用户名: 密码: 验证码:
海南荔枝种质资源考察收集、鉴定评价及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荔枝(Litchi chinensis Sonn.)原产我国,属无患子科,俗有“岭南果王”之称,已有2000多年的栽培历史。自上世纪九十年代初在广东、广西、福建、海南等省迅速发展,成为我国重要的热带南亚热带代表性水果。我国是荔枝的主产国,面积与产量均居世界第一,海南是荔枝的起源地之一,也是我国早熟荔枝的主要产地,拥有丰富的种质资源,但研究相对滞后。本研究主要开展了海南荔枝种质资源的考察、收集和评价,荔枝种质资源遗传多样性分析,指纹图谱的构建,荔枝叶片、果皮、种子功能成分评价等研究,为保护和利用这些宝贵资源提供依据,获得主要结果如下:
     1、在对海南省野生、半野生荔枝调查的基础上,摸清了海南野生、半野生荔枝生长、分布现状,绘制了野生、半野生分布图;抢救性收集到了120余份荔枝种质资源。
     2、研究制定了荔枝种质资源描述规范、质量控制规范和数据标准,构建了荔枝种质资源评价技术体系,并依据规范对资源进行了评价,获得10000多项科学数据,建立了海南荔枝种质资源网络共享数据库,并筛选出优异种质30多份。
     3、利用ISSR和AFLP分子标记技术分别对96份和60份荔枝种质资源进行了遗传多样性分析。13条ISSR引物共计扩增得到180条谱带,平均每条引物13.8条,多态性条带比率为90.56%;3对AFLP引物扩增得到1218条谱带,多态性条带达1125条,比例为92.36%,ISSR和AFLP遗传相似系数分别分布在0.478-0.874和0.616-0.846之间。两种分子标记聚类结果表明:野生荔枝种质覆盖了各个类群,半野生种质存在少数几个类群,而栽培种质几乎集中在同一类群,两种分子标记的聚类结果表现出较高的一致性。
     4、研究表明,海南荔枝种质资源之间遗传基础虽然比较宽,但大部分荔枝材料之间亲缘关系比较接近,遗传基础比较狭窄,其相似系数成偏正态分布,遗传差异比较大的主要集中在野生类型之间。栽培荔枝(半野生荔枝)与野生荔枝明显区分开,而且采自同一林区的野生荔枝的亲缘关系较不同林区的近,有很强的生态区域特点,霸王岭的野生荔枝被分成不同的类群,说明霸王岭的野生荔枝遗传多样性较其它林区的野生荔枝丰富,是野生荔枝中的核心地区。
     5、利用SSR和AFLP分子标记技术构建了11个荔枝主要栽培品种的SSR指纹图谱。结果表明,两种分子标记技术均可以将11个品种完全区分,并能赋予每个供试材料唯一的条形码,该结果可为品种鉴别、新品种审定及品种保护提供可靠的DNA分子证据。
     6、采用响应面法优化了超声辅助技术提取荔枝叶片、果皮和果核中的总酚、总黄酮和多糖类物质,分析了这三类物质的提取工艺条件和提取工艺,建立了数学模型,为荔枝总酚、总黄酮和多糖的提取制备提供理论参考和依据。结果表明利用所建立的新方法,其提取率较传统方法显著提高。
     7、进行了紫娘喜、丁香和南岛无核荔枝果皮和果核的酚类物质含量的分析,经测定荔枝核中主要发现6种酚类物质,分别为原花青素A1、A2、根皮苷、柽柳黄素3-芸香糖苷、儿茶素与芦丁,除根皮苷以外,其他均为黄酮类物质。阐明3个品种荔枝叶的40%醇沉多糖包括阿拉伯糖、鼠李糖、半乳糖和葡萄糖,而80%醇沉多糖则仅包括阿拉伯糖、鼠李糖、半乳糖;对荔枝酚与荔枝多糖的DPPH自由基清除活性进行了评价,就酚类物质而言,三个荔枝品种叶的酚类物质活性均高于果皮和种子。就多糖而言,各个品种的活性差异显著,三个品种不同器官活性有明显差异,紫娘喜品种果皮的活性高于果核与叶子,而丁香品种叶子多糖的活性最高。
Litchi (Litchi chinensis Sonn., Sapindaceae), a tropical and subtropical fruit originated from China, has become one of the most important fruit crops in china and developed rapidly in Guangdong, Guangxi Fujian and Hainan provinces from1990. China is the main country of litchi production, which area and yield are both the first in the world. In this study, investigation, collection、evaluation、genetic diversity analysis、fingerprint construction and functional composition analysis of Hainan Litchi germplasm resources was carried out. The main results were as follows:
     1. The growth and distribution status of wild, semi-wild litchi in Hainan was cleared and distribution map was drawed based on wild, semi-wild litchi survey. More than120copies of Litchi germplasm resources were collected and a series of norms, rules and standards were made.
     2. The descriptors-standard、data quality control of descriptors and the standar of data for Litchi were made.30of excellent germplasms were selected on the basis of evaluation, classification of litchi germplasm resources according to the norms.
     3. ISSR and AFLP molecular marker technique were used respectively for genetic diversity analysis of96and60litchi germplasm resources.180polymorphism bands were obtained using13ISSR primers. The average number of band was13.8per primer and the polymorphic ratio was90.56%.1218straps were amplified using3pairs of AFLP primers and1125straps were polymorphic(92.36%). Genetic similarity coefficients of ISSR and AFLP were0.478~0.874and0.616~0.846, respectively. Results from ISSR and AFLP markers showed that wild litchi germplasm resources covered all the groups, semi-wild germplasm resources had a few groups while cultivated germplasm almost belonged to the same group. The clustering results of the two molecular markers showed high consistency.
     4. According to the results of genetic similarity coefficient, the genetic basis of Hainan litchi germplasm was relatively wide while the majority of the litchi had closely phylogenetic relationships and the genetic differences was relatively narrow. The similarity coefficient showed partial normal distribution and wide genetic differences mainly existed in wild type. Cultivar litchi (semi-wild) was obviously different from wild litchi. Moreover, the wild litchi from the same forest had closely genetic relationships and strong eco-regional characteristics. Wild litchi from Bawangling was divided into different groups, indicating that genetic diversity of wild litchi from Bawangling is abundant than other forest and Bawangling is the core area of wild litchi.
     5. SSR finger printing of litchi germplasm was constructed using SSR and AFLP molecular marker technology.11germplasm resources could be fully separated by the two markers methods and each tested material had the only bar code. These results might provide useful reliable DNA molecular evidence for identification of species, registration of new varieties, and protection of cultivar.
     6. Total phenols, flavonoids and polysaccharides were extracted from litchi leaves, peel and stone by using the response surface method to optimize the ultrasonic aided technology. Three types of substance's extraction condition and extraction process is analyzed and established a mathematical model which provide theoretical reference and basis for total phenolics, flavonoids and polysaccharide extraction of Litchi. Compared to traditional methods, the new method could significantly increased extraction rate.
     7. Phenols contents in pericarp and stones were analyzed from Ziniangxi, Dingxiang and Nandaowuhe litchi. Six types of phenolic compounds i.e procyanidine A1and A2, phloridzin, tamarixetin-3-rutinoside, catechin and rutin, were detected in stones. All of them are flavonoids except phloridzin. Polysaccharide in litchi leaves precipitated by40%alcohol included arabinose, rhamnose, galactose and glucose, while polysaccharide precipitated by80%alcohol did not contain glucose. DPPH radical scavenging activities of phenols and polysaccharides were evaluated. Higher DPPH radical scavenging activities of phenols were detected in litchi leaves. The DPPH radical scavenging activities of polysaccharides were significantly different in various species. Activities of polysaccharides in pericarp was higher than that of in stone and leaves of Ziniangxi, and the highest polysaccharides DPPH radical scavenging activities was observed in leaves of Dingxiang.
引文
1.艾呈祥,张力思,魏海蓉等.甜樱桃品种SSR指纹图谱数据库的建立.农业生物技术科学,2007,23(5):55-58
    2.安泽伟,孙爱花,程汉等.用RAPD和ISSR检测的橡胶树野生种质和栽培品种的遗传多样性.热带亚热带植物学报,2005,13(3):246-252
    3.蔡青,姜立杰,马焕普等.甜樱桃品种的SSR鉴定.生物技术通报,2007,5:170-178
    4.蔡青,姜立杰,张晓明等.苹果主栽品种的SSR分子标记鉴别.农业生物技术科学,2007,23(7):129-134
    5.曹玉芬,刘凤之,高源等.梨栽培品种SSR鉴定及遗传多样性.园艺学报,2007,34(2):305-310
    6.陈汉桂,郭厚基,覃艺等.荔枝核提取液对糖尿病小鼠模型血糖、血脂等相关指标的干预效应.中国临床康复,2006,10(7):79-81
    7.陈玲,刘志鹏,施文兵等.荔枝核与荔枝膜挥发油的GC/MS分析.中山大学学报,2005,44(2):53-56
    8.陈洁珍,欧良喜,吴洁芳等.荔枝种质资源的研究及创新利用.广东农业科学,2003(4):24~26
    9.陈巍,王力荣,朱更瑞等.基于SSR标记和生物学性状进行桃遗传多样性的比较分析.植物遗传资源学报,2009,10(1):86-90
    10.陈业渊,邓穗生,张欣等.海南部分荔枝种质的RAPD分析.园艺学报,2004,31(2):224-226
    11.陈义挺,赖钟雄,陈菁瑛等.福建若干荔枝古树资源的RAPD分析.福建农林大学学报(自然科学版),2005,34(4):458-463
    12.陈有志,刘成明.龙眼品种RAPD鉴别及分析.中国果树,2001,(4):28-29
    13.邓穗生,陈业渊,张欣.应用RAPD标记研究野生荔枝种质资源.植物遗传资源学报,2006,7(3):288-291
    14.丁岗.荔枝研究进展.时珍国医国药,1999,10(2):145-2146
    15.丁晓东,吕柳新,陈晓静等.利用RAPD标记研究荔枝品种亲缘关系.热带亚热带植物学报,2000,8(1):49-54
    16.凡强.中国野生荔枝的遗传多样性及栽培荔枝的起源研究.中山大学硕士学位论文,2007
    17.范太伟,蔡丹英,李红旭等.甘肃中部梨资源遗传变异和亲缘关系的SSR分析.果树学报,2007,24(3):268-275
    18.傅铃娟.广东海南野生荔枝多种类型的发现.中国果树,1984,(4):21-25
    19.傅嘉欣.荔枝和龙眼微卫星SSR标记的开发及研究.华南农业大学博士学位论文,2010
    20.高爱平,李建国,刘成明等.利用RAPD技术鉴定海南荔枝品种光明.植物遗传资源学报,2006,7(4):455-458
    21.高源,刘凤之,曹玉芬等.苹果属种质资源亲缘关系的SSR分析.果树学报,2007,24(2):129-134
    22.葛永奇,邱英雄,丁炳扬等.银杏群体遗传多样性的ISSR分析.生物多样性,2003,11(4):276-287
    23.葛志刚,俞明亮,马瑞娟等.蟠桃种质SSR标记的遗传多样性分析.果树学报,2009,26(3):300-305
    24.郑琳颖,韩超,潘竞锵.荔枝核的化学、药理核临床研究概况.中医药学报,1998,(5):51-53
    25.龚受基,苏小建,虞海平等.荔枝核类黄酮化合物对SARS-Cov3CL蛋白酶抑制作用的研究.中国药理学通报,2008,24(5):699-700
    26.郭洁文,廖惠芳,潘竞锵等.荔枝核皂苷改善高脂血症-脂肪肝大鼠胰岛素抵抗作用的机制研究.中国药房,2005,16(10):732-734
    27.郭洁文,潘竞锵.荔枝和荔枝核的化学成分、生物活性及药理作用研究.中国新药杂志,2006,15(8):585-588
    28.郭洁文,潘竞锵,邱光清等.荔枝核增强型糖尿病-胰岛素抵抗大鼠胰岛素敏感性作用.中国新药杂志,2003,12(7):526-529
    29.郭洁文,李丽明,潘竞锵等.荔枝核拮抗2型糖尿病大鼠胰岛素抵抗作用的药理学机制.中医药材,2004,27(6):435-437
    30.韩宏伟,杨敏生,徐兴兴等.利用SSR标记鉴定主要梨栽培品种.农业生物技术科学,2006,22(12):383-386
    31.韩振海等.落叶果树种质资源学.北京:中国农业出版社,1995
    32.郝艳宾,黄武刚,王克建等.我国核桃组(Sect. Juglans)种质资源的SSR标记分析.果树学报,2007,24(5):620-625
    33.黄泰康主编.常用中药成分与药理手册.北京:中国医药科技出版社,1994
    34.黄雪松,陈杰.测定荔枝核中的游离氨基酸.氨基酸和生物资源,2007,29(2):11-14
    35.蒋蔚峰,陈建宗,张娟等.荔枝核总皂苷体外抗乙型肝炎病毒的作用.第四军医大学学报,2008,29(2):100-103
    36.姜帆,高慧颖,陈秀萍等.龙眼ISSR-PCR反应体系的优化及指纹图谱初探.福建农业学报,2007,2(3):256-260
    37.柯冠武,林经波,陈熹等.福建主栽龙眼品种的类群分类初探.福建省农科院学报,1988,3(2):63-66
    38.乐长高,付红蕾.荔枝壳和核挥发性成分研究.中草药,2001,32(8):688-689
    39.雷天刚,何永睿,吴鑫等.柑橘栽培品种(系)DNA指纹图谱库的构建.中国农业科学,2009,42(8):2852-2861
    40.李海生.ISSR分子标记技术及其在植物遗传多样性分析中的应用.生物学通报,2004,39(2):19-21
    41.李明芳.荔枝SSR标记的研究及其部分荔枝种质的遗传多样性分析.华南热带农业大学博士学位论文,2003
    42.李焕苓,赖钟雄,陈义挺等.66份荔枝古树遗传多样性的RAPD分析.热带作物学报,2009,30(4):451-455
    43.李建国主编.荔枝学.北京:中国农业出版社,2008
    44.李江舟.广西龙眼遗传多样性及亲缘关系的AFLP分析.广西大学硕士学位论文,2007
    45.梁荣感,刘卫兵,唐祖年等.荔枝核黄酮类化合物抗体外呼吸道合胞病毒的作用.第四军医大学学报,2006,27(20):1881-1883
    46.林妮,肖柳英,潘竞锵等.荔枝核对小鼠S180、EAC肿瘤细胞Bax和Bcl-2蛋白表达的影响研究.中国药房,2008,19(15):1138-1141
    47.刘兴前,刘博,聂晓勤.中药荔枝核中两种化学成分的分离与鉴定.成都中医药大学学报,2001,24(1):55
    48.刘冰浩.广西部分野生、半野生、栽培荔枝遗传多样性SSR分析及博白野生荔枝种群生存研究.广西大学硕士学位论文,2008
    49.刘万勃,宋明,刘富中等.RAPD和ISSR标记对甜瓜种质遗传多样性的研究.农业生物技术学报,2002,10(3):231-236
    50.刘成明.荔枝分子遗传图谱构建和种质资源分析.华南农业大学博士学位论文,2001
    51.鹿金颖,毛永民,申莲英等.用AFLP分子标记鉴定冬枣自然授粉实生后代杂种的研究园艺学报,2005,32(4):680-683.
    52.罗海燕.海南野生荔枝种质资源遗传多样性及与半野生、栽培荔枝亲缘关系的ISSR分析.华南热带农业大学硕士学位论文,2007
    53.罗伟生,龚受基,梁荣感等.荔枝核黄酮类化合物抗流感病毒作用的研究.中国中药杂志,2006,31(6):1379-1380
    54.马丹慧.杏种质资源亲缘关系及分类地位的ISSR和SSR分子标记研究.吉林农业大学硕士学位论文,2007
    55.宁正祥,彭凯文,秦燕等.荔枝种仁油对大鼠血脂水平的影响.营养学报,1996,18(2):159-162
    56.潘建平,林志雄,古河洋等.丰产、优质荔枝仙婆果的选育研究.广州大学学报(自然科学版),2007,6(2):26-29
    57.潘竞锵,刘惠纯,刘广南等.荔枝核降血糖、调血脂和抗氧化的实验研究.广东医学, 1999,9(1):47-50
    58.潘竞锵,郭洁文,韩超等.荔枝核的药理实验研究.中国新药杂志,2000,9(1):14~16
    59.彭云滔,唐绍清,李伯林等.野生罗汉果遗传多样性的ISSR分析.生物多样性,2005,13(1):36-42
    60.祁建民,周东新,吴为人等.RAPD和ISSR标记检测黄麻属遗传多样性的比较研究.中国农业科学,2004,37(12):2006-2011
    61.钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报,2000,42(7):741-750
    62.彭宏祥,曹辉庆,朱建华等.利用AFLP分子标记对广西荔枝优稀种质遗传多样性及分类研究.西南农业学报,2006,19(1):108-111
    63.阮少唐.荔枝品种分类问题的探讨.园艺学报,1963,2(4):345-351
    64.史红丽,韩明玉,赵彩平.桃遗传多样性的SPAP和SSR标记分析.华北农业大学学报,2009,24(6):187-192
    65.沈节,冯学锋,潘炯光等.中药荔枝核的挥发油鉴定.中药通报,1988,13(8):31-32
    66.沈志军,马瑞娟,俞明亮等.早熟油桃紫金红1号亲本的SSR鉴定.华北农学报,2009,24(6):205-209
    67.宋光泉等.荔枝果皮提取物化学成分的GC-MS分析.中山大学学报(自然科学版)1999,38(4):47-50
    68.苏伟强,黄海滨,陆玉英等.龙荔与龙眼荔枝过氧化物酶同工酶分析及亲缘关系研究初报.广西农业科学,1993,(4):158-159
    69.孙健.荔枝壳多糖的组成及抗氧化性分析.粮油食品科技,2006,14(5):44-53
    70.田菊霞.中草药抗糖尿病研究进展.杭州师范学院学报,2005,4(6):470-472
    71.屠鹏飞,罗青,郑俊华.荔枝核的化学成分研究.中草药,2002,33(4):300-303
    72.王爱德,李天忠,许雪峰等.苹果品种的SSR分析.园艺学报,2005,32(5):875-877
    73.王家保,邓穗生,刘志媛等.海南荔枝主要栽培品种的RAPD分析.农业生物技术学报,2006,14(3):391-396
    74.王建波.ISSR分子标记及其在植物遗传学研究中的应用.遗传,2002,24(5):613-616
    75.王祥和,陈业光,华敏等.几份荔枝种质材料RAPD鉴定.热带农业科学,2003,(2):1-4
    76.王心燕,肖璇,乔爱民等.‘石硖’龙眼芽变系双引物RAPD鉴定的研究.园艺学报,2006,33(1):134-136
    77.王小英,肖柳英,潘竞锵等.荔枝核颗粒对小鼠EAC、S180及肝癌组织的抑瘤作用的实验研究.中国医疗前沿,2007,2(12):54-56
    78.王斐,林盛华,方成泉等.梨新品种及其亲本的AFLP分析.园艺学报,2007,34(4): 847-852
    79.王燕.不同品种荔枝核营养成分及功能活性研究.华南农业大学硕士学位论文,2009
    80.魏守兴,陈业渊,谢子四等.海南部分荔枝种质的ISSR分析.热带作物学报.2006,27(4):51-55
    81.魏守兴,罗海燕,谢子四等.海南羊山地区半野生荔枝种质的ISSR分析.热带作物学报,2009,30(4):445-449
    82.吴淑娴.中国果树志(荔枝卷).北京:中国林业出版社,1998
    83.吴清和,梁颂名,李育浩等.中医治疗糖尿病单方验方的筛选研究.广州中医学院学报,1991,(2-3):218-223
    84.肖璇,孙敏,王心燕等.‘石硖’龙眼大果型桂花味芽变系的RAPD分析鉴定.园艺学报,2005,32(4):684-687
    85.肖柳英,洪晖菁,潘竞锵等.荔枝核的抑瘤作用及对肝癌组织端粒酶活性的影响.中国医药,2007,18(18):1366-1368
    86.肖柳英,曾文铤,马佩球等.荔枝核颗粒剂治疗慢性乙型肝炎临床疗效研究.中华中医药杂志,2005,20(7):444-445
    87.许奇志,李韬,陈秀萍等.24份龙眼种质资源RAPD分析.厦门大学学报(自然科学版),2008,47(2):26-30
    88.徐庆,陈全斌,义祥辉等.荔枝核提取物对细胞系HBsAg与HBeAg表达的影响.中国医院药学杂志,2004,24(7):393-395
    89.徐详浩,彭浙,薛日辉等.关于野生荔枝的发现.园艺学报,1964,3(4):415-416
    90.徐详浩.荔枝的新变种-野生荔枝.华南农学院学报,1983,4(2):32-34
    91.徐燕千,梁宝汉.海南岛霸王岭林区森林综合调查报告.华南农业科学,1963,(3):57-116
    92.杨燕,罗志辉,宴全.荔枝核总皂甙的含量测定.化工时刊,2004,18(1):45-46
    93.姚庆荣.用SSR标记对中国荔枝种质资源的遗传多样性分析.甘肃农业大学硕士学位论文,2004
    94.姚全胜,詹儒林,黄丽芳等.11个芒果品种SSR指纹图谱的构建与品种鉴别.热带作物学报,2009,30(11):1572-1576
    95.杨燕军,梁北梅.荔枝核抗糖尿病有效部位总皂苷的含量测定.广东药学,2004,14(6):13-15
    96.姚庆荣,赵长增,王文泉.海南部分荔枝种质资源亲缘关系的SSR分析.植物研究,2009,29(5):628-632
    97.易干军,霍合强,蔡长河等.适于AFLP分析用的荔枝DNA的提取方法.华南农业大学学报,1999,20(3):123-124
    98.易干军,霍合强,陈大成等.荔枝品种亲缘关系的AFLP分析.园艺学报,2003,30(4):399-403
    99.阴健.中药现代研究与临床应用(Ⅱ).北京:中医古籍出版社,1995
    100.袁磊.龙眼遗传多样性及亲缘关系的ISSR分析.广西大学硕士学位论文,2007
    101.张斌.利用AFLP和SRAP分子标记技术构建荔枝高密度遗传图谱.华南农业大学硕士学位论文,2008
    102.张东,舒群,滕元文等.中国红皮砂梨品种的SSR标记分析.园艺学报,2007,34(1):47-52
    103.张琪静,张新忠,代红艳等.甜樱桃品种SSR植物检索系统的开发及遗传多样性分析.园艺学报,2008,35(3):329-336
    104.郑公铭,义志忠,张际标等.荔枝果皮抗氧化作用研究.天然产物研究与开发,2003,15(4):341-344
    105.郑少泉.龙眼种质资源描述规范和数据标准.北京:中国农业出版社,2006
    106.钟鸣,梁德乾,朱红梅等.荔枝口服液对糖尿病大鼠降血糖作用的观察.右江民族医学院学报,1996,18(3):303-305
    107.钟凤林,潘东明,郭志雄等.龙眼种质资源的RAPD分析.热带农业科学,2007,23(7):558-563
    108.钟伟,林晓东,朱芳德等.应用RAPD技术分析热带龙眼四季蜜与常规龙眼品种的遗传差异.中山大学学报(自然科学版),2004,43:65-68
    109.周佳.荔枝高密度遗传图谱构建及若干重要种质的分子标记分析.华南农业大学硕士学位论文,2009
    110. Albert J E, Lewis R V, Wilkinson M J, Caligari P D S. Developing an appropriate strategy to assess genetic variability in plant germplasm collections.TheorAppl Genet,1999,98: 1125-1131
    111. Antonius K. Nybom H. DNA fingerprinting reveals significant amounts of genetic variation in awild raspberry (Bubus idaeus)population. Molecular Ecology,1994,3(1):177-180.
    112. Aranzana M J, Carbo J,Arus P. Using amplified fragment length polymophisms(AFLPs)to identifypeach cultivars. J. Amer. Soc. Hort. Sci.,2003,128(5):672-677.
    113. Aradhya.M K. Isozyme variation in Lychee (Litchi chinensis Sonn). Scientia Horticulture. 1995,63:21-25
    114. Aranzana M J, Arus P, Carbo J et al. AFLP and SSR markers for genetic analysis and cultivar identification in Peach (Prunus persica Batsch.)[J]. Acta Horticulturae,2001, (546):367-370.
    115. Atoui A K, Mansouri A, Boskou G et al. Tea and herbal infusions:Their antioxidant activity and phenolic profile. Food Chemistry,2005,89:27-36
    116. Augusto Manubens,Sergio LobosYael Jadue et al. DNA isolation and AFLP fingerprinting of nectarine and peach varieties(Prunus persica).Plant Molecular Biology1999, (17):255-267.
    117. Badenes ML, Canyamsas T, Romero C et al. Genetic diversity in European collection of loquat(Eriobotrya japonica Lindl.). Acta Horticultureae,2003,620:169-174
    118. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products:Antioxidant acitivity, occurrence, and potential uses. Food Chemistry,2006,99: 191-203
    119. Benzie I F, Strain J J. Ferric reducing/antioxidant power assay:direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymology,1999,299: 15-27
    120. Bert P F, Charmet G, Sourdille P et al. A high-density molecular map for ryegrass (Loium perenne) using AFLP markers. Theoretical and Applied Genetics,1999,99: 445-452
    121. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products:Antioxidant acitivity, occurrence, and potential uses. Food Chemistry,2006,99: 191-203
    122. Bocco A, Cuvelier M-E, Richard H, et al. Antioxidant activity and phenolic composition of citrus peel and seed extracts. Journal of Agricultural and Food Chemistry,1998,46: 2123-2129
    123. Botta R,Akkak A,Me Q et al. Identification of pear cultivars by molecular markers. Acta Horticulturae,1998, (457):63-70.
    124. Bowers J E,Bandman E B, Meredith C P. DNA fingerprint characterization of some wine grape cultivars.Am. J. Enol. Vitic.,1993,44(1):266-274.
    125. Bradshaw J H D, Villar M, Watson B D et al. Molecular genetics of growth and development in Populus.Ⅲ. Agenetic linkage map of a hybrid poplar composed of RFLP, STS, and RAPD markers. Theoretical and Applied Genetics,1994,89:167-178
    126. Cavanna M, Marinoni D T, Bounous G et al. Genetic diversity in ancient apple germplasm from northwest Italy. Journal of Horticultural Science & Biothehnology,2008,83(5): 549-554
    127. Cervera M T, Cabezas J A, Sancha J C et al. Application of AFLPs to the characterization of grapevine(Vitis uinifera L.) genetic resources. Theoc APPl. Genet,1998, (97):51-59.
    128. Crespan M, Milani N. The Muscats:A molecular analysis of synonyms, homonyms and genetic relationships within a large family of grapevine cultivars.Vitis,2001,40(1):23-30
    129. Chen C X, Bowman K D, Choi Y A et al. EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliate. Tree Genetics & Genomes,2008,4:1-10
    130. Degani C, Deng J S, Beiles A. Identifying lychee cultivars and their genetic relationships using inter simple sequence repeat (ISSR) markers. Journal of the American Society for Horticultural Science,2003,128(6):838-845
    131. Duan X W, Jiang Y M, Su X G et al. Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chemistry,2007,101 (4):1365-1371
    132. Erbing b, Jansson P E, Widmalm G, et al. Structure of the capsular polysaccharide from the Klebsiella K8 reference strain 1015. Carbohydr Res.1995,273:197-205
    133. Flavell R. The molecular characterization and organization of plant chromosomal DNA sequences. Annual Review of Plant Physiology,1980,31:569-596
    134. Fisher P J, Gardner R C, Richardson T E. Single locus microsatellites isolated using 5" anchored PCR. Nucleic Acids Research,1996,24(21):4369-4371
    135. Ge X J, Sun M. Reproductive biology and geneic diversity of acryptoviviparous mangrove A egiceras corniculatum(M yrsinaceae) using allozyme and intersimple sequence repeat (ISSR) analysis. Mo 1 Eco 1,1999,8:2061-2069
    136. Gokirmak T, Mehlenbacher S A, Bassil N V. Characterization of European hazelnut (Corylus avellana) cultivars using SSR markers. Genetic Resources and Crop Evolution,2009,56(2): 147-172
    137. Guo C J, Yang J J, Wei J Y et al. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research,2003,23 (12):1719-1726
    138. Gisbert A D, Calvo J M, Llacer G et al. Development of two loquat [Eriobotrya japonica (Thunb.) Lindl.] linkage maps based on AFLPs and SSR markers from different Rosaceae species. Molecular Breeding,2009,23:523-538
    139. Golovchenko V V, Ovodova R G, Shashkov A S, et al. Structural studies of the pectic polysaccharide from duckweed Lemna minor L. Phytochem.2002,60:89-97
    140. Hayden M J, Stephenson P, Logojan A M et al. A new approach to extending the wheat marker pool by anchored PCR amplification of compound SSRs. Theoretical and Applied Genetics,2004,108:733-742
    141. Hayden M J, Stephenson P, Logojan A M et al. Development and genetic mapping of Sequence-tagged microsatellites (STMs) in bread wheat(Triticum aestivum L.). Theoretical and Applied Genetics,2006,113:1271-1281
    142. Huang X M, Wu Z X. Maturation and senescence of litchi fruit and their regulations. In: Nouredddine B and Norio S (eds). Advances in Postharvest Technologies for Horticultural Crops. Research Sunpost, Keralaa. India,2006.315-340
    143. Jannati M, Fotouhi R, Abad A P et al. Genetic diversity analysis of Iranian citrus varieties using microsatellite (SSR) based markers. Journal of Horticulture and Forestry,2009,1(7): 120-125
    144. Jiang Z W, Tang F Y, Huang H W et al. Assessment of genetic diversity of Chinese sand pear landraces (Pyrus pyrifolia Nakai) using simple sequence repeat markers. Hortscience,2009, 44(3):619-626
    145. Jin Phang Loh, Ruth Kiew, Ohn Set et al. Amplified Fragment Length Ploymorphism Fingerprinting of 16 Banana Cultivars(Mesa cvs).Molecular Phylogenetics and Evolution, 2000,17(3):360-366.
    146. Joshi S P,Gupta V S,A ggarwal R K,et al. Genetic diversity and phylogenetic relationship as revealed by inter simple scequence repeat (ISSR) polymorphism in the genus Oryza. Theor Appl Genet.2000,100:1311-1320
    147. Kalt W, Forney CF, Martin A et al. Antioxidant capacity, Vc, phenolics and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry,1999,47: 4638-4644
    148. Kandpal R P, Kandal G, Weissman S M. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers. Proceedings of the National Academy of Sciences of the United States of America,1994,91: 88-92
    149. Katayama H, Adachi S, Yamamoto T et al. A wide range of genetic diversity in pear (Pyrus ussuriensis var. aromatic) genetic resources from lwat, Japan revealed by SSR and chloroplast DNA markers. Genetic Resources and Crop Evolution,2007,54(7):1573-1585
    150. Kobayashi Y, Suzuki M, Satsu H et al. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. Journal of Agricultural and Food Chemistry,2000,48:5618-5623
    151. Kojima T.Nagaoka T,Noda K. Genetic linkage of ISSR and RAPD markers in einkorn wheat in relation to that of RFLP markers. Theo r App l Genet.1998,96:37-45
    152. Lagercrantz U, Ellegren H, Andersson L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Research,1993, 21(5):1111-1115
    153. Li J R, Jiang Y M. Litchi Flavonoids:isolation, identification and biological activity. Molecules,2007,12 (4):745-758
    154. Li M F, Zheng X Q, Zhu Y Q et al. Development and characterization of SSR markers in lychee(Litchi chinensis). Molecular Ecology Notes,2006,6:1205-1207
    155. Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics,1989,44:397-401
    156. Lu Rong, Yoshida T. Structure and molecular weight of Asian lacquerpolysaccharides. Carbohydr Polym.2003,54:419-424
    157. Marius R M E, Oliver G, Reiner F. Transferability of simple sequence repeat (SSR) markers developed in Litchi chinensis to Blighia sapida (Sapindaceae). Plant Molecular Biology Reporter,2009,27:570-574
    158. Magdalena L B, Elvira L T, Susana B. Improved size-exclusion high-performance liquid chromatographic method for the simple analysis of grape juice and wine polysaccharides. J Chromatogr A.1998,823:339-347
    159. Nakamura Y, Leppert M, O"Connell P et al. Variable number of tandem repeat markers for human gene mapping. Science,1987,235:1616-1622
    160. Nagaoka T,Ogihara Y. Applicability of Inter-simple sequence repeat markers in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet.1997,94: 597-602
    161.Nybom H. DNA fingerprints in sports of RedDeliciousapples.Hortscience,1990, 25:1641-1642.
    162. Nicole C, Maria C P, Maria C A et al. Antioxidant properties of hydroxyl flavones. Free Radical Biology & Medicine,1996,20 (1):35-43
    163. Paniego N, Echaide M, Monoz M et al. Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome,2002,45:34-43
    164. Peakall R, Gilmore S, Keys W et al. Cross-species amplification of Soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other Legume genera:implications for the transferability of SSRs in plants. Molecular Biology and Evolution,1998,15(1): 1275-1287
    165. Pelkonen S, Finne J. Polyacrylamide gel electrophoresis of capsular polysaccharides of bacteria. Methods in Enzym.1989,179:104-110
    166. Prevost A,Wilkinson M J,A new sysmtem of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. The r Appl Genet.1998,98:107-112
    167. Peng-nan,Su-Huashi, Shao-Linpeng,Chun-Jietian,Yang-Zhong. Genetic Diversity in Primula obconica (Primulaceae) from Central and South-west China as Revealed by ISSR Markers. Annals of Botany.2003(91):329-333
    168. Powell J. Enhanced concatemer cloning-a modification to the SAGE (Serial analysis of gene expression) technique. Nucleic Acids Research,1998,26(14):3445-3446
    169. Provan J, Powell W, Waugh R. Microsatellite analysis relationships within cultivated potato (Solanum tuberosum). Theoretical and Applied Genetics,1996,92:1078-1084
    170. Roux E L, Doco T, Sarmi-Manchado P, et al. A-type proanthocyanidins from pericarp of Litchi chinensis. Phytochiemistry,1998,48 (7):1251-1258
    171. Sankar A A,Moore G A. Evalutilon of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map. Theor Appl Genet. 2001,102:206-214
    172. Sarini-Manchado P, Le Roux E, Le Guerneve C, et al. Phenolic composition of litchi fruit pericarp. Journal of Agricultural and Food Chemistry,2000,48 (12):5995-6002
    173. Schobinger U, Barbic I, Duerr P, et al. Phenolic compounds in apple juice to positive and negative effects. Fruit Processing.1995,5 (6):171-172
    174. Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem.1992,40:945-948
    175. Shimuda T, Yamamotl T, Hayama H, et al. Genetic linkage map constructed by using an inteaspecifie cross between peach cultivars grown in Japan[J]. J Japan Soc Hort Sci.2000.69:536-542
    176. Sitthiphrom S, Anumtalabhochai S. Investigation of genetic relationships and hybrid detection in Longan by high annealing temperature RAPD. Acta Horticulturae,2005,665: 161-169
    177. Smulders M J M, Bredemeijer G, Rus-kortekaas W et al. Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theoretical and Applied Genetics,1997,97: 264-272
    178. Soong Y, Barlow P J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry,2004,88:411-417
    179. Soriano J M, Romero C, Vilanova S et al. Genetic diversity of loquat germplasm [Eriobotrya japonica (Thunb) Lindl] assessed by SSR markers. Genome,2005,48:108-114
    180. Stoclet J C,Chataigneau T, Ndiaye M, et al. Review-vascular protection by dietary polyphenols. European Journal of Pharmacology,2004,500:299-313
    181. Struss D, Ahmad R, Southwick S M. Analysis of sweet chenry (Prunus avium L.) cultivars using SSR and AFLP markers(J]. J. Amen Soc. Hon. Sci,2003,128(6):904-909.
    182. Stover E, Gottwald T, Hall D et al. Guava SSR analysis:diversity assessment and similarity to accessions associated with reducing citrus greening in Vietnam. Hortscience,2008,43(4): 1119-1119
    183. Sun J, Chu Y F, Wu X J, et al. Antioxidant and antiproli ferative activities of common fruits. Journal of Agricultural and Food Chemistry,2002,50:7449-7454
    184. Surinut P, Kaewsutthi S, Surakarnkul R. Radical scavenging activity in fruit extracts. Acta Horticulturae,2005,679:201-203
    185. Teramoto S.DNA finger-printing to distinguish cultivar and parental relation of Japanese pearJapa Soc Hort Sci,1994,63(1):17-21
    186. Tignon M, Kettmann R, Watillon B et al. AFLP:use for the identification of apple cultivars and mutants. In:Van der plus L H W, Dons J J M, Vanderleyden et al. Acta Horticulturae, Belgium,1998,465:69-71.
    187. Tobutt K R, Clarke J B, Boskovic G et al. A gene for susceptibility to the fungicide azoxystrobin in apple and a tightly linked microsatellite marker. Plant Breeding,2009,128: 312-316
    188. Venkatachalam P, Priya P, Saraswathy Amma C K et al. Identification, cloning and sequencing analysis of a dwarf genomic-specific RAPD marker in rubber tree [Hevea brasiliensis (Muell.) Arg.]. Plant Cell Reports,2004,23:327-332
    189. Wang X W, Kaga A, Tomooka N et al. The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [Vigan angularis (Willd.) Ohwi & Ohashi]. Theoretical and Applied Genetics,2004,109:352-360
    190. Wang H C, Huang H B, Huang X M et al. Sugar and acid compositions in the arils of litchi chinensis Sonn.:cultivar differences and evidence for the absence of succinic acid. Journal of Horticultural Science and Biotechnology,2006,81 (1):57-62
    191. Wang Q J, Fang Y Z. Analysis of sugars in traditional Chinese drugs. J Chromatogr B, Anal Technol Biomed Life.2004,812:309-324
    192. Watanabe M, Yamamoto T, Ohara M et al. Cultivar differentiation identified by SSR markers and the application for polyploid loquat plants. Journal of the Japanese Society for Horticultural Science,2008,77(4):388-394
    193. Witsenboer H, Michelmore R W, Vogel J. Identification, genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome,1997,40(6):923-936
    194. Wunsch A, Hormaza J I. Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple.Scientia Horticulturae,2007,113:37-43
    195. Yamamoto T, Kimura T, Sawamura T et al. SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theoretical and Applied Genetics,2001,102: 865-870
    196. Yang B, Wang J, Zhao M et al. Identification of polysaccharides from pericarp tissues of litchi(Litchi chinensis Sonn.) fruit in relation to their antioxidant activities. Carbohydrate Research,2006,341 (5):634-638
    197. Yonemoto Y, Chowdhury A K, Kato H et al. Cultivars identification and their genetic relationships in Dimocarpus longan subspecies based on RAPD markers. Scientia Horticulturae,2006,109(2):147-152
    198. Yonemoto Y, Chowdhury A K, Kato H et al. Cultivars identification and their genetic relationships in Dimocarpus longan subspecies based on RAPD markers. Scientia Horticulturae,2006,109(2):147-152
    199. Zhang D L, Quantick P C, Grigor J M. Changes in phenolic compounds in litchi(Litchi chinensis Sonn.) fruit during postharvest storage. Postharvest Biology and Technology,2000, 19 (2):165-172
    200. Zhang Q B, Li N, Zhou G F, et al. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res.2003,48:151-155
    201. Zhao M, Yang B, Wang J S et al. Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their antioxidant activities. Food Chemistry,2006,98:737-742
    202. Zheng M S, Zheng Y F. Experimental studies on the inhibition effects of 1000 Chinese medicinal herbs on the surface antigen of hepatitis B virus. Journal Traditional Chinese Medicine.1992,12 (3):193
    203. Zietkiewicz E,Rafslski A,Labuda D. Genome fingerprinting by simple sequence repeat(SSR) anchored polymerase chain reaction amplification. Genomics.1994,20:176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700