生物质与煤共热解气化行为特性及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质与煤共热解是一项极具开发潜力的技术,在国内外仍属较新领域,其核心是共热解中协同反应效应的相关问题。本论文研究在现有实验室条件下,全面分析了六种形式的生物质与煤共热解过程,考察其中的协同反应效应,利用分布活化能法(DAEM)研究生物质与煤的共热解动力学特性,得出共热解动力学相关参数,为实现生物质与煤高效协同共热解反应寻找更为有效的途径。主要内容和研究成果归纳如下:
     1.生物质与煤慢速共热解行为研究
     采用TG-FTIR联用的分析方法对生物质与煤单独热解及共热解过程进行分析。结果发现,生物质与煤共热解的实际热失重过程较理论计算值程度有所加深,褐煤与生物质的共热解效果最好;共热解协同作用主要体现在较高温段生物质对煤的催化作用。根据TG-FTIR的实验结果推测,生物质中的Fe、Ca、Mg、Si等微量元素的氧化物,在共热解过程中破坏煤胶质体的形成,使得煤炭热解初期的产物气体得以逸出,从而增加共热解过程气体产率,降低液体产率;自制的镍铁白云石基双金属催化剂进一步促进了共热解反应发生的深度,提高了共热解过程中碳的转化率和原料利用率。
     2.生物质与煤快速共热解行为研究
     在小型固定床反应器上,对生物质与煤快速共热解过程进行研究,发现:温度对生物质与煤快速共热解反应影响比较明显,温度越高,产气率和H2含量越大,固体得率越低,气体和固体得率及气体组分理论值与实际值的偏差,说明快速共热解过程中存在协同反应;生物质与煤快速共热解产气量随生物质在原料中掺混比例的增加而增加;生物质与煤快速共热解反应有利于产生富氢热解气,尤其是木屑与烟煤在B:C=2:8(Wt/Wt)的条件下生成的热解气中H2所占比例达42.53%,CO产率随着生物质在原料中所占比例的增加而降低,CO2实际产率低于理论计算值,CH_4产率随着煤化程度和生物质在原料中所占比例的增加逐渐降低,其他烃类的产量增加。
     3.生物质与煤快速共气化行为研究
     在小型固定床反应器上,采用快速升温的方式,考察生物质与煤水蒸气快速共气化和加水快速共气化两种方式对共气化过程及产物的影响。生物质与煤水蒸气快速共气化反应可生产富氢产物气,明显降低CO及烃类气体产率,H_2/CO可达3-4,对CO_2产量影响不是很明显;生物质与煤加水快速共气化气体产量也有显著增加,随着加水共气化终温的升高,气体产物中H_2组分所占比例明显增加,而CO组分所占比例略有下降。两种共气化方式相比,水蒸气共气化法产生富氢气体,适用于合成液体燃料,尤其是作为甲醇合成的原料气;而直接加水气化得到较多的可燃气体,燃气热值较高,可用来燃烧、发电及供气。
     4.烘焙生物质与煤共热解行为研究
     采用TG和小型固定床两种反应器形式分别对烘焙生物质与煤慢速共热解和快速共热解过程及产物进行研究。通过慢速共热解研究,发现250℃和30min是一个比较合适的生物质原料预处理温度。烘焙预处理有利于生物质与褐煤快速共热解气体产物的生成。各气体组分中,H2含量减少很多,CO含量略有增加,CO_2含量增加,CmHn含量增加较多,但气体热值总体变化不大。生物质经烘焙预处理后与煤快速共热解反应能有效降低焦油产量。
     5.生物质与煤共热解及焦油催化裂解动力学研究
     分别采用Coats-Redfern法和DAEM法对生物质与煤共热解过程的动力学特性加以分析。Coats-Redfern法中,升温速率对活化能影响不大,对频率因子有一定的影响。Coats-Redfern法将共热解过程分为多段的单一反应,求出的活化能值较低,且为整个共热解过程活化能的平均值,不能全面准确的表达生物质、煤单独热解或两者混合物的共热解活化能和实际过程,因而不适宜于模拟共热解等复杂反应体系;DAEM模型求得的活化能是随转化率变化的一个函数,呈现升高-平稳-升高的变化趋势,指前因子随活化能的增大而增大,补偿了由于活化能增大而造成的速度常数减少。DAEM法的Gaussian拟合相关性较好,充分证明了DAEM模型对共热解过程的适用性较好。实验得到的共热解活化能小于加权计算方法得到的共热解活化能,进一步验证了在共热解过程中协同反应效应的真实存在。
     以萘为模型化合物模拟焦油的催化裂解反应可以看做是平推流反应形式。在自制的镍铁白云石基双金属复合催化剂上,950℃时萘的转化率达到93%以上,求得的表观活化能为63.96kJ/mol,为目前所能检索到的最小。以萘为模型化合物的焦油催化裂解本征动力学方程为:r_A=396.2×exp(-925.34×1/T)C_A
Biomass and coal co-pyrolysis is a great potential technology and a relative new researchfield in the world. Its core problem is the synergistic effect of co-pyrolysis. Under ourlaboratory conditions, the co-pyrolysis synergistic effect of6kinds of biomasses and coalswere studied and investigated in this thesis. Distribution activation energy method (DAEM)was introduced into this thesis to study the co-pyrolysis kinetics of biomass and coal, and to getthe co-pyrolysis related kinetics parameters. The aim of this thesis is to find more effectiveways to achieve the synergistic effect in biomass and coal co-pyrolysis. This main researchcontents and results are summarized as follows:
     1. Slow co-pyrolysis behavior of biomass and coal
     Mono-pyrolysis and co-pyrolysis of biomass and coal were studied by using the TG-FTIRtechnology. It is found that the actual co-pyrolysis degrees are deeper than the theoretical ones.The effect of biomass and lignite co-pyrolysis is the best with actual results deviatingtheoretical value greatly. The synergistic effects are expressed as the biomass catalytic effect oncoal at high temperature region. According to results of the TG-FTIR, it can be concluded thatthe oxides of Fe, Ca, Mg, Si, and other trace elements in biomass inhibit the formation of coalcolloid, and make the initial gas product of coal pyrolysis be able to escape. Synergistic effectaccelerates coal pyrolysis to produce gas and decrease liquid products. The bimetallic dolomitebased catalyst further promotes the co-pyrolysis reaction, and improves the carbon conversionrates and utilization of raw materials in the co-pyrolysis process.
     2. Fast co-pyrolysis behavior of biomass and coal
     Fast co-pyrolysis process of biomass and coal were studied in a small fixed-bed reactor. Itis found that the pyrolysis temperature impact on fast co-pyrolysis of biomass and coalsignificantly. The synergistic effect is more obvious in the higher temperature. With theincrease of temperature, the H_2content and gas product yields increase, and the solid productyields greatly decrease. The deviation of theoretical value and actual value of co-pyrolysis gas and solid yields fully prove that the synergistic effect in fast co-pyrolysis process. Gasproductions increase with incremental biomass ratio in blending raw material. Biomass andcoal fast co-pyrolysis reaction can obtain hydrogen-rich gaseous products. Especially, when theratio of sawdust to bituminous is2to8, fast co-pyrolysis reactions get highest H2content of42.53%. The CO production decreases in higher biomass mixing ratio. The CO_2actual yield islower than the theoretical value. The CH_4yield decrease with the coal rank and biomass to coalratio increase. However, co-pyrolysis process effectively improves the production of otherhydrocarbons.
     3. Fast co-gasification behavior of biomass and coal
     Steam fast co-gasification and mixing water fast co-gasification processes were studied ina small fixed-bed reactor by fast heating-up mode. Steam fast co-gasification of biomass andcoal can produce hydrogen-rich gaseous products, and promote the H_2/CO to3-4, butsignificantly reduces the yield of CO and hydrocarbon. CO_2production change of this processis not very remarkable. Mixing water fast co-gasification process of biomass and coal canpromote the synergistic effect occur. The gaseous product yield of biomass and coal mixingwater fast co-gasification significantly increases. With the co-gasification reaction temperaturerise, the H2content increases significantly, while a slight decrease for the CO content occurs.Comparing the two methods of co-gasification, it can be concluded that steam fastco-gasification get the hydrogen-rich gas which is suitable for synthesizing liquid fuels,especially as the raw gas of methanol synthesis, while mixing water fast co-gasification getmuch higher heat value combustible gas which can be used for burning, power generation andgas supply.
     4. Co-pyrolysis behavior of torrefaction biomass and coal
     The process and product of slow and fast co-pyrolysis of torrefied biomass and coal werestudied by TG analysis technique and a small fixed-bed reactor respectively. In the slowco-pyrolysis research, it can be concluded that250℃and30min is a suitable torrefactioncondition for biomass. The torrefaction of biomass is better for biomass and lignite fast co-pyrolysis to get more gaseous product. Fast co-pyrolysis reactions of torrefaction biomassand coal have the effect of reducing H2content significantly, increasing CO content a bit andaccruing CO2and CmHncontent vastly. However, the heat values of gaseous product arechanged slightly. Fast co-pyrolysis of torrefied biomass and coal has a positive effect onlowering tar yield.
     5. Kinetic analysis of biomass and coal co-pyrolysis and tar catalytic cracking
     In this part, Coats-Redfern and DAEM methods were used to analyze the dynamiccharacteristics of biomass and coal co-pyrolysis. In Coats-Redfern method, heating rates haveless effect on the activation energy, but have some influences on pre-exponential factor. Theco-pyrolysis process is divided into some single reactions, and lower activation energy which isan average value of whole pyrolysis process is obtained. Average activation energy is difficultto describe the whole co-pyrolysis process. So Coats-Redfern is not the most effective methodto simulate co-pyrolysis kinetics. An activation energy function that change with theconversion rate is obtained by DAEM mode. The activation energy fuction shows an increased-smooth-increased trend. When using DAEM method to simulate the whole co-pyrolysisprocess, pre-exponential factors go up with the increase of activation energy and showcompensation effect. The Gaussian fitting for co-pyrolysis process has good correlations whichprove the excellent applicability of the DAEM for co-pyrolysis process. The test co-pyrolysisactivation energy values are lower than the calculated ones which further verify the existenceof synergistic effect in the co-pyrolysis process.
     The catalytic characterizations were tested with tar simulated by naphthalene.93%naphthalene is decomposed at950℃. Activation energy of63.96kJ/mol and pre-exponentialfactor of396.2/s are calculated, which shows the lowest apparent activation energy in allreferrences. A first order apparent kinetic model is developed.r_A=396.2×exp(-925.34×1/T)C_A
引文
[1] BP.BP Statistical Review of World Energy2011. London: BP,2011,1~2.
    [2]张无敌,董锦艳等.生物质能利用.太阳能,2000,1:6~7.
    [3]孙庆雷,李文,李宝庆.神木煤显微组分热解特性和热解动力学.化工学报,2002,53(11):1122~1127.
    [4]陈鸿,曾羽健,陈建原.煤粉热解过程的温度相关模型.华中理工大学学报,1994,22(3):42~46.
    [5]赵炜,常丽萍,冯志华等.煤热解过程中生成氮化物的研究.燃料化学学报,2002,30(5):408~412.
    [6] A. arenillas, F. rubiera, Pis J J. Simultaneous Thermogravimetrie~mass Spectrometric Study on thePyrolysis Behaviour of Different Rank Coals. Journal of Analytical and Applied Pyrolysis,1999,50(1):31~46.
    [7]2010年我国查明煤炭资源量101.3亿t.中国煤炭,2011,37(2):117~117
    [8] C.D.Doyle. Kinetic Analysis of Thermogravimetric Data. Journal of Applied Polymer Science,1961,15:285~292.
    [9]林木森.生物质热解机制和反应动力学研究.中国林业科学研究院硕士论文,2007,5~10.
    [10] A.Demirbas. Mechanism of Liquefaction and Pyrolysis Reactions of Biomass. Energy Conversion andManagement.2000,41:633~646.
    [11]蒋剑春,沈兆邦.生物质热解动力学的研究.林产化学与工业,2003,23(4):1~6.
    [12]米铁,唐汝江等.生物质气化技术比较及其气化发电技术研究进展.能源工程,2004,5:33~38.
    [13] Juan J. Hernandez, Guadalupe Aranda~Almansa, Clara Serrano. Co-Gasification of Biomass Wastes andCoal-Coke Blends in an Entrained Flow Gasifier: An Experimental Study. Energy&Fuels,2010,24:2479-2488.
    [14] Eleni Kastanaki, Despina Vamvuka. A comparative reactivity and kinetic study on the combustion ofcoal-biomass char blends. Fuel,2006,85:1186~1193.
    [15] John E.Whitea, W. James Catallob, Benjamin L. Legendre. Biomass pyrolysis kinetics: A comparativecritical review with relevant agricultural residue case studies. Journal of Analytical and AppliedPyrolysis,2011,91(1):1~33
    [16] Taro Sonobe, Nakorn Worasuwannarak, Suneerat Pipatmanomai. Synergies in co-pyrolysis of Thailignite and corncob. Fule Processing Technology,2008,89:1371~1378.
    [17] Sylwester Kalisz, Marek Pronobis, David Baxter. Co-firing of biomass waste-derived syngas in coalpower boiler. Energy,2008,33:1770~1778.
    [18]孙云娟,蒋剑春,徐俊明,等.生物质与烟煤共热解特性研究.太阳能学报,2011,32(9):1339~1343
    [19] Shiro Kajitani,Yan Zhang,Satoshi Umemoto et al. Co-gasification Reactivity of Coal and WoodyBiomass in High-Temperature Gasification. Energy&Fuels,2010,24:141~151.
    [20] J. Fermoso, B. Arias, M.G. Plaza, etal. High-pressure co-gasification of coal with biomass andpetroleum coke. Fuel Processing Technology,2009,90:926~932.132
    [21] S. Dea, M. AssadiImpact of cofiring biomass with coal in power plants-A techno-economic assessment.Biomass&Bioenergy,2009,33:283~293.
    [22]陈吟颖.生物质与煤共热解试验研究.华北电力大学(河北)博士论文,2007,15~40
    [23]孙云娟,蒋剑春,徐俊明等.生物质与煤共热解研究现状.现代化工,2010,30S(2):1~5.
    [24]郭艳.生物质快速裂解液化技术的研究进展.技术进展,2001(8):13~17.
    [25] Sj str m K, Chen G, Yu Q, et al. Promoted Reactivity of Char in Co-gGasification of Biomass andCoal: Synergies in the Thermochemical Process. Fuel,1999,78(10):1189~1194.
    [26] Corderoa T, J Rodrl Guez-Mirasol, Pastrana J, et a1. Improved Solid Fuels from Co-pyrolysis of a HighSulphur Content Coal and Different Lignocellulosic Wastes. Fuel,2004(83):1585~1590.
    [27] Nikkhah K, Bakhshi N N, MacDonald D G.Co-pyrolysis Various Biomass Materials and Coals in aQuartz Semi-Batch Reactor.In Energy from Biomass and Wastes XVT (Ed.D.L.Klass), Institute of GasTechnology,Chicago,1993,10~15.
    [28]周仕学,聂西文,王荣春等.高硫强黏结性煤与生物质共热解的研究.燃料化学学报,2000,28(4):294~297.
    [29]王鹏,文芳,边文等.煤与生物质共热解特性初步研究.煤炭转化,2008,31(4):40~44.
    [30]武宏香,李海滨,赵增立.煤与生物质热重分析及动力学研究.燃料化学学报,2009,37(5):538~545.
    [31]倪献智,丛兴顺,马小隆等.生物质热解及生物质与褐煤共热解的研究.煤炭转化,2005,28(2):39~47.
    [32] Storm C, Rudiger H,Spliethoff H, et a1. Co-pyrolysis of Coal/Biomass and Coal/Sewage SludgeMixtures. Journal of Engineering for Gas Turbines and Power,1999,121(1):55~63.
    [33] Moghtaderi B.,et.al. Co-pyrolysis of Coal and Woody Biomass. Preprints of Symposia-AmericanChemical Society, Division of Fuel Chemistry,2003,48(1):363~364.
    [34] McGee B,Norton F,Snape C E, et a1.The Co-pyrolysis of Poly (Vinylchoride) With Cellulose DerivedMaterials as a Model for Municipal Waste Derived Chars. Fuel,1995,74(1):28~31.
    [35]阎维平,陈吟颖.生物质混合物与煤共热解的协同特性.中国电机工程学报,2007,27(2):80~86.
    [36] Collot A G,Zhuo Y,Dugwell D R, et a1.Co-pyrolysis and Co-gasification of Coal and Biomass inBench-Scale Fixed Bed and Fluidized Bed Reactors. Fuel,1999,78(6):667~679.
    [37] Pan Y G, Velo G, Puigjaner L. Pyrolysis of Blends of Biomass with Poor Coals. Fuel,1996,75(4):418~421.
    [38] Vuthaluru HB. Investigations into the Pyrolytic Behaviour of Coal/Biomass Blends UsingThermogravimetric Analysis. Bioresource Technology,2004(92):187~195
    [39] Vuthaluru H B. Thermal Behaviour of Coal/Biomass Blends During Co-Pyrolysis. Fuel ProcessingTechnology,2003,85:141~155.
    [40]李文,李保庆,孙成功等.生物质热解、加氢热解及其与煤共热解的热重研究.燃料化学学报,1996,24(4):341~347.
    [41]尚琳琳,程世庆,张海清.生物质与煤共热解特性研究.太阳能学报,2006,27(8):852~856.
    [42] Biagini E, Lippi F, Petarca L, et a1. Devolatilization Rate of Biomass and Coal-biomass Blend: anExperimental Investigation. Fuel,2002(81):1041~1050.
    [43] Chat phol Meesri,Behdad Moghtaderi. Lack of Synergetic Effects in the Pyrolytic Characteristics ofWoody Biomass/Coal Blends under Low and High Heating Rate Regimes. Biomass and Bioenergy,2002(23):55~66.
    [44]马林转.褐煤与生物质两步法热解探索性实验研究.昆明理工大学硕士学位论文,2004,4~8.
    [45]李世光,徐绍平.煤与生物质的共热解.煤炭转化,2002,25(1):7~12
    [46] Moghtaderi B, Meesri C, Terry FW. Pyrolytic Characteristics of Blended Coal and Woody Biomass.Fuel,2004,83:745~750.
    [47] C. Storm, H. Rüdiger, H. Spliethoff et al. Co-Pyrolysis of Coal/Biomass and Coal/Sewage SludgeMixtures. J. Eng. Gas Turbines Power,1999,121(1):55~63
    [48] Hindmarsh C J, Thomas K M, Wang W X et al. A Comparison of the Pyrolysis of Coal in Wire-Meshand Entrained-Flow Reactors. Fuel,1995,74:1185~1190.
    [49]张丽.落下床反应器中煤与生物质共热解研究.大连理工大学硕士论文,2006,25~40.
    [50]李世光.煤热解和煤与生物质共热解过程中硫的变迁.大连理工大学博士论文,2006,15~60.
    [51]马光路,刘岗,曹青.生物质与聚合物、煤共热解研究进展.生物质化学工程,2007,41(3):47~51.
    [52]任宁,张建军.热分析动力学数据处理方法的研究进展.化学进展,2006,18(4):410~416.
    [53] Anup Kumar Sadhukhan, Parthapratim Gupta, Tripurari Goyal, et al. Modelling of pyrolysis ofcoal–biomass blends using thermogravimetric analysis. Bioresource Technology,2008,99(17):8022~8026.
    [54]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001,10~30.
    [55]程世庆,尚琳琳,张海清.生物质的热解过程及其动力学规律.煤炭学报,2006,31(4):501~505.
    [56]黄娜,高岱巍,李建伟等.生物质三组分热解反应及动力学的比较.北京化工大学学报,2007,34(5):462~466.
    [57]傅旭峰,仲兆平,肖刚等.几种生物质热解特性及动力学的对比.农业工程学报,2009,25(1):199~202.
    [58]宋春财,胡浩权,朱盛维等.生物质秸秆热重分析及几种动力学模型结果比较.燃料化学学报,2003,31(4):311~316.
    [58]陈登宇,朱锡锋.生物质热反应机理与活化能确定方法: Ⅱ.热解段研究.燃料化学学报,2011,39(9):670~674.
    [60]李森,荆冬锋.生物质热解的分布活化能模型.农机化研究,2006,8:131~140.
    [61] D.K. Shen, S.Gu, Baosheng Jin, M.X. Fang. Thermal degradation mechanisms of wood under inert andoxidative environments using DAEM methods. Bioresource Technology,2011,102(2):2047~2052.
    [62]李社峰,方梦祥,舒立福等.利用分布活化能模型研究木材的热解和燃烧机理.燃烧科学与技术,2006,12(6):535~539.
    [63]王通洲,高虹.两种玉米秸秆热解过程动力学模型的比较.太阳能学报,2010,31(4):487~490.
    [64]杨景标,张彦文,蔡宁生.煤热解动力学的单一反应模型和分布活化能模型比较.热能动力工程,1342010,25(3):301~305.
    [65] Taro Sonobe, Nakorn Worasuwannarak. Kinetic analyses of biomass pyrolysis using the distributedactivation energy model. Fuel,2008,87(3):414~421.
    [66] Zheng Qi-li, Chun Long-liu, Zhi Chao-chen,et al. Analysis of coals and biomass pyrolysis using thedistributed activation energy model. Bioresource Technology,2009,100(2):948~952.
    [67]张媛,张海亮,蒋雪冬等.烟煤与生物质秸秆共气化反应动力学研究.西安交通大学学报,2011,45(8):123~128.
    [68]黄海珍.煤与生物质混合动力学特性及成型燃料固硫特性研究.吉林大学博士论文,2007,20~50.
    [69]余玮,吴新华.八种原料及其主成份热解的研究-木材热解机理初探.林产化学与工业,1989,9(03):13~22.
    [70]谭洪,王树荣,骆仲泱等.生物质三组分热裂解行为的对比研究.燃料化学学报,2006,34(01):61~65.
    [71] Jones J M,Kubacki M,Kubica K,et a1.Devolatilisation characteristics of coal and biomass blends.Journal of Analytical and Applied Pyrolysis,2005,74(2):502~511.
    [72]刘栗,邱朋华,吴少华等.采用TG-FTIR联用研究烟煤热解及热解动力学参数的确定(英文).科学技术与工程,2010,10(27):6642~6647+6652.
    [73]杨昌炎,姚建中,吕雪松等.生物质中K+、Ca2+对热解的影响及机理研究.太阳能学报,2006,27(05):496~502.
    [74] Raveendrank, Ganesh A, Khilart K C. Influence of mineral matter on biomass pyrolysis characteristics.Fue1,1995,74(12):1812~1822.
    [75]任强强,赵长遂,庞克亮.生物质热解的TGA-FTIR分析.太阳能学报,2008,29(07):910~914
    [76]肖军,沈来宏,郑敏等.基于TG-FTIR的生物质催化热解试验研究.燃料化学学报,2007,35(03):280~284.
    [77] T Nordgreen, T Liliedahl, K Sj str m. Elemental iron as a tar breakdown catalyst in conjunction withatmospheric fluidized bed gasification of biomass: a thermodynamic study. Energy&Fuels,2006,20:890~895.
    [78]杨景标,蔡宁生.应用TG-FTIR联用研究催化剂对煤热解的影响.燃料化学学报,2006,34(06):650~654.
    [79] Morell J. I., Amundson N. R., Park S. K..Dynamics of a ingle particle during char gasification.Chemical Engineering Science,1990,45(2):387~401.
    [80] R. Bassilakis,R. M. Carangelo,M. A. Wojtowicz. TG-FTIR analysis of biomass pyrolysis.Fuel,2001,80(12):1765~1786.
    [81] G. Di Nola,W. De Jong,H. Spliethoff. TG-FTIR characterization of coal and biomass single fuels andblends under slow heating rate conditions: Partitioning of the fuel-bound nitrogen. Fuel Process.Technol.,2010,91(1):103~115.
    [82]朱孔远,谌伦建,黄光许等.煤与生物质共热解的TGA-FTIR研究.煤炭转化,2010,33(03):10~14+37
    [83]邓芹英.波谱分析教程.北京:科学出版社,2003,29~83.
    [84]赵淑蘅.生物质与煤炭共热解特性及协同作用的研究.中国林业科学研究院硕士论文,2011,29~59.
    [85] E. Granada,P. Eguia,J. A. Vilan,et al. FTIR quantitative analysis technique for gases. Application in abiomass thermochemical process. Renew Energ,2012,41:416~421.
    [86] L. Han,Q. H. Wang,Q. A. Ma,et al. Influence of CaO additives on wheat-straw pyrolysis as determinedby TG-FTIR analysis. J. Anal. Appl. Pyrolysis,2010,88(2):199~206.
    [87] Q. A. Liu,Z. P. Zhong,S. R. Wang,et al. Interactions of biomass components during pyrolysis: ATG-FTIR study. J. Anal. Appl. Pyrolysis,2011,90(2):213~218.
    [88]朱银惠.煤化学.化学工业出版社,2004,10~89.
    [89]刘荣厚.生物质热化学转化技术.北京:化学工业出版社,4~13.
    [90] Jess, A. Catalytic upgrading of tarry fuel gases: A Kinetic Study with Model Components. ChemicalEngineering and Processing: Process Intensification,1996,35(6):487~494.
    [91] Devi, L., Ptasinski, K. J., Janssen, F. J. J. G. et al. Catalytic Decomposition of Biomass Tars: Use ofDolomite and Untreated Olivine. Renewable Energy,2005,30(4):565~587.
    [92] Azhar Uddin, M., Tsuda, H.. Wu, S. et al. Catalytic Decomposition of Biomass Tars with Iron OxideCatalysts. Fuel,2008,87(4-5):451~459.
    [93] Wang, T. J., Chang, J., Wu, C. Z. et al. The Steam Reforming of Naphthalene Over a Nickel-DolomiteCracking Catalyst. Biomass and Bioenergy,2005,28(5):508~514.
    [94] Yu, Q. Z., Brage, C., Nordgreen, T. et al. Effects of Chinese Dolomites on Tar Cracking in Gasificationof Birch. Fuel,2009,88(10):1922~1926.
    [95] Yang, X. Q., Xu, S. P., Xu, H. L. et al. Nickel Supported on Modified Olivine Catalysts for SteamReforming of Biomass Gasification Tar. Catalysis Communications,2010,11(5):383~386.
    [96] Zhang, R. Q., Wang, Y. C., Brown, R. C. Steam Reforming of Tar Compounds over Ni/olivine CatalystsDoped with CeO2. Energy Conversion and Management,2007,48(1):68~77.
    [97] Wammer, K. H., Peters, C. A. A Molecular Modeling Analysis of Polycyclic Aromatic HydrocarbonBiodegradation by Naphthalene Dioxygenase. Environmental Toxicology and Chemistry,2006,25(4):912~920.
    [98] T. Furusawa, A. Tsutsumi. Development of Cobalt Catalysts for the Steam Reforming of Naphthalene asa Model Compound of Tar derived from Biomass Gasification. Appl. Catal., A2005,278:195~205.
    [99] S. Pengpanich, V. Meeyoo, T. Rirksomboon et al. The Effect of Nb Loading on Catalytic Properties ofNi/Ce0.75Zr0.25O2Catalyst for Methane Partial Oxidation. Journal of Natural Gas Chemistry,2007,16:227~234.
    [100] Yunjuan Sun, Jianchun Jiang, Efthymios Kantarelis, Junming Xu, Linna Li, Shuheng Zhao, WeihongYang. Development of a Bimetallic Dolomite Based Tar Cracking Catalyst. Catalysis Communications,2012,20:36~40.
    [101]岳金方,应浩,蒋剑春等.水蒸气氛围下木薯渣气化的研究.林产化学与工业,2008,28(1):83~86.
    [102]涂军令,应浩,江俊飞等.反应温度对木屑炭水蒸气气化产物的影响.可再生能源,2012,11:61~64.
    [103] He M. Y., Xiao B., Hu Z. Q., et al. Syngas production from catalytic gasification of waste136polyethylene: Influence of temperature on gas yield and composition. International Journal of HydrogenEnergy,2009,34(3),1342~1348.
    [104] Lv P. M., Yuan Z. H., Wu C. Z., et al. Bio-syngas production from biomass catalytic gasification.Energy Conversion and Management,2007,48(4),1132~1139.
    [105] Goransson K., Soderlind U., He J., et al. Review of syngas production via biomass DFBGs.Renewable&Sustainable Energy Reviews,2011,15(1),482~492.
    [106]苏毅,王芸,吴文广等.水分对稻杆热解特性的影响.中国电机工程学报,2010,30(26):107~112.
    [107] Prins M J, Ptasinski K J, Janssen F J J G. More efficient biomass gasification via torrefaction. Energy,2006,31:3458~3470.
    [108]陈青,周劲松,刘炳俊等.烘焙预处理对生物质气化工艺的影响.科学通报,2010,55(36):3437~3443.
    [109] Prins M J, Ptasinski K J, Janssen F J J G. Torrefaction of wood Part2. Analysis of products. J AnalAppl Pyrolysis,2006,77:35~40.
    [110]杨昌炎,杨学民,吕雪松等.分级处理秸秆的热解过程.过程工程学报,2005,5:379~383.
    [111] Bourgois J, Guyonnet R, Saint E, et al. Characterization and analysis of torrefied wood. Wood SciTechnol,1988,22:143~155.
    [112] Basu, P., Biomass Gasification and Pyrolysis: Practical Design and Theory. Elsevier Inc.: Burlington,MA01803, USA,2010.
    [113] Yunjuan Sun,Jianchun Jiang, Shuheng Zhao, et al. Review of torrefaction reactor technology.Advanced Materials Research,2011,347-353:1149~1155.
    [114]赵辉,周劲松,曹小伟等.生物质烘焙预处理对气流床气化的影响.太阳能学报,2008,29(12):1578~1586.
    [115]张巍巍,曾国勇,陈雪莉等.两种生物质热解半焦的性能.华东理工大学学报(自然科学版),2007,33(5):670~673.
    [116]蒋恩臣,何光设.稻壳,锯末成型燃料低温热解特性试验研究.农业工程学报,2007,23(1):188~191.
    [117] Bergman P C A, Kiel J H A. Torrefaction for biomass upgrading.14th European Biomass Conference&Exhibition. Paris, France:2005:206~209.
    [118] Arias B, Pevida C, Fermoso J, et al. Influence of torrefaction on the grindability and reactivity ofwoody biomass. Fuel Process Technol,2008,89(2):169~175.
    [119] Prins M J, Ptasinski K J, Janssen F J J G. Torrefaction of wood Part1. Weight loss kinetics. J AnalAppl Pyrolysis,2006,77:28~34.
    [120] Saravanakumar A, Haridasan T M, Bai R K. Technical and feasibility study of conversion oflong-stick wood to charcoal in a partial combustion metal kiln. Energy Sustain Devel,2006,10:17~25.
    [121] Felfi F F, Luengo C A, Suárez J A, et al. Wood briquette torrefaction. Energy Sustain Devel,2005,9:19~22.
    [122] Felfi F F, Luengo C A, Suárez J A, et al. Torrefied briquettes: Technical and economic feasibility andperspectives in the Brazilian market. Energy Sustain Devel,2005,9:23~29.
    [123] Fisher T, Hajaligol M, Waymack B, et al. Pyrolysis behavior and kinetics of biomass derived materials.J Anal Appl Pyrolysis,2002,62:331~349.
    [124] J. M. Cai,T. Li,R. H. Liu. A critical study of the Miura-Maki integral method for the estimation of thekinetic parameters of the distributed activation energy model. Bioresour.Technol.,2011,102(4):3894~3899.
    [125] Jia, Y. B.; Zhang, S. Y.; Cheng, Z. H.; Huang, J. J.; Wang, Y. Study on Tar Cracking in Pyrolysis orGasification Ptocess. Coal Coversion2000,23(4),1~6.
    [126] Azhar Uddin, M.; Tsuda, H.; Wu, S.; Sasaoka, E. Catalytic decomposition of biomass tars with ironoxide catalysts. Fuel2008,87(4-5),451~459.
    [127] Devi, L. Catalytic removal of biomass tars:olivine as prospective in-bed catalyst for fluidized-bedbiomass gasifiers. Eindhoven University of Technology, Eindhoven,2005,10~56.
    [128] Gebhard, S. C.; Wang, D.; Overend, R. P.; Paisley, M. A. Catalytic conditioning of synthesis gasproduced by biomass gasification. Biomass and Bioenergy1994,7(1-6),307~313.
    [129] Devi, L.; Ptasinski, K. J.; Janssen, F. J. J. G.; van Paasen, S. V. B.; Bergman, P. C. A.; Kiel, J. H. A.Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renewable Energy2005,30(4),565~587.
    [130] Jess, A. Catalytic upgrading of tarry fuel gases: A kinetic study with model components. ChemicalEngineering and Processing: Process Intensification1996,35(6),487~494.
    [131] Coll, R.; Salvad, J.; Farriol, X.; Montan, D. Steam reforming model compounds of biomassgasification tars: conversion at different operating conditions and tendency towards coke formation.Fuel Processing Technology2001,74(1),19~31.
    [132]常瑜,李林等.内蒙和印尼褐煤的热解特性及动力学分析.煤炭转化,2011,34(2):4~7.
    [133] Limin Zhou, Yiping Wang, Qunwu Huan, etal. Thermogravimetric characteristics and kinetic of plasticand biomass blends co-pyrolysis. Fuel Processing Technology,2006,87:963~969.
    [134]武宏香,李海滨,赵增立.煤与生物质热重分析及动力学研究.燃料化学学报,2009,37(5):538~545.
    [135]朱学栋,朱子彬,张成芳.煤热失重动力学的研究.高校化学工程学报,1999,13(3):223~228.
    [136] Vand V. A Theory of the Irreversible Electrical Resistance Changes of Metallic Films Evaporated inVacuum. Proc. Phys. Soc.,1943,55:222~227.
    [137] Pitt G.J. The Kinetics of the Evolution of Volatile Products from Coal. Fuel,1962,41:267~274.
    [138] Anthony D.B., Howard J.B. Coal Devolatilization and Hydrogasification. AIChE Journal,1976,22:625~656.
    [139] J. M. Cai,R. H. Liu. New distributed activation energy model: Numerical solution and application topyrolysis kinetics of some types of biomass. Bioresour. Technol.,2008,99(8):2795~2799.
    [140] K. Miura. A new and simple method to estimate f(E) and k0(E) in the distributed activation energymodel from three sets of experimental data. Energy&Fuels,1995,9(2):302~307.
    [141]李社锋.低挥发份劣质燃料循环流化床燃烧特性研究.浙江大学博士论文.2010,50~120.
    [142] K. Miura,T. Maki. A simple method for estimating f(E) and k(0)(E) in the distributed activation energy138model. Energ Fuel,1998,12(5):864~869.
    [143]沈伯雄,刘德昌,陈汉平.石油焦热解动力学参数及其补偿效应.华中理工大学学报,1999,27(9):36~38.
    [144]朱炳辰,温惠新,朱子彬.催化反应工程[M].北京:中国石油出版社,2001.
    [145] Jess, A. Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis ofsolid fuels. Fuel1996,75(12),1441~1448.
    [146] Shie, J. L.; Chang, C. Y.; Chen, J. H.; Tsai, W. T.; Chen, Y. H.; Chiou, C. S.; Chang, C. F. Catalyticoxidation of naphthalene using a Pt/Al2O3catalyst. Applied Catalysis B: Environmental2005,58(3-4),289~297.
    [147] Yuan, M. H.; Chang, C. Y.; Shie, J. L.; Chang, C. C.; Chen, J. H.; Tsai, W. T. Destruction ofnaphthalene via ozone-catalytic oxidation process over Pt/Al2O3catalyst. Journal of HazardousMaterials175(1-3),809~815.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700