大肠癌中15-羟基前列腺素脱氢酶表达失活及其在增殖侵袭中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     大肠癌是一种常见的消化系统恶性肿瘤。在西方经济发达国家,大肠癌的死亡率位于恶性肿瘤的第二位;在我国,其死亡率位于第四位左右。近二十年来,大肠癌在我国的发病率总体呈上升趋势,并且随着人们饮食结构和生活方式的改变,大肠癌的发病率还会继续上升。虽然大肠癌诊疗技术有着长足发展,但大肠癌的总体5年存活率并无显著提高,其主要原因是术后复发与肝转移,这也是制约大肠癌预后的主要因素。因此如何早期预测、早期发现、早期诊断与治疗大肠癌,预防复发与肝转移,是提高5年生存率的关键。因而积极开展大肠癌发生发展机制的研究,对于大肠癌的防治具有很重要的现实意义。
     15-羟基前列腺素脱氢酶(15-Hydroxyprostaglandin dehydrogenase,PGDH)是催化前列腺素降解的关键酶,亦是环氧化酶-2(cyclooxygenase-2)的抑制剂。最近研究发现PGDH是一个新的候选抑癌基因,在人体多种组织器官如胃、肠道、肺、肾脏及前列腺中广泛表达,但在多种人类肿瘤细胞系或肿瘤组织,如乳腺癌、肺癌、胃癌、前列腺癌中表达下调或缺失,而PGDH基因启动子区高甲基化是导致其在乳腺癌和前列腺癌中表达失活的主要原因之一,但PGDH基因在大肠癌中表达情况、启动子区甲基化状态及其生物学功能等研究工作国内尚无开展。因此深入探讨大肠癌中PGDH基因的表达情况及对其生物学功能的研究,将有助于进一步明确PGDH在大肠癌发生、发展中的作用,为大肠癌的预防和治疗提供切入点。
     研究目的:
     1.探讨PGDH基因在大肠癌中的表达情况,分析其与临床病理参数间的关系,评判PGDH基因是否为大肠癌的候选抑癌基因;
     2.检测PGDH基因启动子区甲基化状况,分析其与临床病理参数间的关系,探讨PGDH基因在大肠癌中表达失活的可能机制;
     3.构建PGDH基因真核表达载体——pcDNA3.1-PGDH,并转染细胞鉴定其表达及活性;
     4.研究PGDH基因对大肠癌SW480细胞株生长增殖的影响及相关基因的表达改变情况,初步分析其发挥作用的可能机制;
     5.观察PGDH基因对高转移大肠癌细胞Colo205侵袭转移能力的影响,以期进一步探讨PGDH基因可能的作用机理并寻找肿瘤治疗的新靶点。
     研究方法:
     1.应用免疫组织化学染色法分析30例大肠癌组织及癌旁正常组织中PGDH蛋白的表达差异,并分析其与临床病理参数之间的关系;
     2.采用MSP(甲基化特异PCR)技术检测30例大肠癌及癌旁正常组织中PGDH基因启动子区甲基化状况,并分析其与临床病理参数之间的关系;
     3. Trizol法提取大肠黏膜组织总RNA,利用RT-PCR扩增PGDH基因cDNA片段,采用基因工程的技术,以pcDNA3.1(+)为表达载体,定向克隆构建真核表达质粒pcDNA3.1(+)-PGDH,经限制性内切酶酶切与PCR方法初步鉴定阳性克隆后送生物公司进行序列测定。通过脂质体介导转染SW480肿瘤细胞,Western Blot分析PGDH蛋白的表达情况;进一步采用ELISA检测细胞培养液中PGE2的改变情况,观察转染表达的PGDH蛋白是否具有活性;
     4.在脂质体介导下转染到大肠癌SW480细胞,经平板集落形成、软琼脂克隆形成及MTT等试验体外观察PGDH基因对大肠癌细胞SW480恶性增殖的影响;流式细胞仪分析细胞周期及凋亡的改变情况,并应用Western Blot检测相关基因的表达改变情况,探讨可能的作用机理;
     5.在脂质体介导下转染到高转移大肠癌Colo205细胞,应用划痕擦伤试验、Transwell迁移试验和Transwell侵袭试验体外观察PGDH基因对Colo205细胞侵袭转移能力的影响;利用黏附实验研究PGDH对细胞与细胞外基质间黏附能力的改变;通过Western Blot和明胶酶谱试验初步探讨上述变化的可能机制。
     研究结果:
     1.免疫组织化学染色结果显示PGDH蛋白在大肠癌组织中存在广泛的表达下调:30例大肠癌组织中有19例(63.3%)PGDH呈弱阳性染色,11例(36.7%)PGDH表达缺失;而癌旁5cm正常对照组织中有26例(86.7%)PGDH呈强阳性表达,3例(10%)呈中等阳性表达,1例(3.3%)呈弱阳性表达。PGDH在癌组织和癌旁正常组织中的蛋白表达存在显著的统计学差异(P<0.01);PGDH表达缺失与淋巴结转移呈正相关,淋巴结转移组的PGDH阳性表达率(33.3%)明显低于无淋巴结转移组(83.3%),两者差别具有统计学意义(P<0.01);PGDH表达与肿瘤发生部位、年龄及性别无关;
     2. MSP分析结果表明的大肠癌组织中PGDH基因启动子区存在高甲基化(16/30,53.3%),而相应癌旁正常组织高甲基化不明显(6/30,20%),启动子甲基化率在癌及癌旁正常组织比较中有显著统计学差异(P<0.05);启动子高甲基化与淋巴结转移密切相关(P<0.01),无淋巴结转移组PGDH启动子甲基化率为33.3%,而淋巴结转移组为83.3%,二者相比有显著统计学差异性;PGDH启动子高甲基化与肿瘤发生部位、年龄及性别无关;
     3.提取总RNA经电泳检测完整性良好,RT-PCR扩增出845bp的PGDH基因cDNA片段。,经酶切与PCR鉴定目的片段已定向克隆入pcDNA3.1载体,送上海生工测序,序列测定结果表明其插入方向及碱基排列均正确;转染SW480细胞后,PGDH蛋白表达升高,并且培养液中的PGE2下降,提示真核表达载体构建成功并具有生物学活性;
     4.体外抑制增殖的研究发现,转染表达PGDH蛋白后SW480肿瘤细胞生长缓慢、细胞叠堆状或多层明显减少,集落形成能力明显降低,实验组平板集落形成率为16% ,而对照组为58%,两者间差异显著( P <0.05) ;软琼脂克隆形成能力降低,实验组软琼脂克隆体积小且形成个数(7±1.68)明显少于对照组(16.3±3.63) (P<0.05);流式细胞仪分析发现实验组静止期细胞所占比例增加,DNA合成期所占细胞比例减少,凋亡率升高; Western Blot结果表明,PGDH基因转染后P53、P21表达升高,Bcl-2表达降低;
     5.抑制肿瘤侵袭转移的研究发现,Colo205细胞转染表达PGDH蛋白后体外侵袭转移能力下降:划痕擦伤后实验组细胞平面迁移能力明显降低;Transwell游走实验结果发现对照组约有107.6±7.5个细胞穿过了聚碳酸酯膜,远远多于实验组的62.0±4.6,差异显著(P<0.05);Transwell侵袭实验显示对照组638.5±78.2个细胞穿过了聚碳酸酯膜,远远多于实验组的76.7±7.3,差异具有统计学意义;黏附实验结果发现空载体对照组OD490为0.57±0.06,而转染PGDH的实验组细胞OD490为0.21±0.02,细胞的黏附率降低了40-60%。明胶酶谱和Western Blot结果显示,黏附因子CD44表达降低,基质金属蛋白酶2(MMP-2)分泌降低,并且其活性下降。
     研究结论:
     1. PGDH蛋白在大肠癌组织中存在表达缺失或下调,基因启动子区高甲基化是其表达失活的主要原因之一,并且在大肠癌的发生发展中起着重要作用,因而PGDH是大肠癌的新型抑癌基因;
     2. PGDH基因可能通过依赖P53的P21、Bcl-2途径使肿瘤细胞增殖减慢并且凋亡增加,从而抑制肿瘤细胞的恶性增殖能力;PGDH基因能够抑制肿瘤细胞与细胞外基质的黏附能力和侵袭转移能力,可能是PGDH蛋白抑制了CD44表达与MMP-2的分泌及活化,从而抑制肿瘤细胞的侵袭转移。
Backgroud
     Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies that severely threaten the health of human. In western countries, colorectal cancer is the second cause of cancer-related death, only next to lung cancer. In China, the mortality of colorectal carcinoma ranks from the 4th to 6th among all the cancer-related death. Furthermore, the mortality is still increasing, especially in the urban and developed rural area of China, due to the changes of life style and diet elements. Because of recurrence and liver metastasis, the 5 years survival rates of CRC have not been improved yet, although the techniques of diagnosis and therapy have highly developed. Therefore, it is the important measure to improve CRC patient survival through early detection and early therapy. Thus, it is of great significance to study the underlying mechanisms of CRC for its prevention and treatment.
     Colorectal carcinogenesis is believed to be a long-term and multi-step process involving the activation of oncogenes and inactivation of tumor suppressor genes. Although many genes are reported to be closely related to the colorectal carcinogenesis,there are still a lot of other known or unknown genes which remained to be discovered.
     Several studies have shown that cyclooxygenases2 (COX-2), which catalyzes dioxygenation and cyclization of arachidonic acid to prostaglandin E2 (PGE2), increase in expression in several tumors. Similarly, accumulating evidence show an important role for PGE2 in the development of CRC. High PGE2 levels within colon tumors are associated with increased proliferation, and angiogenesis. However, the level of PGE2 is controlled not only by synthesis but also by degradation, a fact that has been overlooked in studying prostaglandin and cancer.
     The first and key enzyme involved in prostaglandin catabolism is NAD+-linked 15-Hydroxyprostaglandin dehydrogenase (PGDH), which is reported as a new tumor suppressor gene. PGDH is widely distributed in various mammalian tissues such as lung, liver, kidney, prostate, etc. Among which colon and rectum are the most active tissues. Previous researches have shown that PGDH is highly expressed in these normal epithelia, while is loss or down-expression in the corresponding malignant tissues and tumor cells. Recent data suggest PGDH could inhibit lung cells proliferation and induced apoptosis; In breast cancer and prostate cancer, the promoter hypermethylation is one of the reasons of PGDH expression silencing. Howerve, in our country, there has not reported PGDH expression state and bio-function in CRC. Thus,elucidating clearly the mechanisms underlying aberrant PGDH expression in CRC could contribute to clarify the role of PGDH in colorectal carcinogenesis,which maybe beneficial to the diagnosis and treatment of CRC.
     Objiective
     1. To evaluate expression of the PGDH gene and potential clinical implications in 30 CRC tissues and matched 30 adjacent tissues.
     2. To detect promoter hypermethylation of the PGDH gene and potential clinical implications in 30 CRC tissues and corresponding normal tissues.
     3. To further explore the PGDH gene bio-function in tumor cells, we constructed the eukaryotic expression vector pcDNA3.1-PGDH.
     4. To investigate the inhibitory proliferation behaviors in SW480 cell line and detect the states of the related proliferation genes after transfected expression PGDH.
     5. To study the role of the PGDH gene in the metastasis and invasion process of CRC cell line Colo205 and potential mechanisms.
     Methods
     1. To detect expression of PGDH protein by immunohistochemistry in 30 primary CRC tissues and corresponding normal tissues and the results were compared with the clinicopathollogical data.
     2. Methylation-specific PCR (MSP) was operated to detect promoter region methylation status of the PGDH gene in CRC. The results were compared with the clinicopathological data.
     3. We designed and synthesized specific primers for PGDH by primer premier 5.0. Total RNA was isolated from human normal colonic epithelia. Then the PGDH cDNA gene was amplified by reverse transcript polymerase chain reaction (RT-PCR). The amplified fragment was orientationly linked into the eukaryotic expression vector pcDNA3.1(+) by T4 DNA ligase. The recombinant plasmid pcDNA3.1(+)-PGDH was constructed and identified by the sequence analysis. To study the PGDH vector activity, we applied ELISA assay to detect the level of PGE2 in the culture medium after transfected 72h. To further investigate the activity of PGDH vector, PGE2 level in cell medium was measured using ELISA assay.
     4. To further explore the inhibitory functions of PGDH in cancer, pcDNA3.1- PGDH vector was transiently transfected into SW480 cells cells by Liperfectamine 2000, which were negative for the genes. The effects on proliferation and malignant of PGDH over-expression on SW480 cells were evaluated by growth characteristics such as growth in monolayer culture, growth curve with MTT assay and anchorage-independent growth in soft agar. Flow cytometry was used to analyze the cell cycle and the rates of apoptosis. We detected the expression alteration of the related proliferation genes suah as P53, P21, BCL-2 and BAX through Western Blot.
     5. To further evaluate the role of PGDH in cancer metastasis, pcDNA3.1- PGDH vector was transiently transfected into Colo205 cells by Liperfectamine 2000, which were negative for the genes. Then, we took use of methods to exam PGDH inhibitor faculty such as scrape-wound-migration assay, Transwell migration assay, Transwell invasion assay and cell adhesion ability to extracellular matrix (ECM) by MTT test. To test the hypothesis that PGDH affects proteases and inactivates ECM, western blot and gelatin zymography were performed by using serum-free conditioned medium.
     Results
     1. Loss expression or down regulation expression of PGDH protein was detected in 11(36.7%) or 19 (63.3%) of 30 CRC tissues by IHC, whereas PGDH protein was detectable to highly expresse in 29 (96.7%) of the matched 30 adjacent normal tissues (P<0.01). Loss and down regulation of PGDH was significantly correlated with lymph node metastasis (P<0.05). No relationship was observed between expression of PGDH and sex, age and tumor location (P>0.05).
     2. MSP analysis demonstrated that 53.3% (16/30) of CRC but 20% (6/30) of adjacent normal tissues was hypermethylated in the promoter of the PGDH gene. There was siginifecant difference of promoter hypermethylation of the PGDH gene between CRC tissues and adjacent normal tissues (P<0.05). The clinicopatnological analysis showed that the PGDH gene promoter hypermethylation was closely associated with lymph node metastasis (P<0.01). Compared with 33.5% of hypermethylation in group without lymph node metastasis, it was significantly higher in those with lymph node metastasis (83.3%).
     3. The total RNA was isolated and had integrity. The PGDH cDNA fragment was correctly amplified by RT-PCR. The sequence analysis result indicated the recombinant plasmid pcDNA3.1(+)-PGDH was constructed successfully. With the expression of PGDH protein, PGE2 level was significantly decreased in cell medium.
     4. The PGDH overexpressing cells showed a significantly slower growth rate and a more degree of apoptosis compared with those of the vector control cells. Colony formation activity of SW480/pcDNA3.1-PGDH was 16% while that of the control cell was 58% (P < 0.05). The activity of anchorage-independent proliferation of SW480 /pcDNA3.1PGDH (7±1.68) was lower than that of SW480/pcDNA3.1 (16.3±3.63) in soft agar. Endogenous PGDH expression was negatively correlated with neoplastic potential as evidenced by attenuated anchorage-independent growth.Otherwise, the results of flow cytometry showed that the cell cycle was arrested in G1 and the rate of apoptosis increased. In mechanistic studies, we found that p53 protein and p21 protein, the negative regulate factors in cell cycle, could be induced higher expression than those of the vector control cells. The apoptosis inhibitor BCL-2 could be reduced.
     5. After transfected express PGDH protein, the metastasis ability was highly weakened. Over-expression of PGDH decreased cell migration and cell invasion approximately 1.9 and 8.4-fold, respectively. The ability of cells adhesion to ECM decreased. Zymography and Western Blot results demonstrated that PGDH protein cound inhibit matrix metalloproteinase-2 (MMP2) synthesis and secretion. In addition, the analysis of the MMP2 activity indicated that expression of PGDH could inhibit activation of MMP2. Furthermore, we also found that PGDH inhibited cells adhesion to ECM and reduced CD44 expression in Colo205 cell. Taken together, PGDH protein might decrease the abilities of metastasis of Colo205 cells by restrainingMMP-2 activated.
     Conclusion
     1. Loss or down regulation expression of PGDH gene is frequent in CRC, which is closely associated with lymph node metastasis, PGDH is a putative tumor suppressor gene in CRC. Our findings suggest that epigenetic silencing of PGDH gene expression by promoter hypermethylation could play an important role in CRC. The detection of PGDH hypermethylation by MSP could be a new useful molecular marker of CRC.
     2. These data indicate that PGDH might partly reverse malignant behavior of CRC cells by suppressing cell proliferation and inducing apoptosis. The suppressing cell proliferation function may be resulted from through p53 pathway;These results demonstrate that induced PGDH gene expression may contribute to inhibiting the invasiveness and metastatic ability of colon cancer cells. The probable mechanism is though decreasing MMP-2 and CD44 expression.
     This finding may be helpful in delineating molecular mechanism of tumorigenicity and providing a potential route for CRC gene therapy in the future.
引文
[1] Jemal A, Siegel R, Ward E, et al. Cancer statistics. CA Cancer J Clin, 2006, 56(2):106-130.
    [2] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics. CA Cancer J Clin, 2005, 55(2):74-108.
    [3]李连弟,鲁凤珠,张思维等.1990-1992年中国恶性肿瘤死亡流行分布情况分析.中华肿瘤杂志,1996,18(6):403- 407.
    [4]李连弟,饶克勤,张思维等.中国12市县1993-1997年肿瘤发病和死亡登记资料统计分析.中国肿瘤,2002,11(9):497- 507.
    [5]样玲,李连弟,陈育德等.中国2000年及2005年恶性肿瘤发病死亡的估计与预测.中国卫生统计,2005,22(4)218-231.
    [6]李明,顾晋.中国结直肠癌20年来发病模式的变化趋势.中华胃肠外科杂志, 2004,7(3): 214- 217.
    [7]许岸高,姜泊,钟旭辉,等.广东地区近20年大肠癌临床特征的变化趋势.中华医学杂志, 2006,86(4): 272- 275.
    [8]董志伟,乔友林,李连弟,等.中国恶性肿瘤治疗策略分析.中国肿瘤, 2002, 11(5):250- 260.
    [9]李其龙,俞玲玲,马新源,等.嘉善县大肠癌发病及生存率分析.中国肿瘤, 2005, 14(9): 580- 582.
    [10]郑树,蔡善荣.中国大肠癌的病因学及人群防治研究.中华肿瘤杂志,2004, 26(1): 1- 3.
    [11] Zheng S, Chen K, Liu XY, et al. Cluster randomization trial of sequence mass screening for colorectal cancer. Dis Colon Rectum, 2003, 46 (1):51-58.
    [12] You WC,Jni F,Devesa S,et al. Rapid increase in colorectal cancer rates in urban Shnahgai,1972-97, in relation to dietary changes .J Cancer Epidemiol Prev,2002, 7(3):143- 146.
    [13]郝希山.简明肿瘤学.北京:人民卫生出版社.2001. 163-170.
    [14] Hart IR, Saini A. Biology of tumor metastasis. Lancet 1992, 339: 1453-1457.
    [15]刘萱,张澍田,于中麟,等.环氧合酶-2的信使核糖核酸在人食管鳞癌中的表达,中华消化杂志,2004,24(6):365- 366.
    [16] Kohn EC, Liotta LA. Molecular insight into cancer invasion: strategies for prevention and intervention. Cancer Res. 1995, 55:1856-1862.
    [17] McCawley LJ, Matrisian LM. Matrix metalloproteinase: multifunctional contributors to tumor progression. Mol. Med. Today 2000, 6: 149-156.
    [18] Hrabec E, Strek M, Nowak D, et al. Activity of type IV collagenases (MMP-2 and MMP-9) in primary pulmonary carcinomas: a quantitative analysis. J. Cancer Res. Clin. Oncol. 2002, 128:197-204.
    [19] Fuchs CS, Willett WC, Colditz GA, et al. The influence of folate and multivitamin use onthe familial risk of colon cancer in women.Cancer Epidemiology, Biomarkers & prevention, 2002,11:227-234.
    [20] Ma J, Stampfer MJ, Giovannuai E, et al. Methhylenetetrahydrofolate reductase polymor-phism, dietary interactions,and risk of colorectal cancer. Cancer Res, 1997, 57:1098-1102
    [21] Yin G, Suminori K, Kengo T, et al.Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and colorectal cancer: the Fukuoka colorectal cancer study. Cancer Sci, 2004, 95:908-913.
    [22] Wong HL, Seow A, Arakawa K, et al. Vitamin D receptor codon polymorphism and colorectal cancer risk: effect modification by dietary calcium and fat in Singapore Chinese.Carcinogenesis, 2003, 24:1091-1095.
    [23] Seow A, Yuan JM, Sun CL, et al. Dietary isothiocyanate, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese health study. Carcinogenesis, 2002, 23:2055-2061.
    [24]蔡善荣.我国大肠癌高危因素的研究.实用肿瘤杂志, 2003,18(1): 68- 70.
    [25] Harnack L, Jacobs DR Jr, Nicodemus K, et al. Relationship of folate, vitamin B-6, vitamin B-12, and methionine intake to incidence of colorectal cancers. Nutr Cancer, 2002, 43: 152-158.
    [26] Chiu YL, Yu TIS. Colorectal cancer among Chinese restaurant waiters. Occup Med, 2001, 51(5):343-346.
    [27] Borugian MJ, Sheps SB, Whittemore AS, et al. Carbohydrates and colorectal cancer risk among Chinese in North American. Cancer Epidemiology, Biomarkers & prevention, 2002, 11(2):187-193.
    [28] Murray GI, Duncan ME, O’Neal P, et al. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat. Med. 1996, 2: 461-462.
    [29] Samowitz WS, Slattery ML, Sweeney C, et al. APC mutations and other genetic and epigenetic changes in colon cancer. Mol Cancer Res. 2007, 5(2):165-170.
    [30] Hansen JE, Fischer LK, Chan G, et al. Antibody-mediated p53 protein therapy prevents liver metastasis in vivo. Cancer Res. 2007, 67(4):1769-1774.
    [31] De Galitiis F, Cannita K, Tessitore A, et al. Novel P53 mutations detected by FAMA in colorectal cancers. Ann Oncol. 2006 Jun; 17 Suppl 7:vii78-83.
    [32] Biswas S, Chytil A, Washington K, et al. Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Res. 2004, 64(14):4687-4692.
    [33] De Wever O, Westbroek W, Verloes A, et al. Critical role of N-cadherin in myofibroblastinvasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-beta or wounding. J Cell Sci. 2004, 117(Pt 20):4691-4703.
    [34] Yu W, Murray NR, Weems C, et al. Role of cyclooxygenase 2 in protein kinase C beta II-mediated colon carcinogenesis. J Biol Chem. 2003, 278(13):11167-11174.
    [35] Liu X, Zhou B, Xue L, et al. Metastasis-suppressing potential of ribonucleotide reductase small subunit p53R2 in human cancer cells. Clin Cancer Res. 2006, 12(21):6337-6344.
    [36]刘志荣.大肠癌组织、腺瘤组织和正常黏膜组织的基因表达谱分析:[硕士学位论文].山西:山西医科大学, 2006.
    [37]冯燕.人15-羟基前列腺素脱氢酶原核表达体系的构建:[硕士学位论文].山西:山西医科大学, 2007.
    [38] Casey ML, Hurd ER, Gilliam JN, et al. NAD+-dependent 15-hydroxyprostaglandin dehydrogenase activity in kidney tissue from NZB/NZW F1 hybrid mice. Immunology. 1982, 45(1):23-26.
    [39] Xun CQ, Tian ZG, Tai HH. Stimulation of synthesis de novo of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase in human promyelocytic leukaemia (HL-60) cells by phorbol ester. Biochem J. 1991, 279 (Pt 2):553-558.
    [40] Liu S, Stromberg A, Tai HH, et al. Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells. Mol Cancer Res. 2004, (8):477-487.
    [41] Zhou H, Yan F, Tai HH. C-Terminal region of human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase is involved in the interaction with prostaglandin substrates. Eur J Biochem. 2001, 268(12):3368-3374.
    [42] Patel FA, Sun K, Challis JR. Local modulation by 11beta-hydroxysteroid dehydrogenase of glucocorticoid effects on the activity of 15-hydroxyprostaglandin dehydrogenase in human chorion and placental trophoblast cells. J Clin Endocrinol Metab. 1999, 84(2):395-400.
    [43] T?rnblom SA, Patel FA, Bystr?m B, et al. 15-hydroxyprostaglandin dehydrogenase and cyclooxygenase 2 messenger ribonucleic acid expression and immunohistochemical localization in human cervical tissue during term and preterm labor. J Clin Endocrinol Metab. 2004, 89(6):2909-2915.
    [44] Pichaud F, Roux S, Frendo JL, et al. 1,25-dihydroxyvitamin D3 induces NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase in human neonatal monocytes. Blood. 1997, 89(6):2105-2112.
    [45] Tong M, Tai HH. Synergistic induction of the nicotinamide adenine dinucleotide-linked 15-hydroxyprostaglandin dehydrogenase by an androgen and interleukin-6 or forskolin in human prostate cancer cells. Endocrinology. 2004, 145(5):2141-2147.
    [46] Nandy A, Jenatschke S, Hartung B, et al. Genomic structure and transcriptional regulation of the human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase gene. J Mol Endocrinol. 2003, 31(1):105-121.
    [47] Greenland KJ, Jantke I, Jenatschke S, et al. The human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase gene promoter is controlled by Ets and activating protein-1 transcription factors and progesterone. Endocrinology. 2000, 141(2):581-597.
    [48] Bell JK, Pease PJ, Bell JE, et al. De-regulation of D-3-phosphoglycerate dehydrogenase by domain removal. Eur J Biochem. 2002, 269(17):4176-4184.
    [49] Celis JE, Ostergaard M, Basse B, et al. Loss of adipocyte-type fatty acid binding protein and other protein biomarkers is associated with progression of human bladder transitional cell carcinomas. Cancer Res. 1996 Oct 15; 56(20):4782-4790.
    [50] Gee JR, Chen IL, Montoya RG, et al. Down regulation of prostaglandin dehydrogenase in invasive transitional cell carcinoma. Proc Am Assoc Cancer Res. 42,264.
    [51] Ding Y, Tong M, Liu S, et al. NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis. 2005 Jan; 26(1):65-72.
    [52] Wolf I, O'Kelly J, Rubinek T, et al. 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res. 2006 Aug 1; 66(15):7818-7823.
    [53]偻俪泓,靖大道.15-羟基前列腺素脱氢酶与胃肠道恶性肿瘤的研究进展.国际消化病杂志,2006,26(3):189- 191.
    [54] Quidville V, Segond N, Lausson S, Frenkian M, Cohen R, Jullienne A. 15-Hydroxyprostaglandin-dehydrogenase is involved in anti-proliferative effect of non-steroidal anti-inflammatory drugs COX-1 inhibitors on a human medullary thyroid carcinoma cell line. Prostaglandins Other Lipid Mediat. 2006, 81(1-2):14-30.
    [55] Yang L, Amann JM, Kikuchi T, et al. Inhibition of epidermal growth factor receptor signaling elevates 15-hydroxyprostaglandin dehydrogenase in non-small-cell lung cancer. Cancer Res. 2007 Jun 15; 67(12):5587-5593.
    [56] Tong M, Ding Y, Tai HH. Reciprocal regulation of cyclooxygenase-2 and 15-hydroxyprostaglandin dehydrogenase expression in A549 human lung adenocarcinoma cells. Carcinogenesis. 2006 Nov; 27(11):2170-2179.
    [57] Yan M, Rerko RM, Platzer P, et al. 15-Hydroxyprostaglandin dehydrogenase, a COX-2 oncogene antagonist, is a TGF-beta-induced suppressor of human gastrointestinal cancers. Proc Natl Acad Sci U S A. 2004, 101(50):17468-17473.
    [58] Mao XY, Wang XG, Lv XJ,et al. COX-2 expression in gastric cancer and its relationship with angiogenesis using tissue microarray. World J Gastroenterol. 2007, 13(25):3466-3471.
    [59] Banu N, Buda A, Chell S, et al. Inhibition of COX-2 with NS-398 decreases colon cancer cell motility through blocking epidermal growth factor receptor transactivation: possibilities for combination therapy. Cell Prolif. 2007, 40(5):768-779.
    [60] Liu Z, Wang X, Lu Y, et al. Expression of 15-PGDH is down-regulated by COX-2 in gastric cancer. Carcinogenesis. 2008 Jan 3; [Epub ahead of print].
    [61] Lee S, Lee HJ, Kim JH, et a1. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis [J].Am J Pathol, 2003, 163(4):1371-1378.
    [62] Laird PW. Cancer epigenetics. Hum Mol Genet, 2005, 14(SP 1):R65-76.
    [63] Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999, 96(15):8681-8686.
    [64] Yegnasubramanian S, Kowalski J, Gonzalgo ML, et al. Hypermethylation of CpG islands in primary and metastatic human prostate cancer [J]. Cancer Res. 2004, 64(6):1975-1986.
    [65]杜娟,石雪迎,郑杰,等.抗原修复液pH值及修复时间对免疫组化染色效果的影响.北京大学学报(医学版) , 2005, 46(02): 123-128.
    [66]孔建平.食管癌基因表达谱的分析及S100A8/S100A9在食管癌变中的作用研究:[博士学位论文].北京:中国医学科学院,2005.
    [67] Patlolla JM, Raju J, Swamy MV, et al. Beta-escin inhibits colonic aberrant crypt foci formation in rats and regulates the cell cycle growth by inducing p21(waf1/cip1) in colon cancer cells. Mol Cancer Ther. 2006, 5(6):1459-1466.
    [68] Paz MF, Fraga MF, Avila S, et al. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res, 2003, 63(5): 1114-1121.
    [69] Hsieh CJ, Klump B, Holzmann K, et al. Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Res. 1998, 58(17):3942-3945.
    [70] Goh PP, Sze DM, Roufogalis BD. Molecular and cellular regulators of cancer angiogenesis. Curr Cancer Drug Targets. 2007, 7(8):743-758.
    [71] Zopf S, Neureiter D, Bouralexis S, et al. Differential response of p53 and p21 on HDAC inhibitor-mediated apoptosis in HCT116 colon cancer cells in vitro and in vivo. Int J Oncol. 2007 Dec;31(6):1391-1402.
    [72] Palozza P, Serini S, Boninsegna A, et al. The growth-inhibitory effects of tomatoes digested in vitro in colon adenocarcinoma cells occur through down regulation of cyclin D1, Bcl-2 and Bcl-xL. Br J Nutr. 2007, 98(4):789-795.
    [73] Kim BN, Yamamoto H, Ikeda K, et al. Methylation and expression of p16INK4 tumor suppressor gene in primary colorectal cancer tissues. Int J Oncol. 2005, 26(5):121712-26.
    [74] Nehls O, Okech T, Hsieh CJ, et al. Studies on p53, BAX and Bcl-2 protein expression andmicrosatellite instability in stage III (UICC) colon cancer treated by adjuvant chemotherapy: major prognostic impact of proapoptotic BAX. Br J Cancer. 2007, 96(9):1409-1418.
    [75]卢圣栋主编.现代分子生物学实验技术.北京:高等教育出版社, 1993, 465-497.
    [76]邓大君,邓国仁,吕有勇,等.变性高效液相色谱法检测CpG岛胞嘧啶甲基化.中华医学杂志, 2001, 81(3):158- 161.
    [77] Brandes JC, van Engeland M, Wouters KA, et al. CHFR promoter hypermethylation in colon cancer correlates with the microsatellite instability phenotype. Carcinogenesis. 2005, 26(6):1152-1156.
    [78]徐钢,杨红,文锦,等.结直肠腺瘤细胞凋亡和增殖与bcl-2和P53蛋白表达的关系.中国胃肠外科杂志,2000, 3(4): 280-284.
    [79] Ding WX, Ni HM, Chen X, et al. A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells. Mol Cancer Ther. 2007, 6(3):1062-1069.
    [80] Karahan N, Güney M, Baspinar S, et al. Expression of gelatinase (MMP-2 and MMP-9) and cyclooxygenase-2 (COX-2) in endometrial carcinoma. Eur J Gynaecol Oncol. 2007, 28 (3):184-188.
    [81] Cunningham JM, Christensen ER, Tester DJ, et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 1998, 58(15):3455-3460.
    [82]常冰梅,李美宁,解军,等.脂质体介导的肝细胞生长因子基因在脐静脉内皮细胞中的表达与鉴定.中国药物与临床,2006, 6(1): 36-38.
    [83] Krishnan AV, Moreno J, Nonn L, et al. Novel pathways that contribute to the anti-proliferative and chemopreventive activities of calcitriol in prostate cancer. J Steroid Biochem Mol Biol. 2007 Mar; 103(3-5):694-702.
    [84] Kang JH, Han IH, Sung MK, et al. Soybean saponin inhibits tumor cell metastasis by modulating expressions of MMP-2, MMP-9 and TIMP- 2. Cancer Lett. 2008, 261(1):84-92.
    [85] Toyota M, Ho C, Ahuja N, et al. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 1999, 59(10):2307-2312.
    [86]李美宁,黄革,郭黎平,等.食管癌相关基因2对EC9706细胞恶性增殖的抑制作用.中华医学杂志, 2005,85(39):2785-2788.
    [87] Myung SJ, Rerko RM, Yan M, et al. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci U S A. 2006, 103(32):12098-102.
    [88] Su CC, Chen GW, Lin JG, et al. Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B /p65 and down-regulatescyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res. 2006, 26(2A):1281-1288.
    [89] Medina C, Jurasz P, Santos-Martinez MJ, et al. Platelet aggregation-induced by caco-2 cells: regulation by matrix metalloproteinase-2 and adenosine diphosphate. J Pharmacol Exp Ther. 2006, 317(2):739-745.
    [90] Pham H, Eibl G, Vincenti R, et al. 15-hydroxyprostaglandin dehydrogenase suppresses K-Ras(V12)-dependent tumor formation in Nu/Nu mice. Mol Carcinog. 2007 Nov 30; [Epub ahead of print]
    [91] Tong M, Ding Y, Tai HH. Histone deacetylase inhibitors and transforming growth factor-beta induce 15-hydroxyprostaglandin dehydrogenase expression in human lung adenocarcinoma cells. Biochem Pharmacol. 2006 Sep 14; 72(6):701-709.
    [92] Huang G, Hu Z, Li M, et al. ECRG2 inhibits cancer cell migration, invasion and metastasis through the down-regulation of uPA/plasmin activity. Carcinogenesis. 2007 Nov; 28(11):2274-2281
    [93] Mann JR, Backlund MG, Buchanan FG, et al. Repression of prostaglandin dehydrogenase by epidermal growth factor and snail increases prostaglandin E2 and promotes cancer progression. Cancer Res. 2006 Jul 1;66(13):6649-6656.
    [94] Hazra S, Batra RK, Tai HH, et al. Pioglitazone and rosiglitazone decrease prostaglandin E2 in non-small-cell lung cancer cells by up-regulating 15-hydroxyprostaglandin dehydrogenase. Mol Pharmacol. 2007, 71(6):1715-1720.
    [95]马陈,邢春根,毛大本,等.CD44和CD54在结直肠癌肝转移中的表达意义.中华胃肠外科杂志, 2004, 7(2): 140- 143.
    [96] Fernandez JC, Vizoso FJ, Corte MD, et al. CD44s expression in respectable colorectal carcinomas and surrounding mucosa. Cancer Invest, 2004, 22 (6): 878- 885.
    [97] Delektorskaia VV, Perevoshchikov AG, Kushlinskii NE. The features of expression of cellular adhesion molecules in primary colorectal cancer and it s metastases. Vopr Onkol, 2005, 51(3): 328 - 333.
    [98] Vizoso FJ, Fernandez JC, Corte MD, et al. Expression and clinical significance of CD44V5 and CD44V6 in resectable colorectal cancer. Cancer Res Clin Oncol, 2004, 130 (11): 679 -686.
    [99] Park EY, Wilder ET, Lane MA. Retinol inhibits the invasion of retinoic acid-resistant colon cancer cells in vitro and decreases matrix metalloproteinase mRNA, protein, and activity levels. Nutr Cancer. 2007, 57(1):66-77.
    [1] Hrabec E, Strek M, Nowak D, et al. Activity of type IV collagenases (MMP-2 and MMP-9) in primary pulmonary carcinomas: a quantitative analysis. J. Cancer Res. Clin. Oncol. 2002, 128:197-204.
    [2] Fuchs CS, Willett WC, Colditz GA, et al. The influence of folate and multivitamin use on the familial risk of colon cancer in women.Cancer Epidemiology, Biomarkers & prevention, 2002,11:227-234.
    [3] Ma J, Stampfer MJ, Giovannuai E, et al. Methhylenetetrahydrofolate reductase polymor-phism, dietary interactions,and risk of colorectal cancer. Cancer Res, 1997, 57:1098-1102
    [4] Yin G, Suminori K, Kengo T, et al.Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and colorectal cancer: the Fukuoka colorectal cancer study. Cancer Sci, 2004, 95:908-913.
    [5] Wong HL, Seow A, Arakawa K, et al. Vitamin D receptor codon polymorphism and colorectal cancer risk: effect modification by dietary calcium and fat in Singapore Chinese.Carcinogenesis, 2003, 24:1091-1095.
    [6] Seow A, Yuan JM, Sun CL, et al. Dietary isothiocyanate, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese health study. Carcinogenesis, 2002, 23:2055-2061.
    [7] Goh PP, Sze DM, Roufogalis BD. Molecular and cellular regulators of cancer angiogenesis. Curr Cancer Drug Targets. 2007, 7(8):743-758
    [8] Zopf S, Neureiter D, Bouralexis S, et al. Differential response of p53 and p21 on HDAC inhibitor-mediated apoptosis in HCT116 colon cancer cells in vitro and in vivo. Int J Oncol. 2007 Dec;31(6):1391-1402
    [9] Palozza P, Serini S, Boninsegna A, et al. The growth-inhibitory effects of tomatoes digested in vitro in colon adenocarcinoma cells occur through down regulation of cyclin D1, Bcl-2 and Bcl-xL. Br J Nutr. 2007, 98(4):789-795
    [10] Nandy A, Jenatschke S, Hartung B, et al. Genomic structure and transcriptional regulation of the human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase gene. J Mol Endocrinol. 2003, 31(1):105-121
    [11]崔志清,宋汉英.依赖NAD+的15-羟基前列腺素脱氢酶在人子宫内膜的活性.国外医学计划生育妇产科学分册,1981,1:40-41
    [12]李沧海,周军,霍海如等.发热大鼠脑组织15-羟基前列腺素脱氢酶活性的时相变化及桂枝汤的影响[J].中国实验方剂学杂志,2004,10(1):22-25
    [13]齐百,李沧海,郭淑英等.桂枝汤对体温双向调节作用机理研究—对发热及低体温大鼠下丘脑PGE2含量及Cox活性的彭响[J].中药药理与临床.2002,17(6):1-3
    [14]李沧海,霍海如,周军等.桂枝汤对发热及低体温大鼠15-羟基前列腺素脱氢酶活性的影响[J].中国实验方剂学杂志,2003,9(1):27-30
    [15] Pichaud F, Roux S, Frendo JL, et al. 1,25-dihydroxyvitamin D3 induces NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase in human neonatal monocytes. Blood. 1997, 89(6):2105-2112
    [16] Tai O,Ken Y,Ell S.et al.Levels of NAD+-dependent 15-PGDH are reduced in flammatory bowel disease:evidence for involvement of TNF-α.AmJ Physiol Gastrointest Liver Physiol,2006;290:G361-G368
    [17] Ren FJ,Car M,Mit VC.et al.Regulation of 15-PGDH Gene Activity,Mrna processing,and protein Abundance in the Human chorion in Late Gestation and Labor.J Clin Endocrinol Metab,2004;89(11):5639-5648
    [18] Ding YL,Li YJ.Expression of cyclooxygenase-2 and 15-PGDH of placenta and fetalmembranes in patients of preterm labor.Zhonghuz Fu chan Ke Za Zhi,2006;41(12):793-800
    [19] Jer TJ, Mel WS, Fis SM, et al. Suppression of 15-PGDH mRNA concentration,protein expression and enzymatic activity during human ureteral obstruction.J Pharmocol Exp Ther,2004;309(1):398-403
    [20]楼俪泓,靖大道,李继坤等.15-PGDH与胃癌发生关系的研究.胃肠病学,2006,11(6):340-345
    [21] Rincher M,Weiss L,Wein G.et al Growth inhibition and induction of apoptosis in colorectal tumor cells by cyclooxygenase inhibitors.Carcinogenesis,2001;22(1):17-25
    [22] Mich G,Back JR,Mann VR.et al. 15-PGDH is down-regulated in colorectal cancer,2005, 280(5):3217-3223
    [23] Min Yan,Ron MR,Petra P.et al. 15-PGDH,a COX-2 oncogene antagonist ,is a TGF-β-induced suppressor of human gastrointestinal cancer.PNAS,2004;101(50):17468-17473
    [24] De Galitiis F, Cannita K, Tessitore A, et al. Novel P53 mutations detected by FAMA in colorectal cancers. Ann Oncol. 2006 Jun; 17 Suppl 7:vii78-83.
    [25]刘萱,张澍田,于中麟,等.环氧合酶-2的信使核糖核酸在人食管鳞癌中的表达,中华消化杂志,2004,24(6):365- 366.
    [26] Su CC, Chen GW, Lin JG, et al. Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B /p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res. 2006, 26(2A):1281-1288
    [27] Medina C, Jurasz P, Santos-Martinez MJ, et al. Platelet aggregation-induced by caco-2 cells: regulation by matrix metalloproteinase-2 and adenosine diphosphate. J Pharmacol Exp Ther. 2006, 317(2):739-745
    [28] Nehls O, Okech T, Hsieh CJ, et al. Studies on p53, BAX and Bcl-2 protein expression and microsatellite instability in stage III (UICC) colon cancer treated by adjuvant chemotherapy: major prognostic impact of proapoptotic BAX. Br J Cancer. 2007, 96(9):1409-1418
    [29] Jul E,Cel IG, Pav G., et al. Molecular pathology of breast apocrine carcinomas:A protein expression sigature specific for benign apocrine metaplasia.FEBS Letters, 2006, 58(10): 2935-2944
    [30] Ido W, Jam O,Tam R, et al. 15-PGDH is a Tumor suppressor of Human Breast cancer.Cancer Res,2006;66(15):7818-7823
    [31] Haz S, Bat R, Tai HH.et al.Pioglitazone and Rosiglitazone decrease PGE2 in non-small cell lung cancer cells by upregulating 15-PGDH.Mol Pharmacol, 2004, 68(9):1439-1436
    [32] Viv Q, Nad S, Syl L, et al. 15-PGDH is involved in anti-proliferative effect of non-steroidal anti-inflammatory drugs cox-1 inhibitors on a human medullary thyroid carcinoma cellline.Prostaglandins & other Lipid Mediators,2006;81:14-30
    [33] Aru K,Jac M,Lar N.et al.Novel pathways that contribute to the anti-proliferative and chemoprentive activities of calcitriol in prostate cancer,2007, 26:65-72
    [34] Palozza P, Serini S, Boninsegna A, et al. The growth-inhibitory effects of tomatoes digested in vitro in colon adenocarcinoma cells occur through down regulation of cyclin D1, Bcl-2 and Bcl-xL. Br J Nutr. 2007, 98(4):789-795
    [35] Kim BN, Yamamoto H, Ikeda K, et al. Methylation and expression of p16INK4 tumor suppressor gene in primary colorectal cancer tissues. Int J Oncol. 2005, 26(5):121712-26
    [36] Myung SJ, Rerko RM, Yan M, et al. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci U S A. 2006, 103(32):12098-102
    [1] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell, 2000, 100: 57-70.
    [2] Bissell MJ, Radisky D. Putting tumors in context. Nature Rev Cancer, 2001, 1: 46-54.
    [3] Nagase H, Woessner J F. Matrix metalloproteinases. J Biol Chem, 1999, 274: 21491-21494.
    [4] Seiki M. Membrane-type matrix metalloproteinases. APMIS, 1999, 107: 137-143.
    [5] Itoh Y, Kajita M, Kinoh H, et al. Membrane type 4 matrix metalloproteinase (MT4-MMP, MMP-17) is a glycosylphosphatidylinositol-anchored proteinase. J Biol Chem, 1999, 274: 34260-34266.
    [6] Miyagi N, Kato S, Terasaki M, et al. Fibroblast growth factor-2 and -9 regulate proliferation and production of matrix metalloproteinases in human gliomas. Int J Oncol, 1998, 12: 1085-1090.
    [7] Rooprai HK, Rucklidge GJ, Panou C, et al. The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer, 2000, 82: 52-55.
    [8] Uhm JH, Dooley NP, Villemure JG, et al. Glioma invasion in vitro: regulation by matrix metalloprotease-2 and protein kinase C. Clin. Exp. Metastasis, 1996, 14: 421-433.
    [9] Kubiatowski T, Jang T, Lachyankar MB, et al. Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg, 2001, 95: 480-488.
    [10] Qin H, Sun Y, Benveniste EN, et al. The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J Biol Chem, 1999, 274: 29130-29137.
    [11] Wagner S, Stegen C, Bouterfa H, et al. Expression of matrix metalloproteinases in human glioma cell lines in the presence of IL-10. J. Neurooncol, 1998, 40: 113-122.
    [12] Arato-Ohshima T, Sawa H. Over-expression of cyclin D1 induces glioma invasion by increasing matrix metalloproteinase activity and cell motility. Int J Cancer, 1999, 29, 83: 387-392.
    [13] Maidment SL, Merzak A, Koochekpour S. et al. The effect of exogenous gangliosides on matrix metalloproteinase secretion by human glioma cells in vitro. Eur J Cancer, 1996, 32A: 868-871.
    [14] Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 2001, 17, 463-516.
    [15] Strongin AY, Collier I, Bannikov G, et al. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem, 1995, 270: 5331-5338.
    [16] Deryugina EI, Ratnikov B, Monosov E, et al. MT1-MMP initiates activation of pro-MMP-2 and integrinανβ3 promotes maturation of MMP-2 in breast carcinoma cell. Exp Cell Res, 2001, 263: 209-223.
    [17] Morrison CJ, Butler GS, Bigg HF, et al. Cellular activation of MMP-2 (Gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J Biol Chem, 2001, 276: 47402-47410.
    [18] Sottrup-Jensen L, Birkedal-Hansen H. Human fibroblast collagenase-α-macroglobulin interactions. Locallization of cleavage sites in the bait regions of five mammalianα-macroglobulins. J Biol Chem, 1989, 264: 393-401.
    [19] Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem, 2001, 276: 8403-8408.
    [20] Bein K, Simons M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem, 2000, 275: 32167-32173.
    [21] Rodriguez-Manzaneque JC, Lane TF, Ortega MA, et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA, 2001, 98: 12485-12490.
    [22] Taraboletti G., Morbidelli L, Donnini S, et al. The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J, 2000, 1674-1676.
    [23] Blavier L, Henriet P, Imren S, et al. Tissue inhibitors of matrix metalloproteinases in cancer. Ann. NY Acad Sci, 1999, 878:108-119.
    [24] Wang Z, Juttermann R, Soloway PD. TIMP-2 is required for efficient activation ofpro-MMP-2 in vivo. J Bio Chem, 2000, 275: 26411-26415.
    [25] Oh J, Takahashi R, Kondo S, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell, 2001, 107: 789-800.
    [26] Itoh Y, Takamura A, Ito N, et al. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J, 2001, 20: 4782-4793.
    [27] Hua J, Muschel RJ. Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res, 1996, 56: 5279-5284.
    [28] Yonemura Y, Endo Y, Fujita H, et al. Inhibition of peritoneal dissemination in human gastric cancer by MMP-7-specific antisense oligonucleotide. J. Exp. Clin Cancer Res, 2001, 20: 205-212.
    [29] Kondraganti S, Mohanam S, Chintala S, K. et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res, 2000, 60: 6851-6855.
    [30] Noonberg SB, Benz CC. Tyrosine kinase inhibitors targeted to the epidermal growth factor receptor subfamily: role as anticancer agents. Drugs, 2000, 59: 753-767.
    [31] Elkin M, Reich R, Nagler A, et al. Inhibition of matrix metalloproteinase-2 expression and bladder carcinoma metastasis by halofuginone. Clin Cancer Res, 1999, 5: 1982-1988.
    [32] Silletti S, Kessler T, Goldberg J, et al. Disruption of matrix metalloproteinase 2 binding to integrinαvβ3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc Natl Acad Sci USA, 2001, 98: 119-124.
    [33] Liu S, Netzel-Arnett S, Birkedal-Hansen H, et al. Tumor cell-selective cytotoxicity of matrix metalloproteinase-activated anthrax toxin. Cancer Res, 2000, 60: 6061-6067.
    [34] Celiker MY, Wang M, Atsidaftos E, et al. Inhibition of Wilms’tumor growth by intramuscular administration of tissue inhibitor of metalloproteinasese-4 plasmid DNA. Oncogene, 2001, 20: 4337-4343.
    [35] Brand K, Baker AH, Perez-Canto A, et al. Treatment of colorectal liver metastases by adenoviral transfer of tissue inhibitor of metalloproteinases-2 into the liver tissue. Cancer Res, 2000, 60: 5723-5730.
    [36] Jiang Y, Wang M, Celiker MY, et al. Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Res, 2001, 61: 2365-2370.
    [37] Koivunen E, Arap W, Rajotte D, et al. Tumor targeting with a selective gelatinase inhibitor. Nature Biotechnol, 1999, 17: 768-774.
    [38] Coussens LM, Tinkle CL, Hanahan D, et al. MMP-9 supplied by bone marrow-derived cellscontributes to skin carcinogenesis. Cell, 2000, 103: 481-490.
    [39] Bergers G., Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol, 2000, 2: 737-744.
    [40] Sternlicht MD, Lochter A, Sympson CJ, et al. The stromal proteinase MMP-3/stromelysin-1 promotes mammary carcinogenesis. Cell, 1999, 98: 137-146.
    [41] Bergers G., Javaherian K, Lo KM, et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science, 1999, 284: 808-812.
    [42] Gorrin-Rivas MJ, Arii S, Furutani M, et al. Mouse macrophage metalloelastase gene tranfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res, 2000, 6: 1647-1654.
    [43] Bramhall SR, Rosemurgy A, Brown PD, et al. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol, 2001, 19: 3447-3455.
    [44] Giannelli G., Falk-Marzllier J, Schiraldi O, et al. Induction of cell migration by matrix metalloproteinase-2 cleavage of laminin-5. Science, 1997, 277: 225-228.
    [45] Xu J, Rodriguez D, Petitclerc E, et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol, 2001, 154: 1069-1080.
    [46] Manes S, Mira E, Barbacid MM, et al. Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stomelysin-3. J Biol Chem, 1997, 272:25706-25712.
    [47] Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-βand promotes tumor invasion and angiogenesis. Genes Dev, 2000, 14: 163-176.
    [48] Codony-Servat J, Albanell J, Lopez-Talavera JC, et al. Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteinase-1 in breast cancer cells. Cancer Res, 1999, 59: 1196-1201.
    [49] Nath D, Williamson NJ, Javis R, et al. Shedding of c- Met is regulated by crosstalk between a G-protein coupled receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J Cell Sci, 2001, 114, 1213-1220.
    [50] Noe V, Fingleton B, Jacobs K, et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci, 2001 114: 111-118.
    [51] Kajita M, Itoh Y, Chiba T, et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol, 2001 153: 893-904.
    [52] Gururajan R, Lahti JM, Grenet J, et al. Duplication of a genomic region containing the Cdc2L 1-2 and MMP21-22 genes on human chromosome 1p36.3 and their linkage to D1Z2.Genome Res, 1998, 8: 929-939.
    [53] Llano E, Pendas AM, Freije JP, et al. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res, 1999, 59: 2570-2576.
    [54] Crawford HC, Fingleton B, Gustavson MD, et al. The PEA3 subfamily of Ets transcription factors synergizes withβ-catenin-LEF-1 to activate matrilysin transcription in intestinal tumors. Mol Cell Biol, 2001, 21: 1370-1383.
    [55] Sun Y, Cheung JM, Martel-Pelletier J, et al. Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J Biol Chem, 2000, 275: 11327-11332.
    [56] Kanamori Y, Matsushima M, Minaguchi T, et al. Correlation between expression of the matrix metalloproteinase-1 gene in ovarian cancers and an insertion/deletion polymorphism in its promoter region. Cancer Res, 1999, 59: 4225-4227.
    [57] Ye S, Dhillon S Turner SJ, et al. Invasiveness of cutaneous malignant melanoma is influenced by matrix metalloproteinase 1 gene polymorphism. Cancer Res, 2001, 61: 1296-1298.
    [58] Zhu Y, Spitz MR, Lei L, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances lung cancer susceptibility. Cancer Res, 2001, 61: 7825-7829.
    [59] Biondi ML, Turri O, Leviti S, et al. MMP1 and MMP3 polymorphisms in promoter regions and cancer. Clin Chem, 2000 46: 2023-2024.
    [60] Price SJ, Greaves DR, Watkins H. Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem, 2001, 276: 7549-7558.
    [61] Yu C, Pan K, Xing D, et al. Correlation between a single nucleotide polymorphism in the Matrix Metalloproteinase-2 promoter and risk of lung cancer. Cancer Res, 2002, 62: 6430-6433.
    [62] Miao X, Yu C, Tan W, et al. A functional polymorphism in the matrix metalloproteinase-2 gene promoter (-1306C/T) is associated with risk of development but not metastasis of gastric cardia adenocarcinoma. Cancer Res, 2003, 15: 3987-3990.
    [63] Witty JP, Lempka T, Coffey RJ, et al. Decreased tumor formation in 7, 12-dimethybenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis. Cancer Res, 1995, 55: 1401-1406.
    [64] Sympson CJ, Talhouk RS, Alexander CM, et al. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis andthe requirement for an intact basement membrane for tissue-specific gene expression. J Cell Biol, 1994, 125: 681-693.
    [65] Powell WC, Fingleton B, Wilson CL, et al. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol, 1999, 9: 1441-1447.
    [66] Misiades N, Yu WH, Poulaki V, et al. Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res, 2001, 61: 577-581.
    [67] Yu WH, Woessner JF, McNeish JD, et al. CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErB4 and regulates female reproductive organ remodeling. Genes Dev, 2001, 17: 463-516.
    [68] Wu E, Mari BP, Wang F, et al. Stromelysin-3 suppresses tumor cell apoptosis in a murine model. J Cell Biochem, 2001, 82: 549-555.
    [69] Boulay A, Masson R, Chenard MP, et al. High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res, 2001, 61: 2189-2193.
    [70] Baserga R. The contradictions of the insulin-like growth factor 1 receptor. Oncogene, 2000 19, 5574-5581.
    [71] Ishizuya-Oka A, Li Q, Amano T, et al. Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis. J Cell Biol, 2000, 150: 1177-1188.
    [72] Vu TH, Shipley JM, Bergers G., et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell, 1998, 93: 411-422.
    [73] Ilan N, Mohsenin A, Cheung L, et al. PECAM-1 shedding during apoptosis generates a membrane-anchored truncated molecule with unique signaling characteristics. FASEB J, 2001 15: 362-372.
    [74] Steinhusen U, Weiske J, Badock V, et al. Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem, 2001, 276: 4972-4980.
    [75] Hiraoka N, Allen E, Apel IJ, et al. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysis. Cell, 1998, 95: 365-377.
    [76] Martin DC, Sanchez-Sweatman OH, Ho AT, et al. Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis. Lab Invest, 1999, 79: 225-234.
    [77] Li H, Lindenmeyer F, Grenet C, et al. AdTIMP-2 inhibits tumor growth, angiogenesis, and metastasis, and prolongs survival in mice. Hum Gene Ther, 2001, 12: 515-526.
    [78] Gatto C, Rieppi M, Borsotti P, et al. BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin. Cancer Res, 1999, 5: 3603-3607.
    [79] Seandel M, Noack-Kunnmann K, Zhu D, et al. Growth factor-induced angiogenesis in vivo requires specific cleavage of fibrillar type I collagen. Blood, 2001, 97: 2323-2332.
    [80] Fang J, Shing Y, Wiederschain D, et al. Matrix metalloproteinase-2 is required for the swith to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci USA, 2000, 97: 3884-3889.
    [81] Itoh T, Tanioka M, Yoshida H, et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res, 1998, 58: 1048-1051.
    [82] Galvez BG., Matias-Roman S, Albar JP, et al. Membrane type-1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J Biol Chem, 2001, 276: 37491-37500.
    [83] Hiraoka N, Allen E, Apel IJ, et al. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell, 1998, 95: 365-377.
    [84] Zhou Z, Apte SS, Soininen R, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase 1. Proc Natl Acad Sci USA, 2000, 97: 4052-4057.
    [85] Silletti S, Kessler T, Goldberg J, et al. Disruption of matrix metalloproteinase 2 binding to integrin alpha vbeta 3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc Natl Acad Sci USA, 2001, 98:119-124.
    [86] Deryugina EI, Soroceanu L, Strongin AY. Up-regulation of vascular endothelial growth factor by membrane-type 1 matrix metalloproteinase stimulates human glioma xenograft growth and angiogenesis. Cancer Res, 2002, 62:580-588.
    [87] Hashimoto G., Inoki I, Fujii Y, et al. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem, 2002, 277 (39): 36288-36295.
    [88] Gorrin-Rivas MJ, Arii S, Furutani M, et al. Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res, 2000, 6: 1647-1654.
    [89] Cornelius LA, Nehring LC, Harding E, et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol, 1998, 161: 6845-6852.
    [90] Ferreras M, Felbor U, Lenhard T, et al. Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett, 2000, 486: 247–251.
    [91] Kim YM, Jang JW, Lee OH, et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res,2000, 60: 5410–5413.
    [92] Koolwijk P, Sidenius N, Peters E, et al. Proteolysis of the urokinase-type plasminogen activator receptor by metalloproteinase-12: implication for angiogenesis in fibrin matrices. Blood, 2001, 97: 3123-3131.
    [93] Ala-Aho R, Johansson N, Baker A, et al. Expression of collagenase-3 (MMP-13) enhances invasion of human fibrosarcoma HT-1080 cells. Int J Cancer, 2002, 97: 283-289.
    [94] Koshikawa N, Giannelli G., Cirulli V, et al. Role of cell surface metalloproteinase MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol, 2000, 148: 615-624.
    [95] Yu Q, Stamenkovic I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev, 1999, 13: 35-48.
    [96] Bourguignon LY, Gunja-Smith Z, Iida N, et al. CD44v (3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastastic breast cancer cell. J Cell Physiol, 1998 176: 206-215.
    [97] Hotary K, Allen E, Punturieri A, et al. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol, 2000, 149: 1309-1323.
    [98] Coussens, L. M. and Werb, Z. Inflammatory cells and cancer: think different! J. Exp. Med. 193: F23-F26, 2001.
    [99] Sheu BC, Hsu SM, Ho HN, et al. A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res, 2001, 61: 237-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700