自相似网络流量流体流模型及主动队列管理算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TCP(Transmission Control Protocol)的拥塞控制是Internet稳定运行的基础,围绕着TCP协议的拥塞控制一直是Internet研究的一个热点,吸引着诸多的学者。随着网络通信流量的急剧增加和各类实时业务流量对QoS要求的大幅提高,仅仅依靠端到端拥塞控制己经难以满足网络需求。事实上,在Internet这样复杂的异构网络环境中,希望所有用户都兼容端系统拥塞控制也是不现实的。必须发展路由器等中间网络设备的控制,以增强拥塞控制的效果。路由器位于拥塞的发生点,所以在路由器上进行拥塞控制是非常有意义的。队列管理机制就应运而生了。主动队列管理(Active Queue Management,AQM)机制通过对拥塞的预判和主动丢包,实现对拥塞的控制,成功避免了死锁、全局同步等现象。IP拥塞控制机制的研究是当前拥塞研究的热点。本文将路由器参与的显式拥塞控制也归为IP拥塞控制机制。
     网络业务流自相似性的发现和研究推翻了早先网络流量短相关的基础假设,由于网络流量突发性更为突出,直接导致拥塞发生更为频繁和加剧,这使得网络流量的统计特征提取、排队性能分析和缓冲空间设置以及拥塞策略的设计均有所变化。自相似模型的引入给原本复杂的拥塞控制带来新的问题,但它同时也会带来新的解决方法。
     往返时延RTT是网络拥塞控制机制有效运行赖以维系的节奏,网络时延不易准确估算也是造成网络拥塞机制偶尔失效的主要原因。故而需要分别对往返时延RTT建模为常数、常函数、随机过程等不同的数学形式,利用数学方法分析RTT对网络拥塞控制机制的影响。进一步提出基于网络排队延时的显式拥塞控制算法QDCN,该算法通过路由器监测队列长度,进而得出排队延迟,实时更新RTT,以显式方式通知源端改变拥塞窗口,从而实现拥塞避免。
     进一步看到在恒速网络业务流下,本来性能比较优越的SFPID-RED和QDCN算法性能有所下降,并且时延并不是造成算法性能下降的诱因。实际上网络流量的自相似性(突发性)才是这些算法失效的根本原因,时延的抖动只是它的一种表现形式。于是提出一种基于自相似流量的随机早检测算法——STRED。该算法采用时间槽作为操作单位,以减少计算量,降低网络参数更新速率;根据时间槽记录观测参数进而预估自相似系数(Hurst系数),并依据相关函数调整RED算法丢弃概率,增强RED算法对自相似网络流量的适应能力,从而实现对自相似流量的拥塞控制。
     然而学界关于网络流量是具有泊松特性的短相关还是具有分形自相似的长相关的争论一直不断。虽然有大量的网络测量实验分析得出网络自相似的结论,但也有证据表明泊松特性依然存在。网络流量模型经历了短相关,长相关,多重分形的发展演变,现在有回归短相关的一种可能。实际上网络流量的长相关和短相关两种特性同时存在。有鉴于此本文基于网络自相似性和TCP/AQM流体流模型,提出一种新型Lévy随机过程,并建立一种TCP/AQM二象性流体流模型,可以同时描述网络的自相似性和包驱动特性,试图从理论上对网络流量的两种特性进行统一,并进一步研究了二象性模型的有关性质。为以后基于自相似网络的拥塞控制研究奠定了基础。
     总之本课题主要针对网络拥塞问题,剖析了一种现有应用较为广泛的网络流量模型——TCP/AQM流体流(Fluid Flow)模型,并以此为基础结合网络自相似提出一系列的研究方案。
Congestion control in TCP (Transmission Control Protocol) is the basis for theInternet steady operation. The TCP protocol congestion control has been a focusedresearch area of the Internet, which is attracting many scholars. Due to dramaticallyincreasing network traffic and quality of service (QoS) requirements for a variety ofreal-time traffic, it is difficult to meet with the network requirements, dependingsolely on end-to-end congestion control. In fact, in a complex and heterogeneousnetwork environment, it is unpractical to keep compatible congestion controlscheme in end-to-end systems for all users. Control of routers and other intermediatenetwork devices must be involved in order to enhance the effect of congestioncontrol. It is at the router where congestions occur actually; therefore it ismeaningful to conduct queue management mechanism at the router. With earlycongestion predicting and active packet dropping, active queue management (AQM)mechanisms could enforce the congestion control and avoid the deadlock and theglobal synchronization. This is the so-called IP congestion control. IP congestioncontrol mechanism is a current research focal point. In this research, the explicitcongestion control mechanism with routers involved is also classified as an IPcongestion control mechanism.
     The study of the self-similarity of network traffic overthrows the basicassumption that the network traffic is with short-range dependence. As the result ofmore remarkable burstiness of traffic, more congestion occurred frequently andaggravatingly. It is destined to make the analysis of statistical characteristics of thenetwork traffic and the performance of the router queuing, and the set of the buffersize at the router, different from the original assumptions. The introduction ofself-similar model is not only bound to bring new challenges to congestion controlwhich is inherently complex, but also new solutions.
     The round-trip time (RTT) is the prerequisite to effectively operate congestioncontrol mechanism followed the rhythm step by step. The imprecision of theestimation for the network delay also plays a primary role while network congestionmechanism occasionally fails. Therefore it is necessary to model the RTTrespectively to be a constant, a common function, a stochastic process and suchdifferent mathematical formats. By mathematical analysis, in this research theimpact of the RTT is analyzed against congestion control mechanisms in networks.Further, an explicit congestion control algorithm named as QDCN is proposed basedon network queuing delay. In this algorithm, the router queue length is monitored,and then the queuing delay is obtained to update RTT in real-time. By explicit notice sent by the router,the source end decided to change the congestion window in orderto avoid congestion.
     Further, the SFPID-RED and QDCN perform gradationally, which do perfectlyat a constant rate network service before. However, the delay is not the primarycauses of the performance degradation. In fact, the self-similarity of network traffic(burstiness) leads to the failure of these algorithms while the delay jitter is just amanifestation. Therefore, a self-Similar-Traffic-based RED algorithm named asSTRED is proposed. In this algorithm, time slots are adopted as the operating unit toreduce the workload of calculation and the updating rate of the network parameters.The self-similarity coefficient (Hurst coefficient) is estimated based on time slots toobserve and record values, and the packet drop probability in the RED algorithm isadjusted based on several relative functions in order to enhance the adaptability toself-similar network traffic and to achieve the congestion control under this traffic.
     However, the continuous academic debates are carried on about whether thenetwork traffic performes Poisson characteristics (short-range dependence, SRD) orself-similar fractal (long-range dependence, LRD). Although there is a large numberof measuring experiments in kinds of networks so that the conclusion is obtainedwhich networks are self-similar. However, there are also evidences that Poissoncharacteristics still exist. Network traffic models have experienced a SRD, LRD,multi-fractal evolved evolution, and now show a tendency back to SRD. In fact,both SRD and LRD characteristics of networks traffic are coexisted. Hence, in thisresearch a new type of Lévy stochastic process is proposed based on networks withself-similarity and TCP/AQM fluid flow model. Meanwhile, a TCP/AQM fluid flowmodel with wave particle duality is also established, which can describe theself-similarity in networks and the characteristic of a packet driver (SRD) at thesame time. This model tried to unify the two theories on the characteristics of thenetwork traffic, and further to understand the nature of the model with duality,which builds up the foundation for the algorithm design of congestion control infuture based on the self-similar network.
     In summary, this research mainly focused on the network congestion problem,analyzed a widely applied network traffic model named as TCP/AQM fluid flowmodel. Based on this analysis combined with characteristics of self-similar networks,a series of research approach has been proposed.
引文
[1] Fuchs E, Jackson P E. Estimates of Distributions of Random Variables forCertain Computer Communication Traffic Model[J]. Communication of ACM,1970,13(12):752-757.
    [2] Leland W E, Taqqu M S, Willinger W, Wilson D V. On the Self-similar Natureof Ethernet Traffic[J]. IEEE/ACM Transaction on Networking,1994,2(1):1-15.
    [3] Willinger W, Paxson V, Taqqu M S. Self-Similary and Heavy Tails: StructuralModeling of Network Traffic. In: Robert Adler, Raise Feldman, Murad STaqqu. A Practical Guide to Heavy Tails: Statistical Techniques andApplications[M]. Boston, Birkhauser,1998:27-53.
    [4] Nagle J. Congestion Control in IP/TCP Internetworks[S/OL]. IETF RFC896,1984. http://tools.ietf.org/html/rfc896
    [5] Peterson L L, Davie B S. Computer Networks: A Systems Approach SecondEdition[M]. China Machine Press,1999:292-345.
    [6] Nagle J. On Packet Switches with Infinite Storage[S/OL]. IETF RFC970,1985.http://tools.ietf.org/html/rfc970
    [7] Sally Floyd. The Addition of Explicit Congestion Notification (ECN) toIP[S/OL]. IETF RFC3168,2001. http://tools.ietf.org/html/rfc3168
    [8] Jacobson V. Congestion Avoidance and Control[J]. ACM ComputerCommunications Review, August1988,18(4):314-329.
    [9] Stevens W. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and FastRecovery Algorithms[S/OL]. IETF RFC2001,1997.http://tools.ietf.org/html/rfc2001
    [10] M. Allman M, Paxson V, Stevens W. TCP Congestion Control[S/OL]. IETFRFC2581,2001. http://tools.ietf.org/html/rfc2581
    [11] Floyd S, Henderson T. The NewReno Modification to TCP’s Fast RecoveryAlgorithm[S/OL]. RFC2582,1999. http://tools.ietf.org/html/rfc2582
    [12] Servati S, Taheri H, Nesary M M. Performance Enhancement for TCP Vegas inSlow Start Phase over a Satellite Link[C]. Proceedings of2008InternationalSymposium on Telecommunications, IST2008, Tehran, Iran,2008:510-514.
    [13] Mathis M, Mahdavi J. TCP Selective Acknowledgement Options[S/OL]. IETFRFC2108,1996. http://tools.ietf.org/html/rfc2108
    [14] Jin C, Wei D X, Low S H. FAST TCP: Motivation, Architecture, Algorithms,Performance[C]. Proceedings of IEEE INFOCOM2004, Hong Kong, China,2004:2490-2501.
    [15] Liu S, Basar T, Srikant R. TCP-Illinois: a Loss-and Delay-based CongestionControl Algorithm for High-speed Networks[J]. Performance Evaluation,2008,65(6–7):417–440.
    [16] Yusuke S, Hiroyuki O, Makoto I. Improving Robustness of XCP (eXplicitControl Protocol) for Dynamic Traffic[J]. IEICE Transactions onCommunications,2010, E93-B(11):3013-3022.
    [17] Alizadeh M, Greenberg A, Maltz D A, et al. Data Center TCP (DCTCP)[J].ACM SIGCOMM Computer Communication Review,2010,40(4):63-74.
    [18] Braden B, Clark D, Crowcroft J, et al. Recommendations on QueueManagement and Congestion Avoidance in the Internet[S/OL]. IETF RFC2309,1998. http://tools.ietf.org/html/rfc2309
    [19] Floyd S, Jacobson V. Traffic Phase Effects in Packet-Switched Gateways[J].ACM Comp. Commun.Rev,1991,21(2):26-42.
    [20] Choudhury A K, Hahne E L. Dynamic Queue Length Thresholds forShared-Memory Packet Switches[J]. IEEE/ACM Transactions on Networking,1998,6(2):130-140.
    [21] Wydrowski B, Zukerman M. GREEN: An Active Queue ManagementAlgorithm for a Self Managed Internet[C]. ICC2002, IEEE InternationalConference on Communications2002. IEEE,2002,4:2368-2372.
    [22] Floyd S, Jacobson V. Random Early Detection Gateways for CongestionAvoidance[J]. IEEE/ACM Trans on Networking.1993,1(4):391-413.
    [23] Athuraliya S, Low S H, Li V H, et al. REM: Active Queue Management[J].Network, IEEE,2001,15(3):48-53.
    [24] Ascia G, Catania V, Ficili G, et al. A Fuzzy Buffer Management Scheme forATM and IP Networks[C]. Proceedings of INFOCOM2001, Twentieth AnnualJoint Conference of the IEEE Computer and Communications Societies. IEEE,2001,3:1539-1547.
    [25] Clark D D, Fang W. Explicit Allocation of Best-effort Packet Deliveryservice[J]. Networking, IEEE/ACM Transactions on,1998,6(4):362-373.
    [26] Feng W, Shin K G, Kandlur D D, et al. The BLUE active queue managementalgorithms[J]. IEEE/ACM Transactions on Networking (TON),2002,10(4):513-528.
    [27] Feng W C, Kandlur D D, Saha D, et al. Stochastic Fair Blue: A QueueManagement Algorithm for Enforcing Fairness[C]. Proceedings of INFOCOM2001, Twentieth Annual Joint Conference of the IEEE Computer andCommunications Societies. IEEE,2001,3:1520-1529.
    [28] Kunniyur S, Srikant R. Analysis and Design of an Adaptive Virtual Queue(AVQ) Algorithm for Active Queue Management[J]. ACM SIGCOMMComputer Communication Review. ACM,2001,31(4):123-134.
    [29] Stoica I, Shenker S, Zhang H. Core-stateless Fair Queueing: AchievingApproximately Fair Bandwidth Allocations in High Speed Networks[M].ACM,1998.
    [30] Christiansen M, Jeffay K, Ott D, et al. Tuning RED for Web Traffic[J]. ACMSIGCOMM Computer Communication Review. ACM,2000,30(4):139-150.
    [31] Cisco Systems, Inc. Weighted Random Early Detection on the Cisco12000Series Router[EB/OL].1999..http://www.cisco.com/en/US/docs/ios/11_2/feature/guide/wred_gs.pdf
    [32] Loukas R, Kohler S, Andreas P, et al. Fuzzy RED: Congestion control forTCP/IP diff-serv[C]. Proceeding of MELECON2000, IEEE10thMediterranean Electrotechnical Conference. IEEE,2000,1:19-22.
    [33] Floyd S, Gummadi R, Shenker S. Adaptive RED: An Algorithm for Increasingthe Robustness of RED’s Active Queue Management[J]. Preprint, available athttp://www. icir. org/floyd/papers. html,2001.
    [34] Ott J T, Lakshman T V, Wong L. SRED: Stabilized RED[C]. Proceedings ofIEEE Infocom’99. IEEE,1999:1346~1355.
    [35] Aweya J, Ouellette M, Montuno D Y. A Control Theoretic Approach to ActiveQueue Management[J]. Computer Networks,2001,36(2):203-235.
    [36] Sun J, Ko K T, Chen G, et al. PD-RED: to Improve the Performance of RED[J].Communications Letters, IEEE,2003,7(8):406-408.
    [37] Wang C, Li B, Sohraby K, et al. AFRED: An Adaptive Fuzzy-based ControlAlgorithm for Active Queue Management[C]. Proceedings of LCN'03,28thAnnual IEEE International Conference on Local Computer Networks. IEEE,2003:12-20.
    [38] Fan Y F, Ren F Y, Lin C. Design a PID Controller for Active QueueManagement[C]. IEEE Proceedings of Eighth IEEE International Symposiumon Computers and Communication. ISCC2003:985-990.
    [39] Wei T, Hu G. Fuzzy Self-Tuning PD Control Algorithm for RED[C].Proceedings of IEE2012Spring Congress on Engineering and Technology(S-CET). IEEE,2012:1-4.
    [40] Kan J, Li W, Liu J. Fuzzy Immune Self-tuning PID Controller and itsSimulation[C]. Proceedings of ICIEA2008,3rd IEEE Conference onIndustrial Electronics and Applications,2008. IEEE,2008:625-628.
    [41] Pan R, Prabhakar B, Psounis K. CHOKe: a Stateless Active QueueManagement Scheme for Approximating Fair Bandwidth Allocation[C].Proceedings of INFOCOM2000, Nineteenth Annual Joint Conference of theIEEE Computer and Communications Societies. IEEE,2000,2:942-951.
    [42] Kim W J, Lee B G. FRED: Fair Random Early Detection Algorithm for TCPover ATM Networks[J]. Electronics letters,1998,34(2):152-154.
    [43] Anjum F M, Tassiulas L. Balanced-red: An Algorithm to Achieve Fairness inthe Internet[R]. Maryland Univ College Park Inst for Systems Research,1999.
    [44] Feng W C, Kandlur D D, Saha D, et al. A self-configuring RED gateway[C].Proceedings of INFOCOM'99, Eighteenth Annual Joint Conference of theIEEE Computer and Communications Societies. IEEE,1999,3:1320-1328.
    [45] Floyd S, Fall K. Router Mechanisms to Support End-to-end CongestionControl[R/OL]. Technical report, February1997. http://www.nrg.ee.lbl.gov/floyd/end2end-paper.html.
    [46] Floyd S, Fall K. Promoting the Use of End-to-end Congestion Control in theInternet[J]. IEEE/ACM Transactions on Networking (TON),1999,7(4):458-472.
    [47]邓晓衡,陈志刚,王建新等. NARED:一种非线性自适应RED拥塞控制机制.小型微型计算机系统[J].2005,26(6):891-895.
    [48] Zhang J J, Xu W L, Wang L G. An Improved Active Queue ManagementAlgorithm Based on Nonlinear Smoothing[J]. Advanced Materials Research,2011,295:1823-1828.
    [49] Fan X, Wang J, Guan L, et al. Heuristic Active Queue Management withHazard rate function[C]. Proceedings of FSKD2011, Eighth IEEEInternational Conference on Fuzzy Systems and Knowledge Discovery. IEEE,2011,4:2281-2285.
    [50] Braden B, Clark D, Crowcroft J, et al. Recommendations on QueueManagement and Congestion Avoidance in the Internet[S/OL]. IETF RFC2309,1998. http://tools.ietf.org/html/rfc2309
    [51] Floyd S. IAB Concerns and Recommendations Regarding Internet Researchand Evolution[S/OL]. IETF RFC3869,2004.http://tools.ietf.org/html/rfc3869
    [52] Welzl M, Scharf M, Briscoe B. Open Research Issues in Internet CongestionControl[S/OL]. IETF RFC6077,2011. http://tools.ietf.org/html/rfc6077
    [53] Domańska J, Domański A, Czachórski T. Fluid Flow Analysis of REDAlgorithm with Modified Weighted Moving Average[M]. Modern ProbabilisticMethods for Analysis of Telecommunication Networks. Springer BerlinHeidelberg,2013:50-58.
    [54] Domański A, Domańska J, Czachórski T. Comparison of AQM ControlSystems with the Use of Fluid Flow Approximation[M]. Computer Networks.Springer Berlin Heidelberg,2012:82-90.
    [55] Lim L B, Guan L, Grigg A, et al. RED and WRED Performance AnalysisBased on Superposition of N MMBP Arrival Proccess[C]. Proceedings of24thIEEE International Conference on Advanced Information Networking andApplications (AINA),2010. IEEE,2010:66-73.
    [56] Tikhonenko O, Kempa W M. Queue-Size Distribution in M/G/1-Type Systemwith Bounded Capacity and Packet Dropping[M]. Modern ProbabilisticMethods for Analysis of Telecommunication Networks. Springer BerlinHeidelberg,2013:177-186.
    [57] Wang L, Cai L, Liu X, et al. Bounds estimation and practical stability ofAIMD/RED systems with time delays[J]. Computer Networks,2010,54(7):1069-1082.
    [58] Efraimidis P S, Tsavlidis L, Mertzios G B. Window-games between TCPflows[J]. Theoretical Computer Science,2010,411(31):2798-2817.
    [59] Koutsoupias E, Papakonstantinopoulou K. Contention Issues in CongestionGames[M]. Automata, Languages, and Programming. Springer BerlinHeidelberg,2012:623-635.
    [60] Rahman J, Saha S, Hasan S F. A New Congestion Control Algorithm forDatagram Congestion Control Protocol (DCCP) Based Real-time MultimediaApplications[C]. Proceedings of7th International Conference on Electrical&Computer Engineering (ICECE)2012. IEEE,2012:533-536.
    [61] Awerbuch B, Azar Y, Epstein A. The Price of Routing Unsplittable Flow[J].SIAM Journal on Computing,2013,42(1):160-177.
    [62] Yuan Y, Wang C, Wang C. A Game Based Approach for Sharing the DataCenter Network[M]. Advances in Neural Networks–ISNN2012. SpringerBerlin Heidelberg,2012:641-649.
    [63] Papadimitriou C. Algorithms, Games, and the Internet[C]. Proceedings of thethirty-third annual ACM symposium on Theory of computing. ACM,2001:749-753.
    [64] Akella A, Seshan S, Karp R, et al. Selfish Behavior and Stability of the Internet:a Game Theoretic Analysis of TCP[J]. ACM SIGCOMM ComputerCommunication Review. ACM,2002,32(4):117-130.
    [65] Abbasvand S, Jamali S. A Survey over Application of Game Theory inCommunication Networks[J]. AWERProcedia Information Technology andComputer Science,2013,1:1669-1673.
    [66] Hollot C V, Misra V, Towsley D, et al. A Control Theoretic Analysis ofRED[C]. Proceedings of INFOCOM2001, Twentieth Annual Joint Conferenceof the IEEE Computer and Communications Societies.. IEEE,2001,3:1510-1519.
    [67] Hollot C V, Misra V, Towsley D, et al. On Designing Improved Controllers forAQM Routers Supporting TCP Flows[C]. Proceedings of INFOCOM2001,Twentieth Annual Joint Conference of the IEEE Computer andCommunications Societies.. IEEE,2001,3:1726-1734.
    [68] Misra V, Gong W B, Towsley D. Stochastic Differential Equation Modelingand Analysis of TCP-Windowsize Behavior[R]. Technical ReportECE-TR-CCS-99-10-01. October1999.
    [69] Misra V, Gong W B, Towsley D. Fluid-based Analysis of a Network of AQMRouters Supporting TCP Flows with an Application to RED[J]. ACMSIGCOMM Computer Communication Review. ACM,2000,30(4):151-160.
    [70] Ao Tang, L.L.H. Andrew, K. Jacobsson. Queue Dynamics with Window FlowControl. IEEE/ACM Transactions on Networking[J].Oct.2010,18(5):1422-1435.
    [71] Shah P A, Yasmin S, Asghar S, et al. A Fluid Flow Model for SCTP Trafficover the Internet[C]. Proceedings of2012International Conference onEmerging Technologies (ICET). IEEE,2012:1-6.
    [72] Pan R, Piglione C, Natarajan P et al. PIE: A Lightweight Control Scheme ToAddress the Bufferbloat Problem[S/OL].2013.http://tools.ietf.org/html/draft-pan-tsvwg-pie
    [73] Fan H, Ren Y, Shan X. Estimation of the Variances of TCP/RED UsingStochastic Differential Equation[J]. Asian Journal of Control,2012,14(2):454-465.
    [74]张士娟,孙金生.自适应PID主动队列管理算法设计[C].2010年中国控制与决策会议论文集.徐州:控制与决策编辑部,2010:3194-3198.
    [75]罗鸣,牛玉刚.一种基于积分分离的内模PID主动队列管理算法[J].华东理工大学学报(自然科学版),2009,35(2):293-297.
    [76]杨湘,王建新. APID:一种自适应调节参数的拥塞控制器[J].中南大学学报(自然科学版),2012,43(11):4321-4327.
    [77] Sun J, Chan S, Zukerman M. IAPI: An Intelligent Adaptive PI Active Queuemanagement scheme[J]. Computer Communications.2012,35(18):2281-2293.
    [78] Wang P, Yu S, Chen H. TS Model-based Nonlinear Moving-horizon H∞Control and Applications[J]. Fuzzy Sets and Systems,2013,212:78-96.
    [79] Barzamini R, Shafiee M, Dadlani A. Adaptive Generalized Minimum VarianceCongestion Controller for Dynamic TCP/AQM networks[J]. ComputerCommunications,2012,35(2):170-178.
    [80]闫巧,胡晓娟,雷琼钰.自适应卡尔曼滤波的主动队列管理算法[J].计算机科学,2012,39(2):88-91.
    [81]汪浩,李晓明,严伟等.具有最小时间加权平方误差积分的主动队列管理算法ISTE-PI[J].计算机学报.2012,35(5):951-963.
    [82]郑博,孟相如,李欢,等.基于Smith预估的模糊PID主动队列管理算法研究[J].计算机工程与设计,2010(005):986-989.
    [83] de Santi J, da Fonseca N L S. Design of Optimal Active Queue ManagementControllers for HSTCP in Large Bandwidth-delay Product Networks[J].Computer Networks,2011,55(12):2772-2790.
    [84]王萍.主动队列管理的滚动优化控制研究[D].长春:吉林大学博士学位论文,2011.
    [85]王萍,陈虹,卢晓晖.基于预测控制的时滞网络主动队列管理[J].吉林大学学报:工学版,41(4):1089-1095.
    [86]王萍,陈虹,卢晓晖.预测控制主动队列管理算法的设计与分析[J].通信学报,2011,32(9):68-76.
    [87] Tan X H, Huang Y H. Parameters Setting Scheme of RED with Long-rangeDependent Traffic Input[C]. Proceedings of WiCom'09,5th InternationalConference on Wireless Communications, Networking and Mobile Computing,2009. IEEE,2009:1-4.
    [88]谭献海,黄媛辉,金炜东.自相似流量随机早期检测方法[J].西南交通大学学报,2008,43(1):19-24.
    [89]陈柏秀,谭献海,朱效稳.自相似流量下自适应AQM算法性能研究[J].计算机技术与发展,2009,19(9):28-31.
    [90] Domański A, Domańska J, Czachórski T. Comparison of AQM ControlSystems with the Use of Fluid Flow Approximation[M]. Computer Networks.Springer Berlin Heidelberg,2012:82-90.
    [91] Domańska J, Augustyn D R, Domański A. The Choice of Optimal3-rd OrderPolynomial Packet Dropping Function for NLRED in the Presence ofSelf-similar Traffic[J]. Bulletin of the Polish Academy of Sciences: TechnicalSciences,2012,60(4):779-786.
    [92] Min G, Jin X. Analytical Modelling and Optimization of Congestion Controlfor Prioritized Multi-Class Self-Similar Traffic[J].2013,61(1):257-265.
    [93] Chun-ling D. The Optimization of Network Protocol Based on Multi-scaleDWT Analysis[C]. Information Science and Engineering (ICISE),20102ndInternational Conference on. IEEE,2010:4799-4802.
    [94] Fares R H A M. Performance Modelling and Analysis of Congestion ControlMechanisms for Communication Networks with Quality of Service Constraints:an Investigation into New Methods of Controlling Congestion and Mean Delayin Communication Networks with Both Short Range Dependent and LongRange Dependent Traffic[D]. UK, Bradford: PhD Dissertation of University ofBradford,2010.
    [95] Na Z, Guo Q, Gao Z, et al. A Novel Adaptive Traffic Prediction AQMalgorithm[J]. Telecommunication Systems,2012,49(1):149-160.
    [96]赵国栋,李栓红,黄国策,等.基于网络流量预测的抖动缓冲控制算法[J].计算机工程,38(7):80-82.
    [97]陈柏秀.自相似业务流下自适应RED算法研究[D].成都:西南交通大学硕士学位论文,2009.
    [98] Mohtashamzadeh M, Soryani M, Fathy M. Fuzzy Two Time-scale CongestionControl Algorithm[C]. Proceedings of CICSYN'09, First InternationalConference on Computational Intelligence, Communication Systems andNetworks,2009. IEEE,2009:454-458.
    [99] Mohtashamzadeh M, Soryani M. Fuzzy Three Time Scale CongestionController[M]. Signal Processing and Information Technology. Springer BerlinHeidelberg,2012:34-42.
    [100] Tuan T, Park K. Multiple Time Scale Congestion Control for Self-similarNetwork Traffic[J]. Performance Evaluation,1999,36:359-386.
    [101] Titov I, Tsitovich I, Poryazov S. Use of Time-Scale for Analysis of DataSource Traffic[M]. Modern Probabilistic Methods for Analysis ofTelecommunication Networks. Springer Berlin Heidelberg,2013:187-197.
    [102] Lim L B, Guan L, Grigg A, et al. RED and WRED Performance AnalysisBased on Superposition of N MMBP Arrival Proccess[C]. Proceedings of201024th IEEE International Conference on Advanced Information Networking andApplications (AINA). IEEE,2010:66-73.
    [103] Lim L B, Guan L, Grigg A, et al. Controlling Mean Queuing Delay underMulti-class Bursty and Correlated Traffic[J]. Journal of Computer and SystemSciences,2011,77(5):898-916.
    [104] Nakashima T. Queue Management for the Heavy–tailed Traffics[J].International Journal of Space-Based and Situated Computing,2012,2(4):201-208.
    [105] Amin F, Mizanian K. Buffer Management for Self-similar Network Traffic[C].Proceedings of2012Sixth International Symposium on Telecommunications(IST). IEEE,2012:737-742.
    [106] Liu X, Oh Y S, Ryu S K, et al. Bandwidth Configuration for FractionalBrownian Motion Traffic[C]. Proceedings of20127th International ICSTConference on Communications and Networking in China (CHINACOM).IEEE,2012:7-11.
    [107] Chrysafis O, Cannings C. Weighted Self-similar Networks under PreferentialAttachment[J]. Physica A: Statistical Mechanics and its Applications,2009,388(14):2965-2974.
    [108] Vahabi M, Jafari G R. Rotation Algorithm: Generation of GaussianSelf-similar Stochastic Processes[J]. Physical Review E,2012,86(6):066704(1-5).
    [109] Xie Y, Tang S, Huang X. A Periodic Structural Model for CharacterizingNetwork Traffic[M]. Intelligent Computing Theories and Applications.Springer Berlin Heidelberg,2012:545-552.
    [110] Chávez H I L, Monroy M A A. Generation of LRD Traffic Traces with GivenSample Statistics[C]. Proceedings of2012Workshop on EngineeringApplications (WEA). IEEE,2012:1-6.
    [111] Hashemian R, Krishnamurthy D, Arlitt M. Web Workload GenerationChallenges: an Empirical Investigation[J]. Software: Practice and Experience,2012,42(5):629-647.
    [112] Bai L, Guan W, Chen C, et al. Modeling High-Speed Network Traffic withTruncated α-Stable Processes[M]. Future Communication, Computing, Controland Management. Springer Berlin Heidelberg,2012:599-603.
    [113] Li X S, Li J P, Ren J A. Simulating Network Traffic with a New DWT-basedModel[C]. Proceedings of2012International Conference on Wavelet ActiveMedia Technology and Information Processing (ICWAMTIP). IEEE,2012:46-49.
    [114] Liu X, Fang X, Qin Z, et al. A Short-Term Forecasting Algorithm for NetworkTraffic Based on Chaos Theory and SVM[J]. Journal of Network and SystemsManagement,2011,19(4):427-447.
    [115]高波,张钦宇,梁永生等.基于EMD及ARMA的自相似网络流量预测[J].通信学报,2011,32(4):47-56.
    [116] Zhou D, Chen S, Dong S. Network Traffic Prediction Based on ARFIMAModel[J/OL]. arXiv:1302.6324.2013. http://arxiv.org/abs/1302.6324
    [117] Gao B, Zhang Q, Zhang N. LRD Traffic Predicting Based on ARMA[M].Wireless Internet. Springer Berlin Heidelberg,2012:472-479.
    [118] Zhao H, Ansari N. Wavelet Transform-based Network Traffic Prediction: AFast On-line Approach[J]. Journal of Computing and Information Technology,2012,20(1):15-25.
    [119] Wei Y, Wang J, Wang C, et al. Network Traffic Prediction by TrafficDecomposition[C]. Proceeding of2012Fifth International Conference onIntelligent Networks and Intelligent Systems (ICINIS). IEEE,2012:158-161.
    [120] Vaughan J, Stoev S, Michailidis G. Network–wide Statistical Modeling,Prediction and Monitoring of Computer Traffic[J]. Technometrics,2013,55(1):79-93.
    [121] Feng D, Kitov V. Long-Term Prediction Method and Apparatus OF NetworkTraffic: WIPO Patent2012149705[P].2012-11-9.
    [122] Iqbal M F, John L K. Power and Performance Analysis of Network TrafficPrediction Techniques[C]. Proceedings of2012IEEE InternationalSymposium on Performance Analysis of Systems and Software (ISPASS).IEEE,2012:112-113.
    [123]胡永东,吴国新,徐逸卿.基于小波分析的WiMax网络业务流长相关[J].东南大学学报(自然科学版),2013,43(1):1-5.
    [124] Zhao H, Ansari N. Wavelet Transform-based Network Traffic Prediction: AFast On-line Approach[J]. Journal of Computing and Information Technology,2012,20(1):15-25.
    [125]李明迅,孟相如,袁荣坤等.融合提升小波降噪和LSSVM的网络流量在线预测.计算机应用,2012,32(2):340-342,346.
    [126] Gal Z, Terdik G. Statistical Analysis of Next Generation Network TrafficsBased on Wavelets and Transformation ON/(ON+OFF)[M]. AppliedComputational Intelligence in Engineering and Information Technology.Springer Berlin Heidelberg,2012:107-121.
    [127] Jiang D D, Yao C, Xu Z Z, et al. An Continuous Wavelet Transform-BasedDetection Approach to Traffic Anomalies[J]. Applied Mechanics and Materials,2012,130:2098-2102.
    [128] Rocha F G C, Vieira F H T. Loss Probability Estimation forOFDM/TDMA-based Wireless Systems Considering a Cascade-basedMultifractal Traffic Model[J]. Transactions on Emerging TelecommunicationsTechnologies,2012,23(7):688-694.
    [129]李大辉.网络视频流量的多重分形建模与多步预测研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2011.
    [130] Gospodinova E, Gospodinov M. Fractal and Multifractal Analysis of Networkteletraffic[C]. Proceedings of the13th International Conference on ComputerSystems and Technologies. ACM,2012:224-231.
    [131] de Godoy Stênico J W, Ling L L. Multifractal Nature of Wireless NetworkTraffic[C]. Proceedings of the2012SpringSim Poster&Work-In-ProgressTrack. Society for Computer Simulation International,2012:6.
    [132] Sharmi S, Chauhan M S. Virtual Visualization of Distributed Network TrafficUsing Fractals[C]. Proceedings of2012International Conference on Radar,Communication and Computing (ICRCC). IEEE,2012:98-100.
    [133] Ostrowsky L O, da Fonseca N L S, Melo C A V. A Multiscaling Traffic Modelfor UDP Streams[J]. Simulation Modelling Practice and Theory,2012,26:32-48.
    [134] Li M, Zhao W. Quantitatively Investigating Locally Weak Stationarity ofModified Multifractional Gaussian Noise[J]. Physica A: Statistical Mechanicsand its Applications,2012,391:6268-6278.
    [135] Rizk A, Fidler M. Non-asymptotic End-to-end Performance Bounds forNetworks with Long Range Dependent FBM Cross Traffic[J]. ComputerNetworks,2012,56(1):127-141.
    [136] Jin X, Min G, Velentzas S R. An Analytical Queuing Model for Long RangeDependent Arrivals and Variable Service Capacity[C]. Proceeding of IEEEInternational Conference on Communications,2008(ICC'08). IEEE,2008:230-234.
    [137] Zhang L. Bounds on End-to-End Delay Jitter with Self-Similar Input Traffic inAd Hoc Wireless Network[C]. Proceedings of International Colloquium onComputing, Communication, Control, and Management,2008(CCCM'08).IEEE,2008,2:538-541.
    [138] Min G, Jin X. Performance Modelling of Random Early Detection BasedCongestion Control for Multi-class Self-similar Network Traffic[C].Proceedings of IEEE International Conference on Communications,2008(ICC'08). IEEE,2008:5564-5568.
    [139] Domański A, Domańska J, Czachórski T. The Impact of Self-similarity onTraffic Shaping in Wireless LAN[M]. Next Generation Teletraffic andWired/Wireless Advanced Networking. Springer Berlin Heidelberg,2008:156-168.
    [140] Liu C, Qin X, Zhang S, et al. Analysis of Queuing Behaviors with Self-similarTraffic in Wireless Channels[J]. Journal of Networks,2010,5(1):120-127.
    [141] Jin X, Min G, Velentzas S, et al. Quality-of-Service Analysis of QueuingSystems with Long-Range-Dependent Network Traffic and Variable ServiceCapacity[J]. Wireless Communications, IEEE Transactions on,2012,11(2):562-570.
    [142] Bregni S, Giacomazzi P, Saddemi G. Long-range Dependence of traffic acrossschedulers with multiple service classes[J]. Computer Communications,2012,35(7):842-848.
    [143] Jagannathan K, Markakis M, Modiano E, et al. Queue-length Asymptotics forGeneralized Max-weight Scheduling in the Presence of Heavy-tailed Traffic[J].IEEE/ACM Transactions on Networking (TON),2012,20(4):1096-1111.
    [144] Rizk A, Bozakov Z, Fidler M. H-Probe: Estimating Traffic Correlations fromSampling and Active Network Probing[J]. arXiv:1208.2870,2012.http://arxiv.org/abs/1208.2870
    [145] Li G L, Li V O K. Reconsidering Network Traffic Modeling[J/OL].2013.http://www.eee.hku.hk/research/doc/tr/TR2012006_Reconsidering_Network_Traffic_Modeling.pdf
    [146] Mandelbrot B. How Long Is the Coast of Britain? Statistical Self-Similarityand Fractional Dimension[J]. Science,1967,156(3775):636-638.
    [147] Karagiannis T, Molle M and Faloutsos M. Long-range Dependence: Ten Yearsof Internet Traffic Modeling[J]. IEEE Internet Computing,2004,8:57-64.
    [148] Samorodnitsky G. Long Range Dependence[J]. Foundations and Trends inStochastic Systems,2007,1(3):163-257.
    [149] Samorodnitsky G. Long Range Dependence, Heavy Tails and Rare Events[M].Mathematical Physics and Stochastics,2002.
    [150] Hurst H E. Long-term Storage of Reservoirs: An Experimental Study[J].Transactions of the American Society of Civil Engineers,1951,116:770-799.
    [151]熊刚,孟姣,方滨兴等.网络流量分类研究进展与展望。集成技术,2012.5,1(1):32-42.
    [152]吴援明,宁正容,梁恩志.网络自相似模型业务进展[J].通信学报2004,25(3):97-104.
    [153] Willinger W, Taqqu M S, Sherman R, et al. Self-similarity throughHigh-variability: Statistical Analysis of Ethernet LAN Traffic at the SourceLevel[J]. Networking, IEEE/ACM Transactions on,1997,5(1):71-86.
    [154] Jagerman D L, Melamed B. The Transition and Autocorrelation Structure ofTES processes[J]. Stochastic Models,1992,8(2):193-219.
    [155]潘明,季晓飞,范戈.基于α-Stable自相似随机过程的通信网业务量建模[J].上海交通大学学报,2004,38(2):200-202,206.
    [156]张连芳,薛飞和王雷等.自相似网络业务的一个FARIMA模型[J].计算机研究与发展,2000.9,37(9):1138-1144.
    [157] Lau W C, Erramilli A, Wang J L, et al. Self-similar Traffic Generation: TheRandom Midpoint Displacement Algorithm and its Properties[C]. Proceedingsof1995IEEE International Conference on Communications (ICC'95). IEEE,1995,1:466-472.
    [158] Flandrin P. Wavelet Analysis and Synthesis of Fractional Brownian Motion[J].Information Theory, IEEE Transactions on,1992,38(2):910-917.
    [159] Taqqu M S, Teverovsky V, Willinger W. Is network traffic self-similar ormultifractal?[J]. Fractals,1997,5(01):63-73.
    [160] Gao J, Rubin I. Multiplicative Multifractal Modelling of Long RangeDependent Network Traffic[J]. International Journal of CommunicationSystems,2001,14(8):783-801.
    [161] Liu J, Huang Y L. Nonlinear Network Traffic Prediction Based on BP NeuralNetwork[J]. Jisuanji Yingyong/Journal of Computer Applications,2007,27(7):1770-1772.
    [162] Erramilli A, Singh R P, Pruthib P. Chaotic Maps As Models of PacketTraffic[C]. The fundamental role of teletraffic in the evolution oftelecommunications networks: proceedings of the14th InternationalTeletraffic Congress, ITC14, Antibes Juan-les-Pins, France,6-10June1994.Elsevier Publishing Company,1994,1:329.
    [163] Garrett M W, Willinger W. Analysis, Modeling and Generation of Self-similarVBR Video Traffic[J]. ACM SIGCOMM Computer Communication Review.ACM,1994,24(4):269-280.
    [164] Riedi R H, Crouse M S, Ribeiro V J, et al. A Multifractal Wavelet Model withApplication to Network Traffic[J]. Information Theory, IEEE Transactions on,1999,45(3):992-1018.
    [165] Domańska J, Domański A, Czachórski T. Internet Traffic Source Based onHidden Markov Model[M]. Smart Spaces and Next Generation Wired/WirelessNetworking. Springer Berlin Heidelberg,2011:395-404.
    [166] Lim L B, Guan L, Grigg A, et al. Bounding Queuing Delay in a Router Basedon Superposition of N MMBP Arrival Process[C]. Proceedings of18thInternatonal Conference on Computer Communications and Networks (ICCCN2009). IEEE,2009:1-6.
    [167] Norros I. On the Use of Fractional Brownian Motion in the Theory ofConnectionless Networks[J]. Selected Areas in Communications, IEEE Journalon,1995,13(6):953-962.
    [168] Brownlee N. Understanding Internet Traffic Streams: Dragonflies andTortoises[J]. IEEE Communications Magazine,2002,40(10):110-117.
    [169] Fomenkov M, Keys K, Moore D, Claffy k. Longitudinal Study of InternetTraffic in1998-2003[C]. Proceedings of the Winter International Synposiumon Information and Communication Technologies.WISICT '04. Trinity College,Dublin,2004:1-6.
    [170]周林,孙卫强,胡卫生. TCP短流对拥塞点队列深度影响的分析[J].广西大学学报:自然科学版.2012,37(6):1177-1180.
    [171]黄丽亚,王锁萍.基于自相似业务流的Hurst加权随机早检测算法[J].通信学报,2007,28(4):95-100.
    [172]张艺濒,张志斌,赵咏等. TCP与UDP网络流量对比分析研究[J].计算机应用研究,2010,06:2192-2197.
    [173]张广兴,张大方,谢高岗等. Internet城域出口链路流量测量与特征分[J].电子学报.2007年11期:2092-2097.
    [174] Leland W E, Taqqu M S, Bellcore W W. On the Self-similar Nature of EthernetTraffic[J]. IEEE/ACM Transaction on Networking1994,2(1):1-15.
    [175] Paxson V, Floyd S. Wide-Area Traffic: The Failure of Poisson Modeling[J].IEEE/ACM Transactions on Networking.1995,3(3):226-244.
    [176] Taqqu M S, Willinger W, Sherman R. Proof of a Fundamental Result inSelf-similar Traffic Modeling[J]. ACM SIGCOMM Computer CommunicationReview,1997,27(2):5-23.
    [177] Matsuda T, Yamamoto M. Influences of TCP Congestion Control Mechanismsto Multi-fractal Nature of Generated Traffic[C]. Proceedings of IEEE2003Global Telecommunications Conference (GLOBECOM'03.). IEEE,2003,7:3658-3662.
    [178] Fiedler M, Carlsson P, Nilsson A. Voice and Mufti-fractal Data in theInternet[C]. Proceedings of26th Annual IEEE Conference on Local ComputerNetworks. IEEE,2001:426-431.
    [179] Hiroki D, Matsuda T. Yamamoto M. Performance Evaluation of Mufti-fractalNature of TCP Traffic with RED Gateway[C]. Proceedings of29th AnnualIEEE International Conference on Local Computer Networks. IEEE,2004,400-401.
    [180]李锐. IP网业务识别关键技术研究[D].北京:北京邮电大学博士学位论文,2010.
    [181] Crovella M E, Bestavros A. Self-similarity in World Wide Web Traffic:Evidence and Possible Causes[J]. Networking, IEEE/ACM Transactions on,1997,5(6):835-846.
    [182] Shi J., Zhu H. Merging and Splitting Self-Similar Traffic[C]. Proceedings of5th Aisa-Pacific Conference on Conmmunications.1999,(1):110-114.
    [183] Veres A, Boda M. The Chaotic Nature of TCP Congestion Control[C].INFOCOM2000. Nineteenth Annual Joint Conference of the IEEE Computerand Communications Societies. Proceedings. IEEE. IEEE, Tel Aviv, Israel,2000,3:1715-1723.
    [184] Park K, Kim G, Crovella M. On the Relationship between File Sizes, TransportProtocols, and Self-similar Network Traffic[C]. Proceedings of1996International Conference on Network Protocols. IEEE,1996:171-180.
    [185] Mandelbrot B B, Wallis J R. Computer Experiments with Fractional GaussianNoises: Part2, Rescaled Ranges and Spectra[J]. Water resources research,1969,5(1):242-259.
    [186] Qian B, Rasheed K. Hurst Exponent and Financial Market Predictability[C].Proceedings of IASTED Conference on Financial Engineering andApplications (FEA)2004, Cambridge, Massachusetts. USA,2004,203-209.
    [187] Cox D, Lewis P. The Statistical Analysis of Series of Events[M]. Sottiswoode,Ballantyne&Co. Ltd., UK,1966.
    [188] Peng C K, Buldyrev S V, Havlin S, et al. Mosaic Organization of DNAMucleotides[J]. Physical Review E,1994,49(2):1685-1689.
    [189] Taqqu M S, Teverovsky V, Willinger W. Estimators for Long-rangeDependence: an Empirical Study[J]. Fractals,1995,3(04):785-798.
    [190] Robinson P M. Gaussian Semiparametric Estimation of Long RangeDependence[J]. The Annals of statistics,1995,23(5):1630-1661.
    [191] Willinger W, Taqqu M S, Leland W E, et al. Self-similarity in High-speedPacket Traffic: Analysis and Modeling of Ethernet Traffic Measurements[J].Statistical Science,1995,10(1):67-85.
    [192] Veitch D, Abry P. A Wavelet-based Joint Estimator of the Parameters ofLong-range Dependence[J]. Information Theory, IEEE Transactions on,1999,45(3):878-897.
    [193] Whitcher B, Jensen M J. Wavelet Estimation of a Local Long MemoryParameter[J]. Exploration Geophysics,2000,31(2):94-103.
    [194] Geweke J, Porter‐Hudak S. TheEstimation and Application of Long MemoryTime Series Models[J]. Journal of time series analysis,1983,4(4):221-238.
    [195]陈建,谭献海,贾真.7种Hurst系数估计算法的性能分析[J].计算机应用,2006,26(4):945-950.
    [196] Beran J. Statistics For Long-Memory Processes[M]. Chapman and Hall,NewYork,1994.
    [197] Jeong H, McNickle D, Pawlikowski K. Comparison of Various Estimators ofHurst Parameter in Simulated FGN[D]. UK, Christchurch: PhD dissertation ofUniversity of Canterbury,2006.
    [198] Clegg R G. A Practical Guide to Measuring the Hurst Parameter[J/OL]. arXiv:0610756,2006. http://arxiv.org/abs/math/0610756
    [199] Ye X, Xia X, Zhang J, et al. Effects of Trends and Seasonalities on Robustnessof the Hurst Parameter Estimators[J]. IET Signal Processing,2012,6(9):849-856.
    [200]陆智萍,陶勤英.Time-Varying Long Memory Parameter Estimation Based onWavelets[J].应用概率统计,2012,28(5):499-510.
    [201] Guo H, Lim C Y, Meerschaert M M. Local Whittle Estimator for AnisotropicRandom Fields[J]. Journal of Multivariate Analysis,2009,100(5):993-1028.
    [202]胡宏伟,徐海燕.基于局部Whittle法的长记忆参数及变点估计[J].合肥学院学报,2011,21(2):1-5.
    [203]孙琳.混合分数布朗运动的赫斯特指数估计方法[J].统计与决策.2012.2,4:80-82.
    [204] Clauset A, Shalizi C R, Newman M E J. Power-law Distributions in EmpiricalData[J]. SIAM review,2009,51(4):661-703.
    [205] Ozkurt F Y, Acar C V, Okur Y Y, et al. Estimation of Hurst Parameter ofFractional Brownian Motion Using CMARS Method[J/OL]. arXiv:1302.3438,2013. http://arxiv.org/abs/1302.3438
    [206] Kantelhardt J W, Koscielny-Bunde E, Rego H H A, et al. Detecting long-rangecorrelations with detrended fluctuation analysis[J]. Physica A: StatisticalMechanics and its Applications,2001,295(3):441-454.
    [207] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al. MultifractalDetrended Fluctuation Analysis of Nonstationary Time Series[J]. Physica A:Statistical Mechanics and its Applications,2002,316(1):87-114.
    [208] Weron R. Estimating Long-range Dependence: Finite Sample Properties andConfidence Intervals[J]. Physica A: Statistical Mechanics and its Applications,2002,312(1):285-299.
    [209] Higuchi T. Approach to an Irregular Time Series on the Basis of the FractalTheory[J]. Physica D: Nonlinear Phenomena,1988,31(2):277-283.
    [210] Likhanov N, Tsybakov B, Georganas N D. Analysis of an ATM Buffer withSelf-similar (“Fractal”) Input Traffic[C]. Proceedings of INFOCOM'95,Fourteenth Annual Joint Conference of the IEEE Computer andCommunications Societies. IEEE,1995:985-992.
    [211] Paxson V. Fast, Approximate Synthesis of Fractional Gaussian Noise forGenerating Self-similar Network Traffic[J]. ACM SIGCOMM ComputerCommunication Review,1997,27(5):5-18.
    [212] Geist R, Westall J, Spicer K. Simulation Modeling of Self-similarity inNetwork Traffic[J/OL]. Proceedings of CMG’99,1999:1-9.http://people.cs.clemson.edu/~westall/netmodels/cmg99cr.pdf
    [213] Norros I, Mannersalo P, Wang J L. Simulation of Fractional Brownian Motionwith Conditionalized Random Midpoint Displacement[J]. Advances inPerformance Analysis,1999,2(1):77-101.
    [214] Saupe D. Algorithms for Random Fractals[J]. The science of fractal images,1988:71-136.
    [215] Ming Li. Generation of Teletraffic of Generalized Cauchy Type[J]. PhysicaScripta,2010,81(2):1-10.
    [216] Dietrich C R, Newsam G N. Fast and Exact Simulation of Stationary GaussianProcesses through Circulant Embedding of the Covariance Matrix[J]. SIAMJournal on Scientific Computing,1997,18(4):1088-1107.
    [217] Kroese D P, Botev Z I. Spatial Process Generation. V. Schmidt (Ed.)[S/OL]Lectures on Stochastic Geometry, Spatial Statistics and Random Fields,Volume II: Analysis, Modeling and Simulation of Complex Structures,Springer-Verlag, Berlin.2012:1-41.http://www.maths.uq.edu.au/~kroese/ps/MCSpatial.pdf
    [218] Perrin E, Harba R, Jennane R, et al. Fast and Exact Synthesis for1-DFractional Brownian Motion and Fractional Gaussian Noises[J]. SignalProcessing Letters, IEEE,2002,9(11):382-384.
    [219]卫星宽带网络主动队列管理机制研究与算法设计[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008:34-61.
    [220]朱海婷,丁伟,缪丽华等. UDP流量对TCP往返延迟的影响[J].通信学报,2013,34(1):19-29.
    [221] Sun W, Shibata N, Yasumoto K, et al. A Method for Overlay Network LatencyEstimation from Previous Observation[C].Proceedings of the TwelfthInternational Conference on Networks (ICN2013).2013:95-100.
    [222] Almes C, Kalidindi S, Zekauskas M. A One-way Delay Metric forIPPM[S/OL]. IETF RFC2679,1999. http://tools.ietf.org/html/rfc2679
    [223] Almes C, Kalidindi S, Zekauskas M. A Round-trip Delay Metric forIPPM[S/OL]. IETF RFC2681,1999. http://tools.ietf.org/html/rfc2681
    [224] Demichelis C, Chimento P. IP Packet Delay Variation Metric for IPPerformance Metrics (IPPM)[S/OL]. IETF RFC3393,2002.http://tools.ietf.org/html/rfc3393
    [225] Tejado I, Hosseinnia S H, Vinagre B M, et al. Dealing with FractionalDynamics of IP Network Delays[J]. International Journal of Bifurcation andChaos,2012,22(04).
    [226] Terdik G, Gyires T. Does the Internet still Demonstrate Fractal Nature?[C].Proceedings of Eighth International Conference on Networks (ICN'09). IEEE,2009:30-34.
    [227]张宾,杨家海,吴建平. Internet流量模型分析与评述[J].软件学报,2011,22(001):115-131.
    [228] E. Reich. On the Integro Differential Equation of Takács[J]. Ann. Math. Statist.1958,29(2):563-570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700