factor in manufacturing systems[J].Reliability Engineering,1986,14(3):205-221.
    [64]戴怡,贾亚洲,申桂香.立式加工中心的故障分析与改进措施[J].中国机械工程,2001,12(11):1209-1211.
    [65] Yang Z J,Xu B B,Chen F,et al.A new failure mode and effects analysis model of CNC machinetool using fuzzy theory[C]//2010IEEE International Conference on Information and Automation,June20-23,2010,Harbin Engineering University,Harbin.2010:582-587.
    [66]于捷,贾亚洲.数控车床故障模式影响与致命性分析[J].哈尔滨工业大学学报,2005,37(12):1725-1727.
    [67]许彬彬.基于维修程度的数控机床可靠性建模与分析[D].长春:吉林大学机械制造及其自动化专业,2011.
    [68] Lu X H,Jia Z Y,Gao S N,et al. Failure mode effects and criticality analysis (FMECA) ofcircular tool magazine and ATC[J]. Journal of Failure Analysis and Prevention,2013,13:207–216.
    [69]金渊源,冯虎田,李春梅,等.链式刀库及机械手早期故障筛选试验机分析方法[J].组合机床与自动化加工技术,2012,12:72-75.
    [70] Rezvani A R. Reliability analysis of a flexible machining cell[J]. International Journal of AdvancedManufacturing Technology,1986,1(4):55-68.
    [71]陈传海,杨兆军,陈菲,等.基于BDD技术的数控机床故障树分析[J].工程与试验,2010,50(3):13-16.
    [72]于捷,孙立大,石耀霖,等.基于BDD技术的数控机床故障树重要度分析[J].机床与液压,2008,36(12):186-189.
    [73]陈张荣,李云飞.数控机床故障的远程预警和诊断系统[J].苏州大学学报(工科版),2011,31(1):21-24.
    [74] Li Y F,Huang H Z,Liu Yu,et al. A new fault tree analysis method:fuzzy dynamic fault treeanalysis[J] Eksploatacja i Niezawodnosc–Maintenance and Reliability,2012,14(3):208-214.
    [75]魏领会,申桂香,薛玉霞,等.基于网络协同的重型数控装备可信性信息系统研究与开发[J].制造业信息化,2009,10:130-132.
    [76]薛玉霞,申桂香,张英芝,等.数控机床可用性信息分析系统的开发与应用[J].制造业信息化,2009,31(4):34-36.
    [77]罗巍.数控机床故障分析与可靠性评价技术的研究[D].长春:吉林大学机械制造及其自动化专业,2011.
    [78]周磊,陈时锦,梁迎春,等.基于失效树分析的机床进给系统可靠性设计[J].机械设计与制造,2007,6:60-62.
    [79]周磊,陈时锦,梁迎春,等.液压摆角铣头系统的故障树分析及可靠性改进[J].机床与液压,2007,35(9):236-239.
    [80]张义民.机械设计的内涵与递进[J].机械工程学报,2010,46(14):167-188.
    [81] Zhang Y M,Liu Q L. Reliability-based design of automobile components[J]. Proceedings of theInstitution of Mechanical Engineers Part D-Journal of Automobile Engineering,2002,216(D6):455-471.
    [82]孙志礼,何雪宏,蔡春源.疲劳可靠寿命预测的应力-寿命模型[J].机械科学与技术,1998,17(2):218-220.
    [83]王正,谢里阳,李兵.随机载荷作用下的零件动态可靠性模型[J].机械工程学报,2007,43(12):20-25.
    [84]王正,康锐,谢里阳.以载荷作用次数为寿命指标的失效相关系统可靠性建模[J].机械工程学报,2010,46(6):188-194.
    [85]谢里阳,林文强.基于载荷-强度关系的失效率离散建模方法及模型[J].机械强度,2010,32(4):570-575.
    [86]王正,谢里阳.不确定性载荷作用下的零件时变可靠性模型[J].航空学报,2009,30(7):1243-1247.
    [87]吉林大学机械工业数控装备可靠性技术重点实验室. JLUMTR-001数控机床可靠性综合设计规范[S]//大连机床集团,沈阳机床集团内部规范,2011.
    [88] Wang Y Q,Richard C M,Zuo M J,etc. A comprehensive reliability allocation method for designof CNC lathes[J]. Reliability Engineering and System Safety,2001,72:247-252.
    [89]杨兆军,郝庆波,陈菲,等.基于区间分析的数控机床可靠性模糊综合分配方法[J].北京工业大学学报,2011,37(3):321-329.
    [90]张根保,柳剑,王国强.基于任务的数控机床模糊可靠性分配方法[J].计算机集成制造系统,2012,18(4):768-774.
    [91]郝庆波,杨兆军,陈传海,等.基于区间层次分析法的数控机床可靠性预计[J].吉林大学学报(工学版),2012,42(4):845-850.
    [92] Zhaojun Yang, Yinkai Wang, Fei Chen, etc. Prediction of Reliability Model for CNC Machine ToolBased on Exponential Smoothing Model[J]. Advanced Materials Research,2012,548:495-499.
    [93]杨兆军,呼烨,陈菲,等.高速电主轴动态加载装置:中国,CN102426097A[P].2012-04-25.
    [94]杨兆军,陈菲,李国发,等.由测功机和液压混合加载的动力伺服刀架可靠性试验台:中国CN102735484A[P].2012-10-17.
    [95]杨兆军,陈菲,张富,等.具有电液伺服加载装置的数控转塔刀架可靠性试验系统:中国,ZL201010288469.1[P].2011-11-23.
    [96]杨兆军,呼烨,李国发,等.机械手拉刀力及插刀力的测量及记录装置:中国,N102430960A[P].2012-05-02.
    [97]黄祖广,赵钦志,盛伯浩.加工中心可靠性测试电磁环境应力仿真平台的构建[J].工艺与检测,2008,3:82-86.
    [98]于乃辉.五轴联动加工中心可靠性试验与评估方法研究[D].长沙:国防科技大学,2011.
    [99]涂林.卧式加工中心可靠性试验技术研究[D].重庆:重庆大学,2012.
    [100]潘奔流,叶军,薛玉君,等.高速电主轴轴承性能试验台的研制[J].轴承,2011,4:48-50.
    [101]陈长江,徐同申,邱宪国,等.一种主轴试验台:中国,CN201138286Y[P].2008-10-22.
    [102]刘春时,林剑锋,马晓波,等.一种刀架性能测试试验台:中国,CN202735070U[P].2013-02-13.
    [103]游达章.数控系统加速寿命试验方法及可靠性评估技术研究[D].武汉:华中科技大学,2011.
    [104] Rzepka B,Krolo M,Bertsche B. Case Study: Influences on the Availability of Machine Tools[C]//Proceedings Annual Reliability and Maintainability Symposium,January27-30,Tampa,FL,Unitedstates.2003:593-599.
    [105] Fleischer J,Niggeschmidt S,Wawerla M. Optimizing the Life-Cycle-Performance of machine toolsby reliability and availability prognosis[C]//14th CIRP Conference on Life Cycle Engineering,Jun11-13,Wasada Univ,Tokyo,Japan,2007:329-334.
    [106]张英芝,申桂香,吴甦,等.数控机床可用度分析[J].制造技术与机床,2010,1:124-126.
    [107] Bhupesh K L,Makarand S K. Optimal maintenance schedule decisions for machine toolsconsidering the user's cost structure[J]. International Journal of Production Research,2012,50(20):5859-5871.
    [108]申桂香,谷东伟,张英芝,等.数控机床最佳预防维修时间的确定[J].重庆大学学报,2012,35(1):7-10.
    [109]张义民.数控机床可靠性技术综述[J].世界制造技术与装备市场,2012,5:49-67.
    [110]孙奎洲,周金宇,谢里阳.数控机床滚珠丝杠可靠性优化设计[J].机械科学与技术,2010,29(11):1130-1133.
    [111]王丹,周亮,孙治礼.基于蒙特卡洛方法的滚珠丝杠副运动可靠性分析[J].东北大学学报(自然科学版),2012,33(8):1179-1185.
    [112]李南,卢晓红,韩鹏卓,等.数控机床及其关键功能部件可靠性研究综述[J].组合机床与自动化加工技术,2012,11:105-108.
    [113]李南.刀库及自动换刀装置可靠性研究[D].大连:大连理工大学,2012.
    [114]卢晓红,贾振元,张智聪,等.动力刀架刀盘结构参数优化[J].组合机床与自动化加工技术,2011,4:82-90.
    [115]卢晓红,韩鹏卓,武文毅,等.双环盘式刀库结构参数优化[J].组合机床与自动化加工技术,2013,1:92-95.
    [116]陈保家,陈雪峰,何正嘉,等.利用运行状态信息的机床刀具可靠性预测方法[J].西安交通大学学报,2010,44(9):74-77.
    [117]洪军,郭俊康,刘志刚,等.基于状态空间模型的精密机床装配精度预测与调整工艺[J].机械工程学报,2013,49(6):114-121.
    [118] Gassner E. Festigkeitsversuche mit wiederholter Beanspruchung im Flugzeugbau (Strength testsunder repeated loading for aeronotical engineering). Luftwissen1939,6:61–4.
    [119] Miner,M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics,1945,67,AI59-AI64.
    [120]周纪良,姜壁琪.中型轮式拖拉机驱动轴耕作载荷谱[J].机械强度,1975,2:23-36.
    [121]程悦荪,郁工瑞,郑联珠,等.中型轮式拖拉机转向系载荷谱的初步研究[J].吉林工业大学学报,1981,03:12-27.
    [122]长春汽车研究所第五研究室疲劳强度组.解放牌CA10B型汽车前轴、转向节工作载荷谱测定及前轴程序疲劳试验[J].汽车技术,1976,06:52-62.
    [123]长春汽车研究所第五研究室疲劳强度组.解放牌CA10B型汽车前轴、转向节工作载荷谱的测定[J].汽车技术,1978,02:40-46.
    [124]李雯,张承宁,宋强.混合动力汽车电机驱动系统二维载荷谱研究[J].农业机械学报,21-29.
    [125]高月华,高振方,秦淑华.工程机械载荷谱及其测定方法[J].工程机械,1979,08:36-42.
    [126]张英爽,王国强,王继新,等.工程车辆传动系载荷谱编制方法[J].农业工程学报,2011,27(4):179-183.
    [127]张振淼,沈浙.重载列车车钩程序载荷谱的编制方法[J].铁道车辆,1989,1:26-32.
    [128]穆志韬,徐可君,段成美.直升机疲劳载荷谱的编制方法研究[J].机械强度,1999,21(4):302-304.
    [129]王智,李淑文,刘文琦.歼击机载荷谱编制方法的研究[J].航空学报,1990,11(8):B393-B395.
    [130]王建,秦瑞芬,吴艳霞.基于飞行测量的弹性轴承试验载荷谱修正和寿命评估方法[J].直升机技术,2013,174(1):1-9.
    [131]邵永起,苏开鑫,张连璠,等.中华人民共和国国家军用标准.军用飞机起落架标准载荷[S].国防科学技术工业委员会批准,1997.
    [132]闫楚良,王公权.峰值计数法疲劳载荷谱的编制与统计处理程序[J].农业机械学报,1984,1:51-57.
    [133]朱力平.双参数计数法的随机载荷谱分析[J].农业机械学报,1984,2:51-65.
    [134]王建定,桑正中,陈翠英.程序载荷谱编制方法研究[J].农业机械学报,1986,3:71-81.
    [135] Xiong J J,Shenoi R A. A load history generation approach for Full-scale accelerated fatigue tests[J].Engineering Fracture Mechanics,2008,75:3226-3243.
    [136] Klemenc J,Fajdiga M. A neural network approach to the simulation of load histories byconsidering the influence of a sequence of rain flow load cycles[J]. International Journal ofFatigue,2002,24:1109-1125.
    [137]陈观慈,贾平,毛范海,等.风电轴承多工况试验载荷谱的编制[J].轴承,2011,10:21-25.
    [138]王萌.地铁转向架构架疲劳评价与载荷谱试验研究[D].北京:北京交通大学,2011.
    [139]吴波,黎明发.使用Monte Carlo方法间接确定不可测零件载荷谱[J].武汉工学院学报,1986,3:78-86.
    [140]郭虎,邓耀文,吴慧敏,等.车辆随机载荷谱的统计分析[J].汽车科技,2003(6):43-45.
    [141]张英爽,王国强,王继新,等.轮式装载机半轴载荷谱编制及疲劳寿命预测[J].吉林大学学报(工学版),2011,41(6):1647-1652.
    [142] Conover J C,Jaeckal H,Kippola W J. Simulation of field loading on Fatigue Testing[R]. SAEPaper660102,Jan:1966.
    [143] Carse A M,Crosland. Accelerated Fatigue Testing[R]. SAE770266.1996:168-172.
    [144] Heuler P,Seeger T. A Criterion for Omission of Variable Amplitude Loading Histories [J].International Journal of Fatigue,1986:8(4):225-230.
    [145]沈先钊.用微型计算机机编制机械零部件多工况疲劳载荷谱[J].机械强度,1985,7(3):25-28.
    [146]高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986.
    [147]孟宪皆,丁平.编谱中最大载荷的确定方法[J].山东工程学院学报,2002,16(4):46-48.
    [148]毛贺.高速列车载荷谱编制方法的研究[D].北京交通大学,2009.
    [149] Glinka G,Kam J P. Rainflow counting algorithm for long stress history[J] International Journal ofFatigue,1987,9(3):2323-228
    [150]马双元,张永峰.航空发动机载荷谱综述[J].现代机械,2011,5:15-18.
    [151]熊峻江,高镇同.飞机结构疲劳加速谱编制及损伤概率分布[J].航空学报,1997,18(1):1-5.
    [152]赵晓鹏,姜丁,张强,等.雨流计数法在整车载荷谱分析中的应用[J].科技导报,2009,27(3):67-73.
    [153] Downing S D, Socie D F. Simple rainflow counting algorithms[J]. International Jouranl ofFatigue,1982,4(1):31-40.
    [154]肖晓晖,吴功平,李立斌.塔式起重机疲劳载荷谱的编制[J].应用力学学报,2003,20(4):86-89.
    [155] Jernej K,Matija F. Improved modeling of the loading spectra using a mixture model approach[J].International Journal of Fatigue,2008(30):1298-1313.
    [156]雷宏刚,董超,尹德钰.螺栓球节点网架疲劳载荷谱的理论研究[C].第十届空间结构学术会议论文集,2002:130-137.
    [157]申桂香.数控车床载荷谱的建立[D].长春:吉林工业大学,1995.
    [158]朱振民.数控车床载荷谱及动力特性分析[D].长春:吉林工业大学,1996.
    [159] Wang Y Q,Shen G X,Jia Y Z. Multidimensional force spectra of CNC machine tools and theirapplications,part one:force spectra[J]. International Journal of Fatigue,2002,25:1037-1046.
    [160] Wang Y Q,Shen G X,Jia Y Z. Multidimensional force spectra of CNC machine tools and theirapplications, part two:reliability design of elements[J]. International Journal of Fatigue,2003,25:447-452.
    [161]王永平,刘宏昭,蒋喜,等.高速铣削电主轴可靠性试验载荷谱的研究[J].机械科学与技术,2013,32(2):279-284.
    [162]黄祖广,赵钦志,盛伯浩,等.加工中心可靠性试验载荷谱的研究[J].设计与研究,2008,2:60-65.
    [163]杨兆军,杨永海,鄂世举,等.微小钻头钻削扭矩极限值的分布规律[J].吉林工业大学自然科学学报,1999,29(4):67-71.
    [164]王义强,贾亚洲,于骏一,等.数控车床载荷谱数据的建立[J].吉林工业大学学报,1998,28(1):34-38.
    [165] Freuenthal A M. The safety of structures[J]. ASCE Trans.,1947,112:125-129.
    [166] ANG A H S, TANG W H. Probability concepts in engineering planning and design[M]. NewYork:John Wiley&Sons,Inc.,1975.
    [167] http://www.nmp.gov.cn/mtjj/200902/t20090202_1907.htm-22,1997
    [168]张义民.机械可靠性设计的内涵与递进[J].机械工程学报,2010,46(14):167-188.
    [169] Nagode M, Fajdiga M. A general multi-modal probability density function suitable for therainflow ranges of stationary random processes. International Journal of Fatigue,1998,20(3):211-223
    [170] Wang Y Q,Jia Y Z,Yu J Y,et al. Field failure database of CNC lathes[J]. International Journal ofQuality and Reliability Management,1999,16(4):330–340.
    [171]郝庆波.数控机床可靠性及维修性的模糊综合分配与预计[D].长春:吉林大学机械制造及其自动化专业,2012.
    [172]申桂香,贾亚洲,马健,等. CNC机床故障分析及其可靠性[J].中国机械工程,1996,7(6):67-69.
    [173]贾亚洲,于捷,姜巍巍,等.国产加工中心故障模式及影响分析(FMEA)[J].机械制造与研究工程,2001,4:111-113.
    [174]李绪成,迟向磊,贾亚洲.立式加工中心故障模式及影响分析[J].现代制造工程,2002,3:19-21.
    [175]陈殿生,陈先明,贾亚洲.750NA型数控车床故障分析[J].吉林工学院学报,2002,23(3):1-3.
    [176]张海波,贾亚洲,周广文,等.数控系统故障模式、影响及危害度分析(FMECA)[J].中国机械工程,2004,15(6):491-494.
    [177]杜栋,庞庆华,吴炎.现代综合评价方法与案例精选[M].北京:清华大学出版社,2008.
    [178]裴金英.基于DEA_AHP及其改进方法的物流企业绩效评价[D].大连理工大学,2010.
    [179] Saaty T L.The Analytic Hierarchy Process[M]. New York:McGraw-Hill,1980.
    [180] Chin K S,Wang Y M,Gary K K P,et al.Failure mode and effects analysis by data envelopmentanalysis[J]. Decision Support Systems,2009,48:246-256.
    [181]洪麒麟.机械结构可靠性[M].北京:航空工业出版社,1993.
    [182]郭士义.数控机床故障诊断与维修[M].北京:机械工业出版社,2005.
    [183]江崇民,荀洪伟.数控车床技术发展现状及趋势[J].制造业信息化,2012,4:98-100.
    [184]陈婵娟.数控车床设计[M].北京:化学工业出版社,2006.
    [185]艾兴,肖诗纲.切削用量简明手册[M].北京:机械工业出版社,2011.
    [186]张学中.数控铣削过程铣削力建模及仿真系统研发[D].天津:河北工业大学,2010.
    [187]李作丽.高速切削力的动态数值模拟与试验研究[D].济南:山东大学,2005.
    [188]周泽华.金属切削原理[M].上海:上海科学技术出版社,1993.
    [189]北京市《金属切削理论与实践》编委会.金属切削理论与实践[M].北京:北京出版社,1980.
    [190]谭云成,杨建东,夏仁丰.考虑刀具磨损时的理论切削力[J].长春光学精密机械学院学报,1995,18(2):41-44.
    [191]田口玄一,吉澤正孝.開発設計段階の品質工学[M].东京:日本規格協会,2002.
    [192]刘婉如,庞善起,张里千,等.关于正交设计与均匀设计的比较(Ⅱ)[J].数理统计与管理,1995,14(2):41-49.
    [193]周芝应,庞善起,张里千.关于正交设计与均匀设计的比较(Ⅲ)[J].数理统计与管理,1995,14(4):37-41.
    [194]张千里.关于正交设计与均匀设计的比较(Ⅰ)[J].数理统计与管理,1995,14(1):25-29.
    [195]何为,薛卫东,唐斌.优化试验设计方法及数据分析[M].北京:化学工业出版社,2011.
    [196]杨建东.刀具磨损与动态切削力关系的探讨[J].长春光学精密机械学院学报,1990,13(2):61-66.
    [197] Matthew M D. Excel2010the missing manual[M]. Sebastopol:Pogue Press,2010.
    [198]徐媛媛,徐彬,吴耀明.正交试验在PCBN刀具铣削HT200的应用[J].装备制造技术,2011,12:8-9.
    [199]杨立峰.基于载荷谱进行汽车前轴寿命估算方法研究[D].长春:吉林大学,2007.
    [200]王振雨,王乃祥,王继新,等.基于混合分布的齿轮载荷谱编制方法综述[J].矿山机械,2011,39,4:11-13.
    [201]刘少辉.某型装载机液压系统载荷谱的编制[D].厦门:集美大学,2009.
    [202]白立国.70吨级通用敞车垂向、侧滚和扭转载荷谱的测试与研究[D].北京:北京交通大学,2008.
    [203]诸文农,许纯新,蒋黔生,等.轮式装载机前后桥扭矩载荷谱测取方法[J].吉林工业大学学报,1983,29(3):28-38.
    [204]王乃祥,张玉新,王振雨,等.轮式装载机载荷谱测试仪器集成装置[P],2011.10.26.
    [205]叶舸,阎楚良,张书明,等.一种载荷谱实测试验数据读取系统及其方法[P],2006.04.06.
    [206]刘庆华,张为公.基于车轮力传感器的道路载荷谱采集系统设计[J].江苏大学学报,2007,32(4):389-393.
    [207]黄祖广.立式加工中心可靠性测试与评价技术的研究[D].北京:北京工业大学,2007.
    [208]穆志韬,曾本银,等.直升机结构疲劳[M].北京:国防工业出版社,2009.
    [209]阎楚良,王公权.雨流计数法及其统计处理程序研究[J].农业机械学报,1982,13(4):88-101.
    [210]张英芝.基于模糊与灰色理论的数控车床可靠性分析[D].长春:吉林大学,2005.
    [211] Wade D C,Larry M S. Data envelopment analysis (DEA)–Thirty years on[J]. European Journalof Operational Research,2009,192:1-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700