胞内海藻糖对球孢白僵菌耐热力的贡献及其代谢相关基因的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球孢白僵菌(Beauveria bassiana)是害虫生防真菌的典型代表,其分生孢子制剂的环境稳定性是制约菌剂商品化开发和应用的关键。海藻糖是广泛存在于生物体内的抗逆保护剂,也参与真菌的抗逆境胁迫生理反应,但目前关于生防真菌中海藻糖及其代谢的生物学功能的研究报道有限。为此,本研究提出和验证了“胞内海藻糖参与耐热性”的生物学假设,并通过对海藻糖代谢途径中的中性海藻糖水解酶基因BbNTH1和6-磷酸海藻糖合成酶基因BbTPS1的克隆,将其启动子与报告基因eGFP融合表达和反义RNA干扰表达,研究了它们在多种胁迫下的转录表达情况和抗逆生物学功能。主要研究结果如下所述:
     球孢白僵菌胞内海藻糖和甘露醇在热胁迫下的生理响应为了研究胞内海藻糖累积在菌株耐热性中的生理功能,将球孢白僵菌于25℃正常培养3天后进行35、37.5、40℃不同的高温胁迫1-18 h,通过测定胞内海藻糖和海藻糖水解酶活力的变化,以揭示海藻糖代谢在生防真菌中的耐热生理功能。在35、37.5和40℃下胁迫6h后,胞内累积的海藻糖含量平均值从最初的4.2分别迅速上升至88.3、74.7和65.5 mg/g菌丝,但甘露醇的含量却随胁迫温度上升和时间延长而逐渐降低。累积的海藻糖含量与海藻糖水解酶活力(r2=0.73,P<0.01)和甘露醇含量(r2=0.38,P<0.01)显著相关。热胁迫下胞内甘露醇含量与甘露醇脱氢酶(r2=0.41,P<0.01)和1-磷酸甘露醇脱氢酶(r2=0.30,P<0.01)存在显著的负相关。热胁迫后的菌落在25℃下均能恢复生长,但其生长活力取决于热胁迫温度、时间及二者的互作效应(r2=0.98,P<0.01)。将菌落先置于35℃胁迫6h后再在48℃下接受更高温胁迫0-60 min后,其菌落与对照相比表现出更强的耐受力。结果显示,累积的海藻糖部分来源于甘露醇的代谢产物,由此推测甘露醇也可能参与菌株的耐热力。海藻糖水解酶可在热胁迫和恢复过程中降解海藻糖,也可能在菌株耐高温胁迫中起着重要作用。
     中性海藻糖水解酶基因克隆、表达纯化及酶学特征分析从球孢白僵菌基因组中克隆到中性海藻糖水解酶基因BbNTH1,其编码蛋白是典型的真菌中性海藻糖水解酶,开放阅读框(ORF)序列长2232 bp,共有三个大小分别为50、49和58 bp的"GT…AG”内含子,编码区翻译后产生一条由743个氨基酸组成的蛋白肽段,预测分子量约为84.4 kDa。在编码蛋白的氨基酸序列中,发现一个依赖于cAMP的磷酸化作用位点(RRGS)和一个钙离子附着位点(DTDGNMQITIED).在大肠杆菌中成功表达了BbNTHl的重组蛋白,其纯化产物的最适反应温度为55℃,最适反应pH 7.0,对海藻糖具有底物专一性,米氏常数Km和Vmax分别为5.05±0.71 mM和1290.98±22.73 U/mg蛋白,降解海藻糖的催化效率(kcat/Km)为2.35x103mM-1s-1。
     各种胁迫下调控BbNTHl基因表达的应激响应元件识别为了研究BbNTHl基因的上游调控序列在各种胁迫下的转录表达情况,将其上游启动子序列截短成不同长度的片段(-2713,-1912,-1060和-560 bp),与绿色荧光蛋白报告基因eGFP融合起来,在球孢白僵菌中转化表达,考察eGFP在高温、氧化和高渗透压胁迫下的表达。结果显示,在菌丝和分生孢子形成细胞中eGFP表达最强,但成熟分子孢子中表达较弱。由最短的启动子片段NthP4调控的目标基因在各种胁迫下(40℃热胁迫15-540 min;0.3-1.2 mM甲萘醌氧化胁迫;0.5~1.0 M NaCl渗透压胁迫)的转录表达水平最强。NthP4中存在的两个胁迫响应元件,不论是单个还是两个共同定点突变后,均能导致目标基因在胁迫诱导下的表达下调。这证明在不同胁迫下BbNTHl通过其上游-560 bp启动子序列片段中的两个胁迫响应元件的调控而激活其表达。
     6-磷酸海藻糖合成酶基因的克隆及其生物学功能验证从球孢白僵菌基因组中克隆到6-磷酸海藻糖合成酶基因BbTPSl,通过构建含BbTPSl基因RNA干扰发夹结构和筛选标记bar基因的干扰载体在宿主菌株中进行转化表达,经Real Rime PCR筛选出表达量分别下调51.9%和77.5%的反义转化子A2和A4,对其进行了抗逆生物学表型的研究。结果发现,转化子分生孢子在没有添加营养的生理盐水中的萌发率显著低于野生菌株(F2,6=42.5,P<0.01);转化子孢子耐45℃胁迫的能力显著低于野生菌株(F2,6=29.2,P<0.01);在35℃胁迫下转化子胞内海藻糖的累积也显著低于野生菌株(FF2,24=3103.9,P<0.01);氧化胁迫(F2,24=17.2,P<0.01)和热胁迫(F2,30=52.7,P<0.01)下转化子菌落活力也显著低于野生菌株。这些结果说明,海藻糖合成酶BbTPS1基因在孢子萌发、孢子耐热力及抗氧化的生理反应中发挥着重要作用。
     综上所述,本研究主要成果和创新点,一是研究并建立了热胁迫下菌株胞内海藻糖和甘露醇含量及其相关代谢酶的活力变化的定量评价体系,揭示了球孢白僵菌菌落的耐热力和胞内海藻糖累积的关系。二是克隆了BbNTH1基因,发现其上游启动子最小片段NthP4对其在各种胁迫下的转录表达起关键调控作用,并从中识别出二个关键胁迫响应元件。三是克隆了BbTPSl基因,通过RNA干扰技术抑制其基因表达,证明了其对孢子萌发和耐热力及抗氧化的功能。这些结果有助于深化对丝孢类生防真菌抗逆性状及其生物学背景的认识。
Entomopathogenic fungi are widely applied in microbial control of arthropod pests, being well represented by the fungus Beauveria bassiana. Fungal cells (aerial conidia, blastospores or mycelia) are often formulated as active ingredients of mycoinsecticides and inevitably exposed to the stresses of high temperatures and solar UV irradiation, which are known to affect fungal viability and field performance. Fungal candidate strains with greater stress tolerance are likely to be more potential for successful use in pest control. Fungal trehalose is likely involved in crucial defense mechanisms that protect cells from damages by environmental stresses. However, neither trehalose accumulation nor trehalose metabolism in fungal cells has been related to the tolerance of the fungal biocontrol agents to multiple stresses. Thus, it is necessary to understand possible mechanism of trehalose metabolism in B. bassiana in response to multiple stresses.
     This study began from quantitative evaluation changes of intracellular trehalose and mannitol contents and enzymatic activities under thermal stress, resulting in a hypothesis that trehalose accumulation is likely involved in fungal thermotolerance. To confirm the hypothesis, the genes encoding B. bassiana neutral trehalase(BbNTH1) and trehalose-6-phosphate synthase (BbTPS1) were cloned and characterized. Crucial stress-responsive elements (STREs) to control BbNTHl expression under multiple stresses was identified by fusion of the reporter gene eGFP to its promoter. The biological function of BbTPS1 gene was revealed by suppressing its expression using antisense RNA-mediated gene silencing technique. The results are summarized as follows.
     Physiological implication of intracellular trehalose accumulation in response of B. bassiana to thermal stress. To explore possible role of intracellular trehalose accumulation in the tolerance of B. bassiana to summer-like thermal stress, three-day colonies of B. bassiana grown on the plates of a glucose-free medium at 25℃were separately exposed to 35,37.5 and 40℃for 1-18 h. Trehalose accumulation in the stressed mycelia increased from initial 4.2 to 88.3,74.7 and 65.5 mg/g biomass after 6-h exposure to 35,37.5 and 40℃respectively while intracellular mannitol level generally declined with more stressful temperatures and longer stress time. The stress-enhanced trehalose level was significantly correlated to the decrease of trehalase activity (r2=0.73) and the level of mannitol (r2=0.38), which was inversely correlated to the activity of mannitol dehydrogenase (r2=0.41) or mannitol 1-phosphate dehydrogenase (r2=0.30) under the stresses. All stressed cultures were successfully recovered at 25℃but their vigor depended on the stress intensity expressed as temperature, time length and the interaction of both (r2=0.98). The highest level of 6-h trehalose accumulation at 35℃was found enhancing the tolerance of the stressed cultures to the greater stress of 48℃for≤60 min. The results suggest that the trehalose accumulation result from metabolized mannitol and contribute to fungal thermotolerance. Trehalase also contributed to the thermotolerance by hydrolyzing accumulated trehalose under the conditions of thermal stress and recovery.
     Gene cloning and characterization of neutral trehalase (BbNTHl) from B. bassiana. A full-length 2387-bp fragment of neutral trehalase (BbNTH1) gene was cloned from B. bassiana, including a putative 2232-bp open reading frame with three 50-, 49- and 58-bp putative introns (Genbank accession number:EF122412). In sequence analysis online (http://blast.ncbi.nlm.nih.gov/Blast.cgi), the dediced protein was featured with a cAMP dependent phosphorylation consensus site (RRGS) and a putative calcium binding site (DTDGNMQITIED). The gene was found encoding a 743-aa protein and expressed E. coli BL21 as the recombinant protein of 84.4 kDa in agreement with the predicted molecular weight. The purified BbNTHl showed high substrate specificity to trehalose (100%). Its maximal activity in trehalose hydrolysis was achieved at 55℃and pH 7.0. In the reaction at optimal 55℃and pH 7.0, the BbNTH1 activities (y) at 0.1-1.0 M trehalose (x) were well fitted to the non-linear Michaelis-Menten equation (r2=0.99), generating the parameters Km and Vmax (±SE) of 5.05±0.71 mM and 1290.98±22.73 U/mg protein. The catalytic efficiency (kcat/Km) for the hydrolysis of trehalose by BbNTH1 was estimated as 2.35×103 mM-1 s-1.
     Recognition of crucial stress-responsive elements to control BbNTHl expression in response to multiple stresses. To identify crucial stress-responsive elements (STREs) to control BbNTHl expression in response to different stresses, the full-length promoter (-2713 bp) upstream of its open reading frame and three upstream-truncated fragments (-1912,-1060 and -560 bp) were fused to the reporter gene eGFP and then transformed into B. bassiana, respectively. As a result, eGFP was well expressed as intensive fluorescence in mycelia, conidiogenic cells and forming conidia controlled by the full-length promoter with five STREs. Surprisingly, transformant colonies controlled by the shortest fragment with last two STREs at -315 and -274 bp exhibited consistently brightest fluorescence under 7-day oxidative adaption of 0.3-1.2 mM menadione,6-day osmotic stress of 0.5-1 M NaCl and thermal stress of 15-540 min at 40℃after 3-day growth at 25℃. Single or dual site-directed mutations of the two STREs from CCCCT to CATCT significantly altered the gene response to the multiple stresses. Thus, the two STREs in the downstream 560-bp region of the promoter are crucial to regulating not only constitutive but stress-inducible expression of the target gene.
     Gene cloning and functional analysis of trehalose-6-phosphate synthase (BbTPSl) from B. bassiana. A trehalose-6-phosphate synthase gene, BbTPS1, was cloned from B. bassiana. The function of BbTPSl was elucidated by suppressing its expression using the method of antisense RNA-mediated gene silencing. Two antisense-RNA plasmids vectoring both the transcriptional element of BbTPS1 hairpin inverted repeat fragments and the gene bar were constructed and then inserted into the genomic DNA of the wild-type strain Bb2860. Expression of BbTPS1 in selected transformants was measured by real time PCR. Transformants A2 and A4 with the suppressed BbTPS1 expression of 51.9% and 77.5% were used in the following experiments to analyze trehalose metabolsin in conidial germination and the role of the gene in response to various stresses. Conidial germination rates of A2 and A4 were significantly lower than that of the wild strain in nutrition-free saline (F2,6=42.5, P<0.01). The silenced expression of BbTPS1 increased significantly the sensitivity of germinating conidia to the 30-min thermal stress of 45℃(F2,6=29.2, P<0.01). The accumulation of trehalose was largely reduced in A2 and A4 mycelia compared to the wild-type strain during thermal stress at 35℃. The colony growths of both transformants and the wild-type strain also showed different responses to the oxidative stress of 1-3 mM menadione (F2,24=17.2, P<0.01) and the thermal stress of 48℃(F2,30=52.7, P<0.01). Our results highlight the important role of BbTPS1 gene in B. bassiana tolerance to the stresses.
     In summary, we developed an efficient assay system that enables to accurately quantify changes of intracellular trehalose and mannitol contents and enzymes activities under thermal stress and found that trehalose accumulation takes important part in fungal thermotolerance. The genes encoding B. bassaina neutral trehalase (BbNTH1) and trehalose-6-phosphate synthase(BbTPS1) were characterized for the first time. Two STREs in the downstream 560-bp region of the BbNTH1 promoter were found crucial to regulating not only constitutive but stress-inducible expression of BbNTH1 in response to multiple stresses. Significant contributions of BbTPSl to conidial germination and tolerance to thermal and oxidative stresses were confirmed by means of antisense RNA-mediated gene silencing. These results provide new insights into trehalose involvement in the stress tolerance of B. bassiana and suggest means to improving ecological fitness or field persistence of fungal biocontrol agents.
引文
黄长春,汤坚,王成树,李增智.1996.紫外辐射对球孢白僵菌的影响及适宜的保护剂的选择.安徽农业大学学报23:346-350.
    梁宗琦,叶育昌.1994.昆虫真菌病.昆虫病理学(蒲蜇龙主编).广州:广东科技出版社,p.349.
    刘银泉,冯明光,刘树生,张宝鑫.2000.不同温度下球孢白僵菌对桃蚜的毒力.中国生物防治16:56-60.
    李新民,王克勤,刘春来,徐伟钧.2003.保护地常用农药对蜡蚧轮枝菌菌丝生长影响研究.植物保护29:19-21.
    李运帷,金得森,伊可儿,范弘达,刘利玲,陈仙景.1993.白僵菌纯孢子粉工业化生产新工艺.中国虫生真菌研究与应用第3卷.北京:中国农业科技出版社pp.124-129.
    李增智,樊美珍.2000.真菌生物技术与真菌杀虫剂的发展.微生物农药及其产业化.北京:科学出版社pp.115-121.
    冯明光唐启义.1996.球孢白僵菌对七种蚜虫的感染反应:时间-剂量-死亡率模型分析.应用基础与工程科学学报4:22-33.
    冯明光.1998.时间-剂量-死亡率模型取代机率分析技术.昆虫知识35:233-237.
    冯明光,应盛华.2002.不同含水量和温度下贮存中球孢白僵菌分生孢子活力与内源营养的衰变.应用生态学报13:60-64.
    蒲蛰龙,李增智.1996.昆虫真菌学.合肥:安徽科技出版社pp.301-446.
    叶素丹,冯明光.2004.生防真菌耐旱特性的生理生化基础及其利用.应用生态学报5:2383-2387.
    唐启义,冯明光.2007.实用统计分析及其DPS数据处理系统.北京:科学出版社.
    王成树.1996.真菌杀虫剂剂型研究现状(综述).安徽农业大学学报23:375-380.
    王成树,王四宝,樊美珍,李增智.1999.球孢白僵菌菌株耐热力与贮藏稳定性的关系.中国生物防治15:162-165.
    许寿涛,冯明光,应盛华.2002a.球孢白僵菌对桃蚜接种后特定时间内的侵染率.应用生态学报13:701-704.
    许寿涛,应盛华,冯明光.2002b.十种常用农药与球孢白僵菌的生物相容性.植物保护学报29:158-162.
    殷凤鸣.1983.白僵菌孢子粉贮存试验.广东林业科技通讯3:13-16.
    张永军,裴炎,方卫国,杨星勇,王中康.2001.耐低水活度高毒力虫生真菌菌株选育.菌物系统20:73-78.
    Aichinger C, Hansson K, Eichhorn H, Lessing F, Mannhaupt G, Mewes W, Kahmann R.2003. Identification of plant-regulated genes in Ustilago maydis by enhancer-trapping mutagenesis. Molecular Genetics and Genomics 270:303-314
    Amaral FC, Van Dijck P, Nicoli JR, Thevelein JM.1997. Molecular cloning of the neutral trehalase gene from Kluveromyces lactis and the distinction between neutral and acids trehalases. Archives of Microbiology 167:202-208.
    App H, Holzer H.1989. Purification and characterization of neutral trehalase from the yeast ABYS1 mutant. Journal of Biological Chemistry 264:17583-17588.
    Asch DK, Kinsey JA.1990. Relationship of vector inserts size to homologous integration during transformation of Neurospora crassa with the cloned am (GDH) gene. Molecular and General Genetics 221:37-43.
    Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A, Steever AB, Wach A, Philippsen P, Pringle JR.1998. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943-951.
    Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, Vanderzee P, Wiemken A. 1992. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIFI, a regulator of carbon catabolite inactivation. European Journal of Biochemistry 209:951-959.
    Bernhard K, Holloway P J, Burges HD.1998. Appendix I:A catalogue of formulation additives: function, nomenclature, properties and suppliers. In:Burges HD (ed) Formulation of Microbial Biopesticides, Kluwer Academic Publishers, Dordrecht, the Netherlands, pp.333-365.
    Bidochka MJ, Menzies FV, Kamp AM.2002. Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Archives of Microbiology 178:531-537.
    Bird D, Bradshaw R.1997. Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Molecular and General Genetics 255:219-225.
    Bogo MR, Vainstein MH, Aragao JL, Rech E, Schrank A.1996. High frequency gene conversion among benomyl resistant transformants in the entomopathogenic fungus Metarhizium anisopliae. Microbiology Letters 142:123-127.
    Braga GUL, Flint SD, Messias CL, Anderson AJ, Roberts DW.2001a. Effects of UV-B on conidia and germination of the entomopathogenic fungus, Metarhizium anisopliae. Mycological Research 105:874-882.
    Braga GUL, Flint SD, Miller CD, Anderson AJ, Roberts DW.2001b. Both solar UVA and UVB radiation impair conidial culturability and delay germination in the entomopathogenic fungus Metarhizium anisopliae. Photochemistry and Photobiology 74:734-739.
    Brownbridge M, Costa S, Jaronski ST.2001. Effects of in vitro passage of Beauveria bassiana on virulence to Bemisia argentifolii. Journal of Invertebrate Pathology 77:280-283.
    Burges HD, Jones KJ.1998. Formulation of bacteria, viruses and protozoa to control insects. In:Burges, H.D. (ed.) Formulations of Microbial Biopesticides, Beneficial Microorganisms, Nematodes and Seed Treatments, Kluwer Academic, London, pp.33-127.
    Bharadwaj G, Maheshwari R.1999. A comparison of thermal characteristics and kinetic parameters of trehalases from a thermophilic and a mesophilic fungus. FEMS Microbiology Letters 181: 187-193.
    Cabib E, Leloir L.1958. The biosynthesis of trehalose-phosphate. Journal of Biological Chemistry 231:259-275.3.
    Cansado J, Soto T, Fernandez J, Vicente-Soler J, Gacto M.1998. Characterization of mutants devoid of neutral trehalase activity in the fission yeast Schizosaccharomyces pombe:partial protection from heat shock and high-salt stress. Journal of Bacteriology 180:1342-1345.
    Catalanotto C, Azzalin G, Macino G, Cogoni C.2002. Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Gene Development 16:790-795.
    Colaco C, Sen S,1992. Thangavelu M. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Nature Biotechnology 10:1007-1101.
    Combier JP, Melayab D, Rafler C, Gay G, Marmeisse R.2003. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiology Letters 220:141-148.
    Chung KR, Ehrenshaft M, Daub ME.2002. Functional expression and cellular localization of cercosporin-resistance proteins fused with the GFP in Cercospora nicotianae. Current Genetics 41:159-167.
    Crowe JH, Crowe LM, Chapman D.1984. Preservation of membranes in anhydrobiotic organisms:the role of trehalose. Science 223:701-703.
    Crowe JH, Hoekstra FA, Nguyen KHN.1996. Is vitrification involved in depression of the phase transition temperature in dry phospholipids? Biochimica et Biophysica Acta 1280:187-196.
    Daboussi MJ, Djeballi A, Gerlinger C, Blaiseau PL, Bouvier I, Cassan M, Lebrun MH, Parisot D, Brygoo Y.1989. Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans. Current Genetics 15:453-456.
    Davidson RC, Cruz MC, Sia RA, Allen B, Alspaugh JA, Heitman J.2000. Gene disruption by biolistic transformation in serotype D strains of Cryptococcas neoforraans. Fungal Genetics and Biology 29:38-48.
    de Almeida FM, Bonini BM, Beton D, Jorge JA, Terenzi HF, da Silva AM.2009. Heterologous expression in Escherichia coli of Neurospora crassa neutral trehalase as an active enzyme. Protein Expression Purification 65:185-189.
    de Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM.1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology 16:839-842.
    de Faria MR, Wraight SP.2007. Mycoinsecticides and Mycoacaricides:A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 43: 237-256.
    Benaroudj N, Lee DH, Goldberg AL.2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. Journal of Biological Chemistry 276: 24261-24267.
    d'Enfert C, Bonini BM, Zapella PD, Fontaine T, da Silva AM, Terenzi HF.1999. Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Molecular Microbiology 32:471-483.
    d'Enfert C, Fontaine T.1997. Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Molecular Microbiology 24: 203-216.
    De Castro AG, Bredholt H, Strom AR, Tunnacliffe A.2000. Anhydrobiotic engineering of gram-negative bacteria. Applied and Environmental Microbiology 66:4142-4144.
    de Silva-Udawatta MN, Cannon JF.2001. Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation. Molecular Microbiology 40:1345-1356.
    de Smet, Weston KAL, Brown IN.2000. Three pathways for trehalose biosynthesis in mycobacteria. Microbiology-SGM 146:199-208.
    De Virgilio C, Simmen U, Hottiger T, Boller T, Wiemken A.1990. Heat shock induces enzymes of trehalose metabolism, trehalos accumulation, and thermotolerance in Schizosaccharomyces pombe, even in the presence of cycloheximide. FEBS Letters 273:107-110.
    de Virgilio C, Burckert N, Boller T, Wiemken A.1991. A method to study the rapid phosphorylation-related modulation of neutral trehalase activity by temperature shifts in yeast. FEBS Letters 291,355-358.
    de Virgilio C, Burckert N, Bell W, Jeno P, Boller T, Wiemken A.1993. Disruption of TPS2, the gene encoding the 100 kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. European Journal of Biochemistry 212:315-323.
    de Virgilio C, Simmen U, Hottiger T, Boller T, Wiemken A.1990. Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotolerance in Schizosaccharomyces pombe, even in the presence of cycloheximide. FEBS Letters 273:107-110.
    Doehlemann G, Berndt P, Hahn M.2006. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology-SGM 152:2625-2634.
    Elbein AD.1968. Trehalose phosphate synthesis in Streptomyces hygroscopicus:purification of GDP-glucose:glucose-6-P1-glucosyltransferase. Journal of Bacteriology 96:1623-1631.
    Elbein AD.1974. The metabolism of α,α-trehalose. Advances in Carbohydrate Chemistry and Biochemistry 30:227-256.
    Elbein AD, PanYT, Pastuszak I, Carroll D.2003. New insights on trehalose:a multifunctional molecule. Glycobiology 13:17-27.
    Eastmond PJ, Li Y, Graham IA.2002. Is trehalose-6-phosphate a regulator of sugar metabolism in plants? Journal of Experimental Botany 54:533-537.
    Eastmond PJ, Graham IA.2003. Trehalose metabolism:a regulatory role for trehalose-6-phosphate? Current Opinion in Plant Biology 6:231-235.
    Fang WG, Scully LR, Zhang L, Pei Y, Bidochka MJ.2008. Implication of a regulator of G protein signaling (BbRGS1) in conidiation and conidial thermotolerance of the insect pathogenic fungus Beauveria bassiana. FEMSMicrobiology Letters 279:146-156.
    Fargues J, Luz C.1998. Effects of Fluctuating Moisture and Temperature Regimes on Sporulation of Beauveria bassiana on Cadavers of Rhodnius prolixus. Biocontrol Science and Technology 8: 323-334.
    Feng MG, Poprawski TJ, Khachatourians GG.1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control:current status. Biocontrol Science and Technology 4:3-34.
    Fernandez J, Soto T, Franco J, Vicente-Soler J, Cansado J, Gacto M.1998. Enhancement of neutral trehalase activity by oxidative stress in the fission yeast Schizosaccharomyces pombe. Fungal Genetics and Biology 25:79-86.
    Ferreira AS, Totola MR, Borges AC.2007. Physiological implications of trehalose in the ectomycorrhizal fungus Pisolithus sp. under thermal stress. Journal of Thermal Biology 32: 34-41
    Ferreira JC, Paschoalin VMF, Panek AD, Trugo LC.1997. Comparison of three different methods for trehalose determination in yeast extracts. Food Chemistry 60:251-254.
    Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d'Enfert C.2001. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology-SGM 147:1851-1862.
    Fitzgerald AM, van Kan JAL, Plummer KM.2004. Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequal, by expression of RNA with chimeric inverted repeats. Fungal Genetics and Biology 41:963-971.
    Foster AJ, Jenkinson JM, Talbot NJ.2003. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO Journal 22:225-235.
    Franco A, Soto T, Vicente-Soler J, Paredes V, Madrid M, Gacto M, Cansado J.2003. A role for calcium in the regulation of neutral trehalase activity in the fission yeast Schizosaccharomyces pombe. Journal of Biochemistry 376:209-217.
    Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ.2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences of the USA 99:15898-15903.
    Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A.2000. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry 275:5668-5674.
    Gardiner DM, Howlett BJ.2004. Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Current Genetics 45:249-255.
    Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davies GJ.2002. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chemistry Biolology 9: 1337-1346.
    Goldoni M, Azzalin G, Macino G, Cogoni C.2004. Eficient gene silencing by expression of double stranded RNA in Neurospora crassa. Fungal Genetics and Biology 41:1016-1024.
    Godon C, Van Dun K.1999. Trehalose metabolism in plants. Trends in Plant Science 4:315-319.
    Green JL, Angell CA.1989. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. Journal of Physical Chemistry 93:2880-2882.
    Groden E, Lockwood JL.1991. Effects of soil fungitasis on Beauveria bassiana and its relationship to disease incidence in the colorado potato beetle, Leptinotarsa decemlineata, in Michigan and Rhode island soils. Journal of Invertebrate Pathology 57:7-16.
    Haas H, Angermayr K, Zadra I, Stofler G.1997. Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. Journal of Biological Chemistry 272:22576-22582.
    Hallsworth JE, Magan N.1994. Effects of KCL concentration on accumulation of acyclic sugar alcohols and trehalose in conidia of three entomopathgenic fungi. Letters in Applied Microbiology 18:8-11.
    Hallsworth JE, Magan N.1994. Effect of carbohygrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi. Microbiology-SGM 140: 2705-2713.
    Hallsworth JE, Magan N.1996. Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Applied and Environmental Microbiology 62:2435-2442.
    Hallsworth JE, Magan N.1997. A rapid HPLC protocol for detection of polyols and trehalose. Journal of Microbiology Methods 29:7-13.
    Hallsworth JE, Magan N.1999. Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. Journal of Invertebrate Pathology 74:261-266.
    Hernandez-Lopez MJ, Prieto JA, Randez-Gil F.2003. Osmotolerance and leavening ability in sweet and frozen sweet dough Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains. Antonie van Leeuwenhoek 84:125-134.
    Hottiger T, Schmutz P, Wiemken A.1987. Heat-induced accumulation and futile cycling of trehalose in Saccharomycs cerevisiae. Journal of Bacteriology 169:5518-5522.
    Hottiger T, Boller T, Wiemken A.1989. Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway:is trehalose a thermoprotectant? FEBS Letters 255:431-434.
    Hottiger T, De Virgilio C, Hall MN.1994. The role of trehalose synthesis for the acquisition of thermotolerance in yeast II, physiological concentrations of trehalose increase the thermal stability of proteins in vitro. European Journal of Biochemistry 219:187-193.
    Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR.1989. Engineering hybrid genes without the use of restriction enzymes:gene splicing-by-overlap extension. Gene 77:61-68.
    Horio T.2007. Role of microtubules in tip growth of fungi. Journal of Plant Research 120:53-60.
    Huang BF, Feng MG.2009. Comparative tolerances of various Beauveria bassiana isolates to UV-B irradiation with a description of a modeling method to assess lethal dose. Mycopathology 168:145-152.
    Hult K, Gatenbeck S.1978. Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata. European Journal of Biochemistry 88:607-612.
    Hynes MJ.1996. Genetic transformation of filamentous fungi. Journal of Genetics 75:297-311.
    Ignoffo CM, Garcia C.1992. Influence of conidial color on inactivation of several entomogenous fungi (Hyphomycetes) by simulated sunlight. Environmental Entomology 21:913-917.
    Inglis GD, Goettel MS, Johnson DL.1995. Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. Biological Control 5:581-590.
    Inglis GD, Johnson DL, Goettel MS.1997. Efftects of temperature and sunlight on mycosis of Beauveria bassiana (Hyphomycetes:Sympodulosporae) of grasshoppers under field conditions. Environmental Entomology 26:400-409.
    Inglis GD, Johnson DL, Kawchuk LM, Goettel MS.1998. Effect of soil texture and soil sterilization susceptibility of oviposition grasshoppers to Beauveria bassiana. Journal of Invertebrate Pathology 71:73-81.
    Iwahashi H, Nwaka S, Obuchi K.2000. Evidence for contribution of neutral trehalase in barotolerance of Saccharomyces cerevisiae. Applied and Environmental Microbiology 66:5182-5185.
    Jackson CW, Heale JB.1987. Parasexual crosses by hyphal anastomosis and protoplast fusion in the entomopathogen Verticillium lecanii. Journal of General Microbiology 133:3537-3547.
    Jepsen HF, Jensen B.2004. Accumulation of trehalose in the thermophilic fungus Chaetomium thermophilum var. coprophilum in response to heat or salt stress. Soil Biology and Biochemistry 36:1669-1674.
    Jorge JA, Polizeli MDTM, Thevelein JM, Terenzi HF.1997. Trehalases and trehalose hydrolysis in fungi. FEMSMicrobiology Letters 154:165-171.
    Jorge CD, Sampaio MM, Hreggvidsson GO.2007. A highly thermostable trehalase from the thermophilic bacterium Rhodothermus marinus. Extremophiles 11:115-122.
    Juvvadi PR, Kuroki Y, Arioka M, Nakajima H, Kitamoto K.2003. Functional analysis of the calcineurin-encoding gene cnaA from Aspergillus oryzae:evidence for its putative role in stress adaptation. Archives of Microbiology 179:416-422.
    Kandror O, DeLeon A, Goldberg AL.2002. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proceedings of the National Academy of Sciences of the USA 99:9727-9732.
    Kawula TH, Ling AJ.1984. Production of protoblasts from Beauveria bassiana blastopores. Journal of Invertebrate Pathology 43:282-284.
    Keller F, Schellenberg M, Wiemken A.1982. Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces cerevisiae). Archives of Microbiology 131:298-301.
    Khang CH, Park SY, Lee YH, Kang S.2005. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genetics and Biology 42:483-492.
    Kienle I, Burgert M, Holzer H.1993. Assay of trehalose with acid trehalase purified from Saccharomyces cerevisiae. Yeast 9:607-611.
    Kopp M, Miiller H, Holzer H.1993. Molecular Analysis of the neutral trehalase gene from Saccharomyces cerevisiae. Journal of Biological Chemistry 268:4766-4774.
    Kopp M, Nwaka S, Holzer H.1994. Corrected sequence of the yeast neutral trehalase-encoding gene (NTH1):biological implications. Gene 150:403-404.
    Kwon-Chung KJ.1998. Gene disruption to evaluate the role of fungal candidate virulence genes. Current Opinion in Microbiology 1:381-389.
    Ladendorf O, Brachmann A, Kamper J.2003. Heterologous transposition in Ustilago maydis. Molecular Genetics and Genomics 269:395-405.
    Lapp D, Patterson BW, Elbein AD.1971. Properties of a trehalose phosphate synthetase from Mycobacterium smegmatis. Journal of Biological Chemistry 246:4567-4579.
    Lako M, Hole N.2000. Searching the unknown with gene trapping. Expert Reviews in Molecular Medicine, Cambridge University Press, http://www.expertreviews.org/00001824h.htm.
    Leslie SB, Teter SA, Crowe LM.1994. Trehalose lowers membrane phase transitions in dry yeast cells. Biochimica et Biophysica Acta 1192:7-13.
    Lillie SH, Pringle JR.1980. Reserve carbohydrate metabolism in Saccharomyces cerevisiae:responses to nutrient limitation. Journal of Bacteriology 143:1384-1394.
    Lima IG, Duarte RT, Furlaneto L, Baroni CH, Fungam MH, Furlaneto MC.2006. Transformation of the entomopathogenic fungus Paecilomyces fumosoroseas with Agrobacterium tumefaciens. Letters in Applied Microbiology 42:631-636.
    Lindquist S, Craig EA.1988. The heat-shock proteins. Annual Review in Genetics 22:631-677.
    Li J, Feng MG.2009. Intraspecific tolerance of Metarhizium anisopliae conidia to the upper thermal limits of summer with a description of a quantitative assay system. Mycological Research 113: 93-99.
    Liu Q, Ying SH, Feng MG, Jiang XH.2009. Physiological implication of intracellular trehalose and mannitol changes in response of entomopathogenic fungus Beauveria bassiana to thermal stress. Antonie van Leeuwenhoek 95:65-75.
    Luz C, Fargues J.1997. Temperature and moisture requirements for conidial germination of an isolate of Beauveria bassiana, pathogenic to Rhodnius prolixus. Mycopathologia 138:117-25.
    Lu ZX, Tombolinin R, Woo S, Zeilinger S, Lorito M, Jansson JK.2004. In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Applied and Environmental Microbiology 70:3073-3081.
    Madhu PS, Carolyn AB, Geoffrey DS.1999. Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils. Biochimica et Biophysica Acta 1472:519-528.
    Maruta K, Nakada T, Kubota M.1995. Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Bioscience Biotechnology Biochemistry 59:1829-1834.
    Maruta K, Mitsuzumi H, Nakada T.1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochimica et Biophysica Acta 1291:177-181.
    Ma JC, Zhou Q, Zhou YH, Liao XG, Zhang YJ, Pei Y.2009. The size and ratio of homologous sequence to non-homologous sequence in gene disruption cassette influences the gene targeting efficiency in Beauveria bassiana. Applied Microbiology and Biotechnology 82:891-898.
    Magan N.1998. Improving ecological fitness and environmental stress tolerance of the biocontrol yeast Candida sake by manipulation of intracellular sugar alcohol and and sugar content. Mycological Research 102:1409-1417.
    Majchrowicz L, Poprawski TJ.1993. Effects in vitro of nine fungicides on groth of entomopathogenic fungi. Biocontrol Science and Technology 3:321-336.
    Marcos R. de Faria, Stephen P.2007. Wraight Mycoinsecticides and Mycoacaricides:A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 43:237-256.
    McDowell JM, Funderburk JE, Boucias DG, Gilreath ME, Lynch RE.1990. Biological activity of Beauveria bassiana against Elasmopalpus lignosellus (Lepidoptera:Pyralidae) on leaf substrates and soil. Environmental Entomology 19:137-141.
    Michielse CB, Arentshorst M, Ram AFJ, van den Hondel CAMJJ.2005a. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori. Fungal Genetics and Biology 42:9-19.
    Moore D, Bateman RP, Carey M, Prior C.1995. Long-term Storage of Metarhizium flavoviride Conidia in Oil Formulations for the Control of Locusts and Grasshoppers. Biocontrol Science and Technology 5:193-200.
    Mouyna I, Henry C, Doering TL, La tge JP.2004. Gene silencing with RNA interference in the human pathogenic fungus Aspergillas fumigatas. FEMS Microbiology Letters 237:317-324.
    Moskvina E, Schiiller C, Maurer CTC, Mager WH, Ruis H.1998. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response element. Yeast 14:1041-1050.
    Nakayashiki H.2005. RNA silencing in fungi:Mechanisms and applications. FEBS Letters 579: 5950-5957.
    Nwaka S, Kopp M, Burgert M, Deuchler I, Kienle I, Holzer H.1994. Is thermotolerance of yeast dependent on trehalose accumulation? FEBS Letters 344:225-228.
    Nwaka S, Mechler B, Destruelle M, Holzer H.1995. Phenotypic features of trehalase mutants in Saccharomyces cerervisiae. FEBS Letters 360:286-290.
    Nwaka S, Mechler B, Holzer H.1996. Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose. FEBS Letters 386:235-238.
    Nwaka S, Holzer H.1998. Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA 58: 197-237.
    Ocon A, Hampp R, Requena N.2007. Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytologist 174:879-891.
    Ouedraogo A, Fargues J, Goettel MS, Lomer CJ.1997. Effect of temperature on vegetative growth among isolates of Metarhizium anisopliae and M. flavoviride. Mycopathologia 137:37-43.
    Panni S, Landgraf C, Volkmer-Engert R, Cesareni G, Castagnoli L.2008. Role of 14-3-3 proteins in the regulation of neutral trehalase in the yeast Saccharomyces cerevisiae. FEMS Yeast Research 8:53-63.
    Parrou JL, Jules M, Beltran G, Francois J.2005. Acid trehalase in yeasts and filamentous fungi: localization, regulation, and physiological function. FEMS Yeast Research 5:503-511.
    Punt PJ, Zegers ND, Busscher M, Pouwels PH, vail den Hondel CA.1991. Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. Journal of Biotechnology 17:19-33.
    Paredes V, Franco A, Madrid M, Soto T, Vicente-Soler J, Gacto M.2004. Transcriptional and post-translational regulation of neutral trehalase in Schizosaccharomyces pombe during thermal stress. Yeast 21:593-603.
    Paredes V, Franco A, Soto T, Vicente-Soler J, Gacto M, Cansado J.2003. Different roles for the stress-activated protein kinase pathway in the regulation of trehalose metabolism in Schizosaccharomyces pombe. Microbiology-SGM 149:1745-1752.
    Piper P.1998. Differential role of Hsps and trehalose in stress tolerance. Trends in Microbiology 6: 43-44.
    Punt PJ, Zegers ND, Busscher M, Pouwels PH, vail den Hondel CA.1991. Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. Journal of Biotechnology 17:19-33.
    Rangel DEN, Braga GUL, Anderson AJ, Roberts DW.2005. Variability in conidial thermotolerance of Metarhizium anisopliae stains from different geographic origins. Journal of Invertebrate Pathology 88:116-125.
    Reader U, Broda P.1985. Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology 1:17-20.
    Reinders A, Burchert N, Hohmann S, Thevelein JM, Boller T, Wiemken A, De Virgilio C.1997. Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Molecular Microbiology 24: 687-695.
    Ribeiro MJS, Leao LSC, Morais PB, Rosa CA, Panek AD.1999. Trehalose accumulation by tropical yeast strains submitted to stress conditions. Antonie van Leeuwenhoek 75:245-251.
    Ribeiro MJS, Reinders A, Boller T, Wiemken A, De Virgilio C.1997. Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Molecular Microbiolog 25:571-581
    Roberts DW, St Leger RJ.2004. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Advances in Applied Microbiology 54:1-70.
    Rogers CW, Challen MP, Green JR, Whipps JM.2004. Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus Coniothyriam minitans. FEMS Microbiol Letters 241:207-214.
    Roberts DW, St. Leger RJ.2004. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Advances in Applied Microbiology 54:1-70.
    Ruijter GJG, Bax M, Patel H, Flitter SJ, van de Vondervoort PJI, de Vries RP, vanKuyk PA, Visser J. 2003. Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryotic Cell 2:690-698.
    Saito K, Yamazaki H, Ohnishi Y.1998. Production of trehalose synthase from a basidiomycete, Grifola frondosa, in Escherichia coli. Applied Microbiology and Biotechnology 50:193-198.
    Schiestl RH, Petes TD.1991. PETES Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA 88: 7585-7589.
    Singer MA, Lindquist S.1998a. Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular Cell 1:639-648.
    Singer MA, Lindquist S.1998b. Thermotolerance in Saccharomyces cerevisiae:the yin and yang of trehalose. Trends in Biotechnology 16:460-468.
    Siderius M, Mager WH.1997. General stress response:in search of a common denominator. In: Hohmann S, Mager WH, editors. Yeast Stress Responses. New York, USA:Springer, p.213-230.
    Spiering MJ, Moon CD, Wilkinson HH, Schardl CL.2005. Gene Clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 169:1403-1414.
    Smirnoff N, Cumbes QJ.1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057-1060.
    Soto T, Fernandez J, Dominguez A, Vicente-Soler J, Cansado J, Gacto M.1998. Analysis of the ntpl+ gene, encoding neutral trehalase in the fission yeast Schizosaccharomyces pombe. Biochimica et Biophysica Acta 1443:225-229.
    Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M.1995. Activation of neutral trehalase by glucose and nitrogen source in Schizosaccharomyces pombe strains deficient in cAMP dependent protein kinase activity. FEBS Letters 367:263-266.
    Streeter JG, Gomez ML.2006. Three enzymes for trehalose synthesis in Bradyrhizobium cultured bacteria and in bacteroids from soybean nodules. Applied and Environmental Microbiology 72: 4250-4255.
    Stoop JMH, Mooibroek H.1998. Cloning and characterization of NADP-mannitol dehydrogenase cDNA from the button mushroom, Agaricus bisporus, and its expression in response to NaCl stress. Applied and Environmental Microbiology 64:4689-4696.
    St. Leger RJ, Cooper RM, Charnley AK.1988. The effect of melanization of Manduca sexta cuticle on growth and infection by Metarhizium anisopliae. Journal of Invertebrate Pathology 52: 459-470.
    St. Leger RJ, Joshi L, Bidochka MJ, Roberts DW.1996. Construction of an improved mycoinsecticide over-expressing a toxic protease. Proceedings of the National Academy of Sciences of USA 93: 6349-6354.
    Tanada Y, Kaya HK.1993. Microbial control. In:Insect pathology. New York:Academic Press Inc., p.569.
    Tang QY, Feng MG.2007. DPS Data Processing System:Experimental Design, Statistical Analysis and Data Mining Beijing, China:Science Press.
    Teixido N, Vinas I, Usall J Marcos R. de Faria, Stephen P.2007. Wraight Mycoinsecticides and Mycoacaricides:A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 43:237-256.
    Termont S, Vandenbroucke K, Iserentant D, Neirynck S, Steidler L, Remaut E, Rottiers P.2006. Intracellular accumulation of trehalose protects Lactococcus lactis from freeze-drying damage and bile toxicity and increases gastric acid resistance. Applied and Environmental Microbiology 70:7694-7700.
    Tentler S, Palas J, Enderlin C, Campbell J, Taft C, Miller TK, Wood RL, Selitrennikoff CP.1997. Inhibition of Neurospora crassa growth by a glucan synthase-1 antisense construct. Current Microbiology 34:303-308.
    Tiago PV, Fungaro MHP, De Faria MR, Furlaneto MC.2004. Effect of double strand RNA in Metarhizium anisopliae vat. acridum and Paecilomyces fumosoroseus on protease activities, conidia production, and virulence. Canandian Journal of Microbiology 50:335-339.
    Thevelein JM.1984. Regulation of trehalose mobilization in fungi. Microbiological Review 48:42-59.
    Thevelein JM.1988. Regulation of trehalase activity by phosphorylation-dephosphorylation during developmental transition in fungi. Experimental mycology 12:1-7.
    Thevelein JM, Hohmann S.1995. Trehalose synthase:guard to the gate of glycolysis in yeast? Trends in Biochemistry Science 20:3-10.
    Thompson SR, Brandenburg RL, Arends JJ.2006. Impact of moisture and UV degradation on Beauveria bassiana (Balsamo) Vuillemin conidial viability in turfgrass. Biological Control 39: 401-407.
    Todorova SI, Codderre D, Duchesne RM.1998. Compatibilty of Beauveria with selected fungicides and herbicides. Biological Control 27:427-433.
    Vestergaard K, Nielsen J, Andersen G, Ingeman-Nielsen M, Arendt-Nielsen L, Jensen TS.1995. Sensory abnormalities in consecutive, unselected patients with central post-stroke pain. Pain 61:177-186.
    Van Dijck P, De Rop L, Szlufcik K, Van Ael E, Thevelein JM.2002. Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infection and Immunity 70:1772-1782.
    Van Laere A, Hohmann S, Bulaya B, de Koning W, Sierkstra L, Neves MJ, Luyten K, Alijo R, Ramos J, Coccetti P.1993. Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Molecular Microbiology 8:927-943.
    Van Laere A.1989. Trehalose, reserve and/or stress metabolite? FEMS Microbiology Review 63: 201-209.
    Vuorio OE, Kalkkinen N, John Londesborough J.1993. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Succhuronzyces cerevisiue. European Journal of Biochemistry 216:849-861.
    Wach A, Brachat A, Pohlmann R, Philippsen P.1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793-1808.
    Wera S, de Schrijver E, Geyskens I, Nwaka S, Thevelein JM.1999. Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival to Saccharomyces cerevisiae. Biochemistry Journal 343:621-626.
    Wiemken A.1990. Trehalos in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek 58:209-217.
    Wiemken A, Schellenberg M.1982. Does a cyclic AMP-dependent phosphorylation initiate the transfer of trehalase from the cytosol into the vacuoles in Saccharomyces cerevisiae? FEBS Letters 150:329-331
    Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ.2007. Tpsl regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO Journal 26: 3673-3685.
    Voit EO.2003. Biochemical and genomic regulation of the trehalose cycle in yeast:review of observations and canonical model analysis. Journal of Theoretical Biology 223:55-78.
    Xia YX, Gao MY, Clarkson JM, Charnley AK.2002. Molecular cloning, characterization, and expression of a neutral trehalase from the insect pathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology 80:127-137.
    Ying SH, Feng MG.2004. Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. Journal of Applied Microbiology 97:323-331.
    Ying SH, Feng MG.2006. Novel blastospore-based transformation system for integration of phosphinothricin resistance and green fluorescence protein genes into Beauveria bassiana. Applied Microbiology and Biotechnology 72:206-210.
    Zahringer H, Burgert M, Holzer H, Nwaka S.1997. Neutral trehalase Nthlp of Saccharomyces cerevisiae encoded by the NTH1 gene is a multiple stress responsive protein. FEBS Letters 412: 615-620.
    Zahringer H, Holzer H, Nwaka S.1998. Stability of neutral trehalase during heat stress in Saccharomyces cerevisiae is dependent on the activity of the catalytic subunits of cAMP-dependent protein kinase, Tpkl and Tpk2. European Journal of Biochemistry 255:544-551.
    Zahringer H, Thevelein JM, Nwaka S.2000. Induction of neutral trehalase Nthl by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors:variations of PKA effect during stress and growth. Molecular Microbiology 35:397-406.
    Zaragoza O, Blasquez MA, Gancedo C.1998. Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. Journal of Bacteriology 180:3809-3815.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700