金井河流域径流演变规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金井河流域是一个水资源较为匮乏的区域,由于受到自然和人为因素的影响,金井河流域目前存在比较突出的水资源问题。本文根据该流域代表站螺岭桥站历年平均流量资料,探讨该流域径流的演变规律,为整个金井河流域的可持续发展提供依据。
     本文运用Mann-Kendall非参数秩次相关检验法、分段线性回归方法(SRST)和累计距平曲线联合滑动T检验等方法,对金井河流域径流演变规律进行研究,得出主要结论如下:
     1、月径流演变规律:
     通过变异性分析,发现螺岭桥站2月、3月、4月、5月、6月及11月月平均流量序列均没有发生均值突变;螺岭桥站1月、7月、8月、9月、10月、12月月平均流量序列分别在在1987年、1991年、1992年、1987年、1992年、1992年发生了均值突变。而趋势性分析得到,螺岭桥站3月、4月、5月、6月月平均流量呈下降趋势;1月、2月、7月、8月、9月、10月、11月和12月呈上升趋势,其中10月通过了90%的信度检验,而8月、11月、12月通过了95%的信度检验,1月、9月通过了99%的信度检验。
     2、年径流演变规律:
     (1)年均流量通过变异性分析,得出金井河流域螺岭桥站的年平均流量序列在1990年发生突变;而趋势性分析得到,螺岭桥站年平均流量呈上升趋势,但不明显,在变点之前为一个倒“V”型下降过程,在变点之后,径流量呈“V”上升趋势。
     (2)年最大日流量和年最小日流量:通过变异性分析,年最大日流量在1992年发生突变,年最小日流量分别在1972年和1992年发生突变。而趋势性分析得到,螺岭桥站年最大日流量呈下降趋势,但不明显。螺岭桥站年最大日流量在变点之前为一个正“V”型上升过程,在变异点之后,流量呈倒“V”下降趋势;螺岭桥站年最小日流量呈上升趋势,很明显。螺岭桥站年最小日流量在第一个变异点之前为一个倒“V”型下降过程,在第一个变异点之后和第二个变异点之前,流量呈“V”上升趋势。
Jin Jinghe river-basin is an area with quite big shortage of water resource. Influenced by natural and man-made factors, Jin Jinghe river-basin has a serious problem of water resources at present. In this thesis, according to the average rate of flow in the past years of Luoling Bridge station which is a representative station for Jin Jinghe river-basin, we will study the evolving regulations of run-off of this river-basin, so as to supply data and basis for the sustainable development for the whole jin Jinghe river-basin.
     Nonparameter Mann-Kendall Inspection Methods, Segmented Regression System over Time and Accumulated Anomaly curve combined Moving T Test and other methods have been applied in this thesis to study the evolving regulations of run-off of Jin Jinghe river-basin, and conclusions are summarized as following:
     (1) Evolving regulation of monthly average rate of run-off: by variability analysis, it's found that there is no mutation of average rate in the order of monthly average flow rate of February, March, April, May, January and November at the Luoling Bridge station.
     At Luoling Bridge station, Mutations of average rate occur to the order of monthly average flow rate in January, July, August, September, Ocotomber, December respectively in the year of 1987, 1991, 1992, 1987, 1992, 1992. Through analysis of trend pattern, we see that at Luoling Bridge station the monthly average flow rate of March, April, May, June is on a declining curve; while that of January, February, July, August, September, October, November and December is on the rising. October past 90% of the reliability test; August, November and December past 95% while January and September past 99% of that.
     (2)Evolving regulation of yearly average rate of run-off: by variability analysis, it's found that order of yearly average rate of run-off at Luoling Bridge station has mutation in 1990; by analysis of trend pattern, the yearly average rate of flow declines on an inverted“V”pattern before mutation, and rises on a“V”pattern after the mutation.
     (3) Maximum and minimum daily flow in a year: through variability analysis, maximum daily flow in a year had mutation in 1992 and minimum daily flow in a year had mutation respectively in 1972 and 1992. By the analysis of trend pattern, the maximum daily flow in a year at Luoling Bridge station rises at a“V”pattern before mutation and declines at an inverted“V”pattern after mustation; the minimum daily flow in a year declines on an inverted V pattern before mutation and rises at a“V”pattern between the first and second mutations.
引文
[1] Aizen V,et al. Climatic and hydrological changes in the Tien Shan[J]. Central Asia. Journal of climatic. 1997, 10(6): 1393 -1404.
    [2] BAHC. Climate-hydrology-ecosystems interrelations in mountainous regions[J]. IGBP—BAHC—IUNEP WORKSHOP, St. Moritz, Switzerland, 1993, (2): 1-20.
    [3] Beran M and Arnell N. Effect of climatic change on quantitative aspects of United Kingdom water resources[M]. Institute of Hydrology. Wallingford. 1989, 93.
    [4] Gleick P H. Climate change, Hydrology and water resources[J]. Review of Geophysics. 1989, 27(3): 329-334.
    [5] Pearman G. I. Greenhouse: Planning for climate change[M]. Australia: CSITO publication. 1988, 752
    [6] Rodriguez Iturbel,Enteknabi D. Lee J S,etal. Nonlinear Dynamics of soil Moistureat at Climate Scales,2.Chaotie Analysis[J].Water Resour Res,1991,27:1907~1915
    [7] Matsumoto.J. and K. Takahashi. Regional differences of daily rainfall characteristics in East Asian summer monsoon season[J]. Geogr. Rev. Japan. 1999,72-B:193-201
    [8] Stefan Becker,Marco Gemmer,Tong Jiang .Spatiotemporal analysis of precipitation trends in the Yangtze River catchment[J]. Stoch Environ Res Risk assess,2006,(20):435–444.
    [9] K.Naddafi,H.Honari,M.Ahmadi. Water quality trend analysis for the Karoon River in Iran[J]. Environ Monit Assess,2007,(134):305–312.
    [10] Ubeyli, Elif Derya.Guler,Inan. Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods[J].Comput. Biol. Med, 2004, 34(4):293~306.
    [11] David.R,Maidment,主编,张建云,李纪生等译.水文学手册[M].北京:科学出版社,2002.
    [12] Fleming, J.R. he Callendar Effect: the life and work of Guy Stewart Callendar (1898-1964) Amer Meteor Soc[M]. 2007,Boston.
    [13] Lee A F S,Heghinian S M.A Shift of the MeanLevel in a Sequence of Independent Normal Ran-dom Variable:A Bayesian Approach[J].Techno-metrics, 1977, 19(4): 503-506.
    [14] Pettitt A N.A non-parametric approach to the change-point problem.AppliedStatistics,1979,28(2):126-135.
    [15] Nemec J,Schaake.J. Sensitivity of water resources system to climate variation [J]. Hydrological science, 1982,27(3): 327-343.
    [16] Robert M.Hirsch,James R.Slack,Richard. A.Smith.Techniques of Trend Analysis for Monthly Water Quality Data[J].Water Resources Research,1982,18(1): 107-121.
    [17] Hirsch R.M,J.R.Slack.A Nonparametric Trend Test for Seasonal Data with Serial Dependence[J].Water Reaources Research,1984,20(6):727-732.
    [18] Yu P.S.,Yang T.C.,Wu C.K.Impact of climate change onwater resources in southern Taiwan[J].Journal of Hydrology,2002,260(1~4):161~175.
    [19] Kendall,M.G.,. A new measure of rank correlation [M] .Biometrika, 1938,30,81-93.
    [20] Kendall,M.G.. Rank Correlation Methods [M] . Charles Griffin,London,1975.
    [21] Ercan,Kahya.Serdar,Kalayc1.Trend analysis of streamflow in Turkey[J] .Journal of Hydrology,2004,(289):128-144.
    [22] Qiang,Z,Tong,J,Marco,Gemmer.,Stefan,Becker.,Precipitation,temperature and runoff analysis from 1950 to 2002 in theYangtze basin,China[J].Hydrological Sciences-Journal,2005,50(1):65-80.
    [23] Helsel D R, Hirsch RM. Statistical Methods in Water Resources[J].US Geological Survey,2002: 323-356.
    [24] Frei C, Schar C. Detection probability of trend in rare events: Theory and application to heavy precipitation in the Alpinregion[J].Journal of Climate, 2001, 14: 1568-1584.
    [25] Bum D H, Bum M A, Hag E. Detection of hydrologic trends and variability [J].Journal of Hydrology, 2002, 255(14): 107-122.
    [26] Jayawardena AW, Feizhou L. Analysis and Prediction of Chaos in Rainfall and Stream Flow Time Series[J].J Hydrol,1994,153:23-52
    [27] Wilcox BP,Seyfried MS,Blaekburn WH,etal. Chaotic characteristics of Snowmelt runoff: a preliminary study [J].American Society of Civil Engineers Watershed Management Symposium,Watershed Planning and Analysis in Action ,1990:125-134.
    [28] Wileox BP,Seyfried MS,Matison TH. Searching for Chaotic Dynamics in Snowmelt Runoff[J].Water Resour Res,1991,27:1005~5010.
    [29] Alberto I.J.Vich, Patricia M.Lopez, Maria C.Schumacher. Trend detection in the water regime of the main rivers of the Province of Mendoza, Argentina[J]. GeoJournal,2007,(70):233–243.
    [30] Michela Rogora. Synchronous trends in N–NO3 export from N-saturated rivercatchments in relation to climate[J]. Biogeochemistry,2007,(86):251–268.
    [31] Deg-Hyo Bae, Il-Won Jung , Heejun Chang. Long-term trend of precipitation and runoff in Korean river basins[J]. Hydrological Processes, 2008,3: 2644–2656.
    [32] Zbigniew W Kundzewicz, Alice Robson. Detection Trend and other Changes in Hydrological Data[Z]. WMO/TD-No1013. Geneva, 2000.
    [33] Shao QX, Campbell NA .Modelling trends in groundwater levels by segmented regression with constraints[J]. Aust NZ J Stat,2002,44:129–141
    [34]陈仁升,康尔泗,杨建平,等.甘肃河西地区近50年气象和水文序列的变化趋势[J].兰州大学学报(自然科学版),2002,38(2):163-170.
    [35]王新平,张景光,李新荣,等.沙坡头地区多年降水分布特征、趋势及其变率[J].中国沙漠,2001,21(3):260-264.
    [36]徐宗学,张楠.黄河流域近50年降水变化趋势分析[J].地理研究,2006,25(1):27-34.
    [37]徐宗学,和宛琳.黄河流域近40年蒸发皿蒸发量变化趋势分析[J].水文,2005,25(6):6-11.
    [38]徐宗学,隋彩虹.黄河流域平均气温变化趋势分析[J].气象,2005,31(11):7-10.
    [39]徐宗学,赵芳芳.黄河流域日照时数变化趋势分析[J].资源科学,2005,27(5):153-159.
    [40]徐宗学,和宛琳.近40年黄河源区气候要素分布特征及变化趋势分析[J].高原气象,2006,25(5):906-913.
    [41]黄俊雄,徐宗学,巩同梁.雅鲁藏布江径流演变规律及其驱动因子分析[J].水文,2007,27(5):31-35.
    [42]王文圣,丁晶,李跃清.水文小波分析[M].北京:化学工业出版社,2005.
    [43]郭凤兰,魏庆杰.潮河1956~2002年的天然年平均流量变化趋势分析[J].现代农业科学,2009,16(5):171—173.
    [44]秦年秀,姜彤,徐崇育.长江流域径流趋势变化及突变分析[J].长江流域资源与环境,2005,14(5):589-594.
    [45]蔺学东,张镱锂等.拉萨河流域近50年来径流变化趋势分析[J].地理科学进展,2007,26(3):58-67.
    [46]安全,梁川等.雅砻江中上游径流变化特性的小波分析[J].武汉大学学报(工学版),2008,6(3):20-28.
    [47]刘晨,于延胜.闽江流域年平均流量序列整体与局部趋势特征分析[J].山西水土保持科技,2009,3:11-13.
    [48]王波雷,马孝义等.乌兰木伦河径流变异特征分析研究[J].水土保持研究,2007,12(6):250-255.
    [49]刘超,秦毅等,黄河上游主要干支流近期降水、径流统计特征变化分析[J].水土保持学报,2004 ,18 (1) :96-991.
    [50]石教智,陈晓宏.基于HHT方法的宜昌近百年平均流量演化模式分析[J].人民长江,2005,11(11):34-36.
    [51]于延胜,陈兴伟.R/S和Mann-Kendall法综合分析时间序列未来的趋势特征[J].水资源与水工程学报,2008,19(3):41-44.
    [53]康超,冯刚等. R/S分析在水库径流丰枯变化趋势预测中的应用[J].华北水利水电学院学报,2008,10(5):7-11.
    [53]曹建廷,秦大河等.长江源区1956-2000年平均流量量变化分析[J].水科学进展,2007,1:2-23.
    [54]熊立华,周芬,肖义等.水文时间变点分析的贝叶斯方法[J].水电能源科学.2003,21(4):39-41.
    [55]秦莉,琪美格.巴州清水河径流变化趋势分析[J].现代农业科技,2008,17.
    [56]宋小燕,穆兴民等.松花江哈尔滨站近100年来径流量变化趋势[J].自然资源学报,2009,24(10):1803-1809.
    [57]丁晶.洪水时间序列干扰点的统计推估[J].武汉大学学报(工学版),1986,(05)
    [58]夏军,穆宏强,邱训平等.水文序列的时间变异性分析[J].长江职工大学学报,2001,(03):1-4.
    [59]拜存有.渭河流域关中段径流过程变异点诊断研究[D].西北农林科技大学,2009.
    [60]任全志,王金宽等.大凌河流域径流变化特征及动因分析[J].水土保持应用技术,2009,3:25-27
    [61]邓育仁,丁晶,杨荣富.中国主要河流年平均流量序列随机变化基本规律的初步研究[J].水科学进展,1990,1(1):13-21.
    [62]李栋梁,张佳丽,全建瑞,等.黄河上游径流量演变特征及成因研究[J].水科学进展,1998,9(1):22-28.
    [63]马柱国.黄河径流量的历史演变规律及成因[J].地球物理学报,2005,48(6):1270-1275.
    [64]靳立亚,秦宁生,毛晓亮.近45年来长江上游通天河径流量演变特征及其气候概率预报[J].气候与环境研究,2005,10(2):220-228.
    [65] Xu Z X,Chen Y N,and Li J Y.Impact of Climate Change onWater Resources in the Tarim River Basin.Water Resources Management,2004,18:439-458.
    [66]卢晓宁,邓伟,栾卉,等.近50年来霍林河流域径流量演变规律研究[J].干旱区资源与环境,2005,19(7):90-95.
    [67]李栋梁,张佳丽,全建瑞,章克俭.黄河上游径流量演变特征及成因研究[J].水科学进展,1998, 9(1): 22-28.
    [68]王根绪,沈永平,刘时银.黄河源区降水与径流过程对ENSO事件的响应特征[J].冰川冻土,2001, 23 (1): 16-21.
    [69]任立良,张炜,李春红,王美荣.中国北方地区人类活动对地表水资源的影响研究[J]河海大学学报(自然科学版) , 2001,(04).
    [70]拜存有,马耀光.渭河林家村站径流变化趋势分析[J].杨凌职业技术学院学报,2008,7(2):8-10.
    [71]王生雄,魏红义,王志勇.渭河径流序列趋势及突变分析[J].人民黄河,2008,30(9):26-29.
    [72] Yue,S.,Pilon,P.,Cavadias,G.Power of the Mann-kendalland spearman’s rho tests for detecting monotonic trends inhydrological series[J].Journal of Hydrology,2002,259(1~4):254~271.
    [73] Xu Z.X.,Takeuchi K.,Ishidaira H.Long-term trends of annualtemperature and precipitation time series in Japan[J].Journal of Hydroscience and Hydraulic Engineering,2002,20(2):11-26.
    [74] Xu Z.X.,Takeuchi K.,Ishidaira H.Monotonic trend and stepchanges in Japanese precipitation[J].Journal of Hydrology,2003,279(1-4):144-150.]
    [75]曹洁萍,迟道才,武立强等.Mann—Kendall检验方法在降水趋势分析中的应用研究[J] .农业科技与装备,2008,(5):35-37.
    [76]张建军.Mann-Kendall突变检验法中杂点的去除——以合肥降水突变为例[J].气象与减灾. 2007.6
    [77] Quanxi Shao, Zhanling Li,and Zongxue Xu. Trend detection in hydrological time series by segment regression with application to Shiyang River Basin[J]. Stochastic Environmental Research and Risk Assessment,2009,
    [78] Hurvich M, Tsai CL .Regression and time series model selection in small samples[J]. Boimetrika.1989, 76:297–307
    [79] McQuarrie ADR, Tsai CL .Regression and time series model selection[M]. World Scientific, Singapore,1989
    [80] Dai A.G.,Trenberth K.E.,and Karl T.R.,Global variation in droughts and wet spells:1900-1995.Geophy.Res.letters,1998,25(17):3367-3370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700