老年人和弱视患者运动知觉损伤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正常的视觉运动感知功能对人们的生活是至关重要的。视觉运动感知系统可以分析并预测出运动物体的运动轨迹以帮助本体做出正确的应对该运动的决策。大量的心理物理学和神经生物学研究表明视觉信息在运动感知系统中的分析过程可以分为两步。第一步可以在视觉皮层的较低级区域完成,它分析出映射在视网膜上图像中各个点的局部运动。第二步需要在视觉皮层的较高级区域完成,它将前一阶段分析出的所有局部运动按照一定的方式整合在一起,形成完整的物体运动知觉。
     然而,视觉运动感知功能会受到许多因素的影响。受损的视觉运动感知功能会影响人们的日常生活,降低人们的生活质量。毫无疑问,利用科学的方法改善这些受损的视觉功能进而提高人们的生活质量具有重大的现实意义。而寻找改善方法的第一步就是需要清楚地了解视觉运动感知系统在哪些方面、哪些部分受到了相应的影响。在众多的影响因素中,老化是常见的一种,许多视觉功能都随着老化的进行而逐步衰退。此外,与老化相对应的是发育,一些发育性的疾病也会导致视觉功能状况的紊乱。因而在这里,我们调查了正常老化和一种发育性疾病——弱视——对运动知觉能力的影响。由于以前与老化相关的研究在整体运动知觉能力方面阐述甚多而在局部运动知觉能力方面涉及很少,因此我们在与老化相关的研究中主要调查了其对局部运动知觉能力的影响。另一方面,由于人们对弱视患者的运动栅格知觉能力所知甚少,我们在与弱视相关的研究中主要调查了其对运动栅格知觉能力的影响。
     1.正常老化对一/二阶局部运动知觉的影响
     一阶和二阶视觉刺激很早就被用来研究视觉信息处理的机制。一般来说,一阶刺激的特征变化主要体现在亮度上,视觉系统也主要通过亮度上的变化来识别一阶刺激;而二阶刺激在平均亮度上没有显著性的差异,视觉系统主要通过其他的一些特征来识别它们,这些特征包括对比度、深度和纹理等。相关的研究已经表明:在我们的日常生活中存在着大量的一阶和二阶视觉信息;在充满噪音的环境中,有效地综合一阶和二阶信息能够显著地提高人们的知觉能力。因而对一阶和二阶视觉刺激的感知能力对人们的生活至关重要。
     然而到目前为止,人们对二阶视觉刺激感知能力受老化影响的状况知道得还很少。因而在这里我们使用一/二阶视觉刺激调查了老化对这两种局部运动感知能力的影响。此外,我们同时还调查了老化对静止的一/二阶视觉刺激感知能力的影响。
     我们测量了141名年龄在19到79岁之间具有正常视力的被试对一阶和二阶静止/运动刺激的对比敏感度,结果发现对这两种刺激的对比敏感度都随着年龄的增长而逐步下降。也就是说,老化对这两种局部运动都存在着显著性的影响。此外,为了更好地描述对一阶和二阶刺激的知觉能力和年龄之间的关系,我们提出了一个能很好地契合我们数据的分段线性函数模型。根据此模型,我们进一步发现:二阶刺激的对比敏感度在老化的过程中比一阶刺激的对比敏感度更早地发生明显的衰退。我们认为这种较早的衰退反映视觉系统对二阶信息具有更为复杂的处理过程。
     2.弱视对运动栅格知觉能力的影响
     与传统使用的随机点运动模式不同,运动的栅格是另外一种形式的整体运动,它由两个方位不同的子正弦光栅的运动叠加而形成。大量的研究表明视觉系统对运动栅格的处理分两个步骤:第一步是将运动的栅格拆分成两个独立的子成分正弦光栅的运动,这一步可以在V1区完成;第二步是将已经拆分好的两个独立的子运动重新整合成一个整体的运动,这一步主要在MT区完成。
     弱视对局部运动和随机点运动这种整体运动知觉能力的影响已经广为人们所知,但是有关弱视对运动栅格知觉能力影响的研究却很少。此外,由于随机点运动感知和运动栅格感知的生理学基础都是大脑皮层中颞叶区的神经元,有关弱视对运动栅格知觉能力影响的研究还将有助于人们对弱视损伤位点的进一步理解。因而在这里我们主要调查弱视对运动栅格知觉能力的影响。
     我们测量了10名正常人与13名屈光参差性弱视患者检测运动栅格和相应的运动的子成分正弦光栅的敏感度。结果发现:弱视眼检测这些运动栅格和正弦光栅的能力都明显地差于正常眼。但更重要的是,我们发现弱视眼和正常眼在检测运动正弦光栅能力上的差异与检测运动栅格能力上的差异是一致的。也就是说,在排除了包括局部运动感知能力在内的较低级的视觉信息处理能力上的差异之后,弱视眼和正常眼在观察整体运动的能力上相差无几。这意味着视觉系统在观察运动栅格时进行运动信息整合处理的能力没有受到弱视的影响。由于观察运动栅格时进行运动信息整合处理的生理学基础是视觉皮层的中颞叶区,因而我们的发现并不支持认为中颞叶区神经元的功能普遍受到了弱视影响的假说。
The primate visual motion system performs numerous functions essential for survival in a dynamic visual world. Prominent among these functions is the ability to recover and represent the trajectories of objects in a form that facilitates behavioral responses to those movements. To achieve this goal, the visual motion information undergoes a two-step analysis, which has been suggested by a large amount of evidence from psychophysical and neurobiological studies. In the first step which may occur at an earlier cortical stage, the displacement of local retinal image features is detected; then in the second step which may occur at higher levels of visual cortical regions, such as MT and MST, all local retinal motion signals are selectively integrated according to the object of origin. By this way, the retina image motion gives rise to our perceptual experience of moving objects.
     However, the function of the visual motion system can be impaired by a lot of factors, which surely reduces the people’s life quality. The first step aimed to improving this reduced function is to outline the characterics of the influeced motion perception. Here, we explored the effect of normal aging and a type of development disorder, amblyopia, on the motion perception. In the first study, we put our emphasis on the local motion perception since the effect of aging on global motion perception has been widely investigated while this is not for local motion perception. In the second study, taking account of the fact that little is known about the perception of amblyopes on moving plaids, a kind of global motion, and the perceptual capbility of moving plaids may suggest more about the nature of global motion processing deficits in amblyopia, we investigated the effect of amblyopia on perceptual capbility of moving plaids.
     1. The effect of normal aging on first-/second-order local motion perception First- and second-order stimuli are two types of patterns which have been used to characterize early visual processing. The former are defined by modulation of luminance, and the latter are defined by changes in features, such as contrast or texture. It has been suggested that these two types of stimuli are ubiquitous in everyday visual scenes, and that natural images are rich in both kinds of information. In a noisy environment, first- and second-order stimuli can be combined to improve perceptual accuracy. Therefore, perception of these two types of stimuli plays an important role in people’s daily life.
     However, little is known about the effect of aging on second-order stimuli, both static and dynamic. The purpose of the present study is to make some progress in understanding this issue.
     We measured contrast sensitivity for both first- and second-order stimuli, both static and dynamic, in 141 subjects with normal visual acuity and aged from 19 to 79 years old. The results have shown no gender effect but an evident aging effect, i.e., a progressive decline during aging, for perception of both types of stimuli. We have also proposed a piecewise linear model to interpret our data. Based on this model, contrast sensitivity for second-order stimuli begins to decline significantly earlier than for first-order stimuli, but with a slower rate of progression. We suggest the earlier decline for the perception of second-order stimuli may be interpreted as reflecting a greater complexity of second-order processing,consistent with Jocelyn Faubert’s theory on visual perception and aging.
     2. The effect of amblyopia on moving plaid perception
     A moving plaid, composed of two moving gratings with different orientations which are physically superimposed, is a different type of global motion stimuli. It has suggested that a two-stage visual analysis underlying the moving plaid perception, a decomposition into two one-dimensional component motions which can be implemented by component-selective neurons such as those in V1 and a recombination of these component motions which may be implemented in MT.
     The effect of amblyopia on moving plaids perception is not as well known as that on the random dot kinematograms which are traditionally used in global motion perception research. Additionally, since the physiological basis for processing of moving plaids and random dot kinematograms are both neurons in MT, it can be used to test the hypothesis whether there is a general loss of MT functions in amblyopia. Therefore, we investigated the effect of amblyopia on moving plaid perception here. We measured contrast sensitivities for moving plaids and their corresponding component gratings over a range of stimuli durations, spatial and temporal frequencies in 10 normal subjects and 13 anisometropic amblyopes by using motion direction discrimination task. We found reduced contrast sensitivities for moving plaids and their corresponding component gratings in anisometropic amblyopia. Additionally, the reduction in sensitivity for plaids was statistically identical to that for their component gratings, suggesting the former can be almost completely accounted for by the latter. In other words, there are no residual deficits in plaid perception at the threshold level after excluding the influence of low-level processing deficits, suggesting the global processing for plaid perception, whose physiological bases are supposed to be MT neurons, is largely intact in anisometropic amblyopia. This is against the hypothesis that there is a general loss of MT functions in amblyopia.
引文
Aaen-Stockdale, C., & Hess, R. F. (2008). The amblyopic deficit for global motion is spatial scale invariant. Vision Research, 48(19), 1965-1971.
    Aaen-Stockdale, C., Ledgeway, T., & Hess, R. F. (2007). Second-order optic flow deficits in amblyopia. Investigative Ophthalmology & Visual Science, 48(12), 5532-5538.
    Adams, R. J., & Courage, M. L. (2002). Using a single test to measure human contrast sensitivity from early childhood to maturity. Vision Research, 42(9), 1205-1210.
    Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2(2), 284-299.
    Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns. Nature, 300(5892), 523-525.
    Albright, T. D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology, 52(6), 1106-1130.
    Albright, T. D., & Stoner, G. R. (1995). Visual motion perception. Proceedings of the National Academy of Sciences of the United States of America, 92(7), 2433-2440.
    Ashida, H., Lingnau, A., Wall, M. B., & Smith, A. T. (2007). FMRI adaptation reveals separate mechanisms for first-order and second-order motion. Journal of Neurophysiology, 97(2), 1319-1325.
    Baker, C. L., Jr. (1999). Central neural mechanisms for detecting second-order motion. Current Opinion in Neurobiology, 9(4), 461-466.
    Baker, C. L., Jr., Hess, R. F., & Zihl, J. (1991). Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli. Journal of Neuroscience, 11(2), 454-461.
    Baker, C. L., Jr., & Mareschal, I. (2001). Processing of second-order stimuli in the visual cortex. Progress in Brain Research, 134(171-191.
    Ball, K., & Sekuler, R. (1986). Improving visual perception in older observers. Journal of Gerontology, 41(2), 176-182.
    Banks, M. S. (1982). The development of spatial and temporal contrast sensitivity. Current Eye Research, 2(3), 191-198.
    Barlow, H. B., & Levick, W. R. (1965). The mechanism of directionally selective units in rabbit's retina. The Journal of physiology, 178(3), 477-504.
    Barnes, G. R., Hess, R. F., Dumoulin, S. O., Achtman, R. L., & Pike, G. B. (2001). The cortical deficit in humans with strabismic amblyopia. The Journal of physiology, 533(Pt 1),281-297.
    Bennett, P. J., Sekuler, R., & Sekuler, A. B. (2007). The effects of aging on motion detection and direction identification. Vision Research, 47(6), 799-809.
    Bertone, A., Hanck, J., Cornish, K. M., & Faubert, J. (2008). Development of static and dynamic perception for luminance-defined and texture-defined information. Neuroreport, 19(2), 225-228.
    Billino, J., Bremmer, F., & Gegenfurtner, K. R. (2008). Differential aging of motion processing mechanisms: evidence against general perceptual decline. Vision Research, 48(10), 1254-1261.
    Bonneh, Y. S., Sagi, D., & Polat, U. (2004). Local and non-local deficits in amblyopia: acuity and spatial interactions. Vision Research, 44(27), 3099-3110.
    Bonneh, Y. S., Sagi, D., & Polat, U. (2007). Spatial and temporal crowding in amblyopia. Vision Research, 47(14), 1950-1962.
    Braddick, O. (1974). A short-range process in apparent motion. Vision Research, 14(7), 519-527.
    Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433-436.
    Campos, E. (1995). Amblyopia. Survey of ophthalmology, 40(1), 23-39.
    Chandna, A., Pennefather, P. M., Kovacs, I., & Norcia, A. M. (2001). Contour integration deficits in anisometropic amblyopia. Investigative Ophthalmology & Visual Science, 42(3), 875-878.
    Chubb, C., & Sperling, G. (1989). Two motion perception mechanisms revealed through distance-driven reversal of apparent motion. Proceedings of the National Academy of Sciences of the United States of America, 86(8), 2985-2989.
    Chung, S. T., Li, R. W., & Levi, D. M. (2006). Identification of contrast-defined letters benefits from perceptual learning in adults with amblyopia. Vision Research, 46(22), 3853-3861.
    Chung, S. T., Li, R. W., & Levi, D. M. (2008). Crowding between first- and second-order letters in amblyopia. Vision research, 48(6), 788-798.
    Ciuffreda, K. J., Levi, D. M., & Selenow, A. (1991). Amblyopia: Basic and clinical aspects. Boston, Butterworth-Heinemann.
    Constantinescu, T., Schmidt, L., Watson, R., & Hess, R. F. (2005). A residual deficit for global motion processing after acuity recovery in deprivation amblyopia. Investigative Ophthalmology & Visual Science, 46(8), 3008-3012.
    Crassini, B., Brown, B., & Bowman, K. (1988). Age-related changes in contrast sensitivity in central and peripheral retina. Perception, 17(3), 315-332.
    Daw, N. W. (1998). Critical periods and amblyopia. Archives of ophthalmology, 116(4), 502-505.
    Doshi, N. R., & Rodriguez, M. L. (2007). Amblyopia. American family physician, 75(3), 361-367.
    Dubner, R., & Zeki, S. M. (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Research, 35(2), 528-532.
    Dumoulin, S. O., Baker, C. L., Jr., Hess, R. F., & Evans, A. C. (2003). Cortical specialization for processing first- and second-order motion. Cerebral Cortex, 13(12), 1375-1385.
    Dupont, P., Sary, G., Peuskens, H., & Orban, G. A. (2003). Cerebral regions processing first- and higher-order motion in an opposed-direction discrimination task. The European Journal of Neuroscience, 17(7), 1509-1517.
    Ellemberg, D., Lewis, T. L., Defina, N., Maurer, D., Brent, H. P., Guillemot, J. P., & Lepore, F. (2005). Greater losses in sensitivity to second-order local motion than to first-order local motion after early visual deprivation in humans. Vision Research, 45(22), 2877-2884.
    Ellemberg, D., Lewis, T. L., Maurer, D., Brar, S., & Brent, H. P. (2002). Better perception of global motion after monocular than after binocular deprivation. Vision Research, 42(2), 169-179.
    Elliott, D., Whitaker, D., & MacVeigh, D. (1990). Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes. Vision Research, 30(4), 541-547.
    Emerson, R. C., Bergen, J. R., & Adelson, E. H. (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Research, 32(2), 203-218.
    Faubert, J. (2002). Visual perception and aging. Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale, 56(3), 164-176.
    Frisen, L., & Frisen, M. (1981). How good is normal visual acuity?. A study of letter acuity thresholds as a function of age. Albrecht Von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie, 215(3), 149-157.
    Gibson, J. J. (1950). The Perception of the Visual World. Boston, Houghton Mifflin.
    Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston, Houghton Mifflin.
    Gilmore, G. C., Wenk, H. E., Naylor, L. A., & Stuve, T. A. (1992). Motion perception and aging. Psychology and Aging, 7(4), 654-660.
    Greenlee, M. W., & Smith, A. T. (1997). Detection and discrimination of first- and second-order motion in patients with unilateral brain damage. Journal of Neuroscience, 17(2), 804-818.
    Habak, C., & Faubert, J. (2000). Larger effect of aging on the perception of higher-order stimuli. Vision Research, 40(8), 943-950.
    Hassenstein, B., & Reichardt, W. (1956). Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselk?fers Chlorophanus. Z.Naturforsch, 11(513-524
    Hays, W. L. (1988). Statistics. Fort Worth, TX:Holt, Rinehart & Winstone.
    Hess, R. F., & Anderson, S. J. (1993). Motion sensitivity and spatial undersampling in amblyopia. Vision Research, 33(7), 881-896.
    Hess, R. F., & Bradley, A. (1980). Contrast perception above threshold is only minimally impaired in human amblyopia. Nature, 287(5781), 463-464.
    Hess, R. F., France, T. D., & Tulunay-Keesey, U. (1981). Residual vision in humans who have been monocularly deprived of pattern stimulation in early life. Experimental Brain Research, 44(3), 295-311.
    Hess, R. F., & Howell, E. R. (1977). The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification. Vision Research, 17(9), 1049-1055.
    Hess, R. F., Howell, E. R., & Kitchin, J. E. (1978). On the relationship between pattern and movement perception in strabismic amblyopia. Vision Research, 18(4), 375-377.
    Hess, R. F., & Malin, S. A. (2003). Threshold vision in amblyopia: orientation and phase. Investigative Ophthalmology & Visual Science, 44(11), 4762-4771.
    Hess, R. F., Mansouri, B., Dakin, S. C., & Allen, H. A. (2006). Integration of local motion is normal in amblyopia. Journal of the Optical Society of America, 23(5), 986-992.
    Hess, R. F., & Pointer, J. S. (1985). Differences in the neural basis of human amblyopia: the distribution of the anomaly across the visual field. Vision Research, 25(11), 1577-1594.
    Hess, R. F., Thompson, B., Gole, G., & Mullen, K. T. (2009). Deficient responses from the lateral geniculate nucleus in humans with amblyopia. The European journal of neuroscience, 29(5), 1064-1070.
    Hess, R. F., Wang, Y. Z., Demanins, R., Wilkinson, F., & Wilson, H. R. (1999). A deficit in strabismic amblyopia for global shape detection. Vision Research, 39(5), 901-914.
    Howell, E. R., Mitchell, D. E., & Keith, C. G. (1983). Contrast thresholds for sine gratings of children with amblyopia. Investigative Ophthalmology & Visual Science, 24(6), 782-787.
    Hua, T., Li, X., He, L., Zhou, Y., Wang, Y., & Leventhal, A. G. (2006). Functional degradation of visual cortical cells in old cats. Neurobiology of aging, 27(1), 155-162.
    Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195(1), 215-243.
    Jeffrey, B. G., Wang, Y. Z., & Birch, E. E. (2004). Altered global shape discrimination in deprivation amblyopia. Vision Research, 44(2), 167-177.
    Johnson, A. P., & Baker, C. L., Jr. (2004). First- and second-order information in natural images: a filter-based approach to image statistics. Journal of the Optical Society of America, 21(6),913-925.
    Kato, M., de Wit, T. C., Stasiewicz, D., & von Hofsten, C. (2008). Sensitivity to second-order motion in 10-month-olds. Vision Research, 48(10), 1187-1195.
    Kiorpes, L. (2006). Visual processing in amblyopia: animal studies. Strabismus, 14(1), 3-10.
    Kiorpes, L., & McKee, S. P. (1999). Neural mechanisms underlying amblyopia. Current opinion in neurobiology, 9(4), 480-486.
    Kiorpes, L., Tang, C., & Movshon, J. A. (2006). Sensitivity to visual motion in amblyopic macaque monkeys. Visual Neuroscience, 23(2), 247-256.
    Kiper, D. C., & Kiorpes, L. (1994). Suprathreshold contrast sensitivity in experimentally strabismic monkeys. Vision Research, 34(12), 1575-1583.
    Kline, D. W., Culham, J. C., Bartel, P., & Lynk, L. (2001). Aging effects on vernier hyperacuity: a function of oscillation rate but not target contrast. Optometry & Vision Science, 78(9), 676-682.
    Koenderink, J. J. (1986). Optic flow. Vision Research, 26(1), 161-179.
    Koffka, K. (1935). Principles of Gestalt Psychology London, Routledge & Kegan Paul.
    Kubova, Z., & Kuba, M. (1992). Clinical application of motion-onset visual evoked potentials. Documenta ophthalmologica, 81(2), 209-218.
    Kubova, Z., Kuba, M., Juran, J., & Blakemore, C. (1996). Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses. Vision Research, 36(1), 181-190.
    Lagreze, W. D., & Sireteanu, R. (1991). Two-dimensional spatial distortions in human strabismic amblyopia. Vision Research, 31(7-8), 1271-1288.
    Landy, M. S., & Graham, N. (2004). Visual perception of texture. The visual Neuroscience. Chalupa, L. M. and Werner, J. S., Cambridge, MA: MIT press: 1106-1118.
    Larsson, J., Landy, M. S., & Heeger, D. J. (2006). Orientation-selective adaptation to first- and second-order patterns in human visual cortex. Journal of Neurophysiology, 95(2), 862-881.
    Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5(4), 437-459.
    Lee, D. N. (1980). The optic flow field: the foundation of vision. Philosophical transactions of the Royal Society of London, 290(1038), 169-179.
    Leventhal, A. G., Wang, Y., Pu, M., Zhou, Y., & Ma, Y. (2003). GABA and its agonists improved visual cortical function in senescent monkeys. Science, 300(5620), 812-815.
    Levi, D. M., & Klein, S. A. (1985). Vernier acuity, crowding and amblyopia. Vision Research,25(7), 979-991.
    Levi, D. M., Klein, S. A., & Aitsebaomo, P. (1984). Detection and discrimination of the direction of motion in central and peripheral vision of normal and amblyopic observers. Vision Research, 24(8), 789-800.
    Levi, D. M., & Polat, U. (1996). Neural plasticity in adults with amblyopia. Proceedings of the National Academy of Sciences of the United States of America, 93(13), 6830-6834.
    Levi, D. M., Polat, U., & Hu, Y. S. (1997). Improvement in Vernier acuity in adults with amblyopia. Practice makes better. Investigative Ophthalmology & Visual Science, 38(8), 1493-1510.
    Levi, D. M., Yu, C., Kuai, S. G., & Rislove, E. (2007). Global contour processing in amblyopia. Vision Research, 47(4), 512-524.
    Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America, 49(2), Suppl 2:467+.
    Li, X., Lu, Z. L., Xu, P., Jin, J., & Zhou, Y. (2003). Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors. Journal of Neuroscience Methods, 130(1), 9-18.
    Liang, Z., Yang, Y., Li, G., Zhang, J., Wang, Y., Zhou, Y., & Leventhal, A. G. (2008). Aging affects the direction selectivity of MT cells in rhesus monkeys. Neurobiology of aging,
    Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853), 740-749.
    Lu, Z. L., & Sperling, G. (2001). Three-systems theory of human visual motion perception: review and update. Journal of the Optical Society of America, 18(9), 2331-2370.
    Majaj, N. J., Carandini, M., & Movshon, J. A. (2007). Motion integration by neurons in macaque MT is local, not global. Journal of Neuroscience, 27(2), 366-370.
    Maloney, L. T. (1990). Confidence intervals for the parameters of psychometric functions. Perception & Psychophysics, 47(2), 127-134.
    Mansouri, B., Allen, H. A., & Hess, R. F. (2005). Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia. Vision Research, 45(18), 2449-2460.
    Mansouri, B., Allen, H. A., Hess, R. F., Dakin, S. C., & Ehrt, O. (2004). Integration of orientation information in amblyopia. Vision Research, 44(25), 2955-2969.
    Mansouri, B., & Hess, R. F. (2006). The global processing deficit in amblyopia involves noise segregation. Vision Research, 46(24), 4104-4117.
    Maunsell, J. H., & Van Essen, D. C. (1983). Functional properties of neurons in middle temporalvisual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology, 49(5), 1127-1147.
    McKee, S. P., Levi, D. M., & Movshon, J. A. (2003). The pattern of visual deficits in amblyopia. Journal of Vision, 3(5), 380-405.
    Mikami, A., Newsome, W. T., & Wurtz, R. H. (1986a). Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. Journal of Neurophysiology, 55(6), 1308-1327.
    Mikami, A., Newsome, W. T., & Wurtz, R. H. (1986b). Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. Journal of Neurophysiology, 55(6), 1328-1339.
    Miles, F. A., & Wallman, J., Eds. (1993). Visual Motion and Its Role in the Stabilization of Gaze. Amsterdam, Elsevier.
    Morrone, M. C., Burr, D. C., & Vaina, L. M. (1995). Two stages of visual processing for radial and circular motion. Nature, 376(6540), 507-509.
    Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985). The analysis of moving patterns. Pattern recognition mechanisms. In Chagass, C., Gattass, R. and Grossberg, S. Rome, Vatican Press.
    Nakayama, K., & Loomis, J. M. (1974). Optical velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis. Perception, 3(1), 63-80.
    Navon, S. E., & McKeown, C. A. (1992). Amblyopia. International ophthalmology clinics, 32(1), 35-50.
    Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8(6), 2201-2211.
    Nishida, S., Ledgeway, T., & Edwards, M. (1997). Dual multiple-scale processing for motion in the human visual system. Vision Research, 37(19), 2685-2698.
    Nishida, S., Sasaki, Y., Murakami, I., Watanabe, T., & Tootell, R. B. (2003). Neuroimaging of direction-selective mechanisms for second-order motion. Journal of Neurophysiology, 90(5), 3242-3254.
    Norman, J. F., Clayton, A. M., Shular, C. F., & Thompson, S. R. (2004). Aging and the perception of depth and 3-D shape from motion parallax. Psychology and Aging, 19(3), 506-514.
    Norman, J. F., Crabtree, C. E., Herrmann, M., Thompson, S. R., Shular, C. F., & Clayton, A. M. (2006). Aging and the perception of 3-D shape from dynamic patterns of binocular disparity. Perception & psychophysics, 68(1), 94-101.
    Odom, J. V., Vasquez, R. J., Schwartz, T. L., & Linberg, J. V. (1989). Adult vernier thresholds do not increase with age; vernier bias does. Investigative Ophthalmology & Visual Science, 30(5), 1004-1008.
    Owsley, C. (1994). Vision and driving in the elderly. Optometry & Vision Science, 71(12), 727-735.
    Owsley, C., Sekuler, R., & Siemsen, D. (1983). Contrast sensitivity throughout adulthood. Vision Research, 23(7), 689-699.
    Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10(4), 437-442.
    Pelli, D. G., Rubin, G. S., & Legge, G. E. (1986). Predicting the contrast sensitivity of low vision observers Journal of the Optical Society of America A, 3(13), 56.
    Plant, G. T., & Nakayama, K. (1993). The characteristics of residual motion perception in the hemifield contralateral to lateral occipital lesions in humans. Brain, 116 ( Pt 6)(1337-1353.
    Polat, U., Ma-Naim, T., Belkin, M., & Sagi, D. (2004). Improving vision in adult amblyopia by perceptual learning. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6692-6697.
    Qiu, Z., Xu, P., Zhou, Y., & Lu, Z. L. (2007). Spatial vision deficit underlies poor sine-wave motion direction discrimination in anisometropic amblyopia. Journal of Vision, 7(11), 7 1-16.
    Rohaly, A. M., & Owsley, C. (1993). Modeling the contrast-sensitivity functions of older adults. Journal of the Optical Society of America A, 10(7), 1591-1599.
    Schmolesky, M. T., Wang, Y., Pu, M., & Leventhal, A. G. (2000). Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nature neuroscience, 3(4), 384-390.
    Schofield, A. J. (2000). What does second-order vision see in an image? Perception, 29(9), 1071-1086.
    Schor, C. M., & Levi, D. M. (1980a). Direction selectivity for perceived motion in strabismic and anisometropoic amblyopia. Investigative Ophthalmology & Visual Science, 19(9), 1094-1104.
    Schor, C. M., & Levi, D. M. (1980b). Disturbances of small-field horizontal and vertical optokinetic nystagmus in amblyopia. Investigative Ophthalmology & Visual Science, 19(6), 668-683.
    Seiffert, A. E., Somers, D. C., Dale, A. M., & Tootell, R. B. (2003). Functional MRI studies ofhuman visual motion perception: texture, luminance, attention and after-effects. Cerebral Cortex, 13(4), 340-349.
    Sekuler, R., Hutman, L. P., & Owsley, C. J. (1980). Human aging and spatial vision. Science, 209(4462), 1255-1256.
    Shipley, T., Ed. (1961). Classics in psychology. New York, Philosophical Library.
    Simmers, A. J., Ledgeway, T., & Hess, R. F. (2005). The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia. Vision Research, 45(4), 449-460.
    Simmers, A. J., Ledgeway, T., Hess, R. F., & McGraw, P. V. (2003). Deficits to global motion processing in human amblyopia. Vision Research, 43(6), 729-738.
    Simmers, A. J., Ledgeway, T., Mansouri, B., Hutchinson, C. V., & Hess, R. F. (2006). The extent of the dorsal extra-striate deficit in amblyopia. Vision Research, 46(16), 2571-2580.
    Simons, K. (2005). Amblyopia characterization, treatment, and prophylaxis. Survey of ophthalmology, 50(2), 123-166.
    Sireteanu, R., Lagreze, W. D., & Constantinescu, D. H. (1993). Distortions in two-dimensional visual space perception in strabismic observers. Vision Research, 33(5-6), 677-690.
    Sireteanu, R., Thiel, A., Fikus, S., & Iftime, A. (2008). Patterns of spatial distortions in human amblyopia are invariant to stimulus duration and instruction modality. Vision Research, 48(9), 1150-1163.
    Sloane, M. E., Owsley, C., & Jackson, C. A. (1988). Aging and luminance-adaptation effects on spatial contrast sensitivity. Journal of the Optical Society of America A, 5(12), 2181-2190.
    Smith, A. T., Greenlee, M. W., Singh, K. D., Kraemer, F. M., & Hennig, J. (1998). The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). Journal of Neuroscience, 18(10), 3816-3830.
    Snowden, R. J., & Kavanagh, E. (2006). Motion perception in the ageing visual system: minimum motion, motion coherence, and speed discrimination thresholds. Perception, 35(1), 9-24.
    Spear, P. D. (1993). Neural bases of visual deficits during aging. Vision Research, 33(18), 2589-2609.
    Spear, P. D., Moore, R. J., Kim, C. B., Xue, J. T., & Tumosa, N. (1994). Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys. Journal of neurophysiology, 72(1), 402-420.
    Thompson, B., Aaen-Stockdale, C. R., Mansouri, B., & Hess, R. F. (2008). Plaid perception is only subtly impaired in strabismic amblyopia. Vision Research, 48(11), 1307-1314.
    Tootell, R. B., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., Rosen, B. R., & Belliveau, J. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15(4), 3215-3230.
    Tran, D. B., Silverman, S. E., Zimmerman, K., & Feldon, S. E. (1998). Age-related deterioration of motion perception and detection. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie, 236(4), 269-273.
    Trick, G. L., & Silverman, S. E. (1991). Visual sensitivity to motion: age-related changes and deficits in senile dementia of the Alzheimer type. Neurology, 41(9), 1437-1440.
    Tulunay-Keesey, U., Ver Hoeve, J. N., & Terkla-McGrane, C. (1988). Threshold and suprathreshold spatiotemporal response throughout adulthood. Journal of the Optical Society of America A, 5(12), 2191-2200.
    Ullman, S. (1986). Artificial intelligence and the brain: computational studies of the visual system. Annual review of neuroscience, 9(1-26.
    Ungerleider, L. G., & Mishkin, M. (1979). The striate projection zone in the superior temporal sulcus of Macaca mulatta: location and topographic organization. The Journal of comparative neurology, 188(3), 347-366.
    Vaina, L. M. (1989). Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans. Biological cybernetics, 61(5), 347-359.
    Vaina, L. M., & Cowey, A. (1996). Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage. Proceedings of the Royal Society of London. Series B. Biological sciences, 263(1374), 1225-1232.
    Vaina, L. M., Cowey, A., Eskew, R. T., Jr., LeMay, M., & Kemper, T. (2001). Regional cerebral correlates of global motion perception: evidence from unilateral cerebral brain damage. Brain, 124(Pt 2), 310-321.
    Vaina, L. M., Makris, N., Kennedy, D., & Cowey, A. (1998). The selective impairment of the perception of first-order motion by unilateral cortical brain damage. Visual Neuroscience, 15(2), 333-348.
    Vaina, L. M., & Soloviev, S. (2004). First-order and second-order motion: neurological evidence for neuroanatomically distinct systems. Progress in Brain Research, 144(197-212.
    Van Essen, D. C., Maunsell, J. H., & Bixby, J. L. (1981). The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. The Journal of comparative neurology, 199(3), 293-326.
    van Santen, J. P., & Sperling, G. (1984). Temporal covariance model of human motion perception.Journal of the Optical Society of America A, 1(5), 451-473.
    van Santen, J. P., & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America A, 2(2), 300-321.
    Wallach, H., & O'Connell, D. N. (1953). The kinetic depth effect. J Exp Psychol, 45(4), 205-217.
    Wang, Y., Zhou, Y., Ma, Y., & Leventhal, A. G. (2005). Degradation of signal timing in cortical areas V1 and V2 of senescent monkeys. Cerebral Cortex, 15(4), 403-408.
    Wenderoth, P., Watson, J. D., Egan, G. F., Tochon-Danguy, H. J., & O'Keefe G, J. (1999). Second order components of moving plaids activate extrastriate cortex: a positron emission tomography study. NeuroImage, 9(2), 227-234.
    Wilson, H. R., Ferrera, V. P., & Yo, C. (1992). A psychophysically motivated model for two-dimensional motion perception. Visual Neuroscience, 9(1), 79-97.
    Wist, E. R., Schrauf, M., & Ehrenstein, W. H. (2000). Dynamic vision based on motion-contrast: changes with age in adults. Experimental brain research. Experimentelle Hirnforschung, 134(3), 295-300.
    Wong, E. H., Levi, D. M., & McGraw, P. V. (2001). Is second-order spatial loss in amblyopia explained by the loss of first-order spatial input? Vision Research, 41(23), 2951-2960.
    Wood, I. C., & Kulikowski, J. J. (1978). Pattern and movement detection in patients with reduced visual acuity. Vision Research, 18(3), 331-334.
    Wu, C., & Hunter, D. G. (2006). Amblyopia: diagnostic and therapeutic options. American journal of ophthalmology, 141(1), 175-184.
    Yang, Y., Liang, Z., Li, G., Wang, Y., Zhou, Y., & Leventhal, A. G. (2008). Aging affects contrast response functions and adaptation of middle temporal visual area neurons in rhesus monkeys. Neuroscience, 156(3), 748-757.
    Yang, Y., Liang, Z., Li, G., Wang, Y., Zhou, Y., & Leventhal, A. G. (2009a). Aging affects the neural representation of speed information in MT neuron in rhesus monkeys. Cerebral Cortex, 2009, doi: 10.1093/cercor/bhn221.
    Yang, Y., Liang, Z., Li, G., Wang, Y., Zhou, Y., & Leventhal, A. G. (2009b). Aging affects response variability of V1 and MT neurons in rhesus monkeys. Brain Research, 1274: 21-27.
    Yu, S., Wang, Y., Li, X., Zhou, Y., & Leventhal, A. G. (2006). Functional degradation of extrastriate visual cortex in senescent rhesus monkeys. Neuroscience, 140(3), 1023-1029.
    Zhou, Y., Huang, C., Xu, P., Tao, L., Qiu, Z., Li, X., & Lu, Z. L. (2006). Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vision Research, 46(5), 739-750.
    中华眼科学会全国儿童弱视斜视防治学组(1996).弱视的定义、分类及疗效评估标准.中国斜视与小儿眼科杂志, 4(3), 97.
    巩朝雁,赵堪兴, &郑日忠(2006).弱视的流行病学.国际眼科纵览, 30(1), 66-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700