毛细管电泳—化学发光检测新体系的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳(CE, Capillary electrophoresis),狭义而言通常指毛细管区带电泳(CZE,Capillary zone electrophoresis),即在开放的石英毛细管中充满分离电解质溶液而进行的区带电泳方法;其分离效力源于不同荷电粒子在电场作用下迁移速率的差异,即与其所负电荷、水化半径及在溶液中迁移时所受摩擦力等因素有关,简洁的也可近似相关于粒子的荷质比。自1981年出现至今,CE因其高效、快速、环保等优点,获得了广泛的研究与应用,成为继HPLC之后另一类重要的液相分离技术;而其后端的检测,因进样量甚微(纳升级)而面临挑战——期间,荧光、紫外、电化学等相关检测技术的陆续应用,有力推动了CE技术的发展。化学发光(CL, Chemiluminescence)检测灵敏度高、装置简单,其与CE的联用技术有良好的应用前景:就现实而言,因CL反应体系的复杂性高、可控性差,CE-CL技术的实现仍面临诸多困难。
     本文基于luminol、TCPO (bis(2,4,6-trichlorophenyl)oxalate)的相关CL反应,尝试建立新的CE-CL检测体系、拓展CE-CL技术的应用,实现了对糖、苯酚类物质的间接CE-CL检测;寻找快速CL反应过程,使静态反应池作为简便的CE-CL接口方式而得以有效应用;加深了对TCPO的CL反应机理、hemin的催化特性等方面的认识。论文主要包括以下六部分内容:
     第一章为绪论,概述了毛细管电泳技术的发展过程、分离原理及相关检测技术:介绍了化学发光分析法的原理、特点:对CE-CL联用技术中常见的发光体系、接口方式及其研究现状与发展趋势进行了综述;说明了论文工作的目的和意义。
     第二章基于咪唑在THF(四氢呋喃)溶剂中对双(2,4,6-三氯苯基)草酸酯(TCPO)-H2O2体系实现的超快CL反应过程,设计实现了一种基于静态检测池的简便CE-CL体系。本章的工作主要包括三方面的内容:首先,在以THF为反应介质的imidazole(咪唑)催化TCPO发光体系中,我们记录到一类超快CL反应过程:反应自开始、达到最大CL光强至结束,在0.6s内完成并有强发光辐射:据此,设计实现了以静态反应池为CL检测单元的简便CE-CL检测系统——在最为简单的接口方式下,避免了因CL反应过程延冗导致的CE-CL峰展宽及拖尾。随后,基于imidazole-TCPO-H2O2-R6G(罗丹明6G)CL体系,我们采用该简便CE-CL系统并考虑TCPO在电泳过程中的稳定性,以非水毛细管电泳(NACE, Nonaqueous capillary electrophoresis)方式对R6G(罗丹明6G)碱性水解过程进行了监测,获得相关水解速率常数、反应活化能等。方法具有良好的分离度、稳定性及重现性,对R6G、R6G-COOH的检测下限(LOD, S/N=3)分别为6×10-8mol/L、7×10-8mol/L。TCPO体系的CL反应通常较为缓慢,反应机理亦未明确;实验记录其极快CL反应过程与已有文献报道有显著不同,进而进行一系列静态注射测试,考察了催化剂(imidazole)浓度、氧化剂(H2O2)浓度及反应介质溶剂等对该CL反应光强、持续时间的影响——在所得数据基础上,提出imidazole催化TCPO-H2O2发光反应过程可能存在新的中间体,并给出了相关反应机理解释。
     第三章以luminol-KIO4-K3Fe(CN)6化学发光体系,实现了基于静态反应池的简便CE-CL体系对糖类物质的间接检测。这部分工作的内容主要包括:将超快化学发光反应过程的实现拓展到常规的luminol体系——强碱性水溶液中,以一定浓度的K3Fe(CN)6为催化剂、K104为氧化剂,可在0.65s内由luminol完成强CL发光过程;这一快速CL反应,使采用静态反应池的CE-CL检测系统得以有效工作。在该检测系统的基础上我们观察到糖类物质经毛细管电泳后对luminol的CL基线产生的负信号,并以此实现了对D-果糖、鼠李糖、蔗糖、p-环糊精的间接CE-CL分析,获得了良好的检测灵敏度、线性范围及重现性。作为一种新的糖类分析测试方法,其装置简单、检测灵敏度尚可(10-5mol/L)、无需衍生即可实现对单糖、双糖及寡糖的快速检测;拓展了CE-CL检测技术的应用范围,并为CE-CL检测装置的微型化提供了思路。
     第四章以上一章实现的简便CE-CL检测系统为基础,进一步考察了间接CE-CL方法对糖的分离检测条件;以α-,β-,γ-环糊精为混合待测模型,测试了方法对寡糖的分离检测效能,并对实际样品中的环糊精添加剂进行了分析测试。这部分的工作,首先对分离介质碱度、DMSO含量等对糖类分离检测的影响进行了考察,分析了其产生原因:其中,DMSO含量的增加可令CE-CL过程更加平稳、分离度改善,但基线降低、分析时间延长——据此,我们采用提高分离电压(22kV)的方法,在含40%DMSO的分离介质中,实现对三种环糊精的分离检测(24min内完成,三种环糊精的检测下限分别为:6.0×10-5mol/L、6.5×10-5mol/L、5.5×10-5mol/L)。方法以分离介质中DMSO的添加,调节EOF(电渗流)大小,改善待测物分离度;同时,分析测试了冬瓜茶饮料中的环糊精添加剂(β-γ-环糊精),验证了方法的实际应用价值。
     第五章以改进的鞘流式CE-CL检测系统,利用维生素B12(VB12(Co(Ⅲ)))经还原后得到的VB12(Co(Ⅱ))对luminol-H2O2化学发光体系良好的催化能力,实现了对药品中VB12含量的CE-CL检测。实验工作主要包括两部分内容:第一部分,我们对实验室前期实现的鞘流式CE-CL系统进行了改进。通过“重力驱动-挤压控制”方式,改善外管路中化学反应试剂的流速控制,并实现对待测物CL检测时间窗口的计算与调节:加强了PMT检测器的避光处理;将分离高压负极移近毛细管出口端,消除管路中气泡对CE电泳过程影响。第二部分,以连二亚硫酸钠(Na2S2O4)为还原剂,在温和条件下将VB12(Co(Ⅲ))→VB12(Co(Ⅱ));通过CE电泳过程,将干扰物质与VB12(Co(Ⅱ))分离,实现其柱端CL准确检测。实验测试可在20分钟内完成,检测下限(LOD)2×10-7mol/L(S/N=3);方法应用于药品中VB12的CL分析,结果令人满意。
     第六章对一类高效CL催化剂hemin(?)勺特性及其在CL中的应用进行了探索,并在此基础上实现了对苯酚类物质的间接CE-CL检测。实验工作主要包括两部分内容:首先,以静态注射实验考查了hemin对luminol-H2O2体系的CL催化特性,发现中性介质中hemin具有较碱性、酸性介质中更强的CL催化能力,而Br、F-等卤素离子的存在可进一步增强其CL催化信号:但该体系与CE技术的联用遇到困难(主要由于hemin的自聚特性,导致相关CE-CL过程无法顺利进行)。随后,通过向hemin-luminol的DMSO水溶液及化学发光试剂中添加高浓度的NH3·H2O,实现了hemin的自由泳动(实验获得平稳的CE-CL基线)——这主要得益于NH3对hemin中心Fe(Ⅲ)的配位,消除了其自聚对电泳过程的影响;这一结果对hemin在CE-CL分析中的应用有着显见的作用与意义。在此工作的基础上,我们尝试以间接CE-CL方法对苯酚类物质进行测试,获得了灵敏、快速的分析结果——15min内完成了五种苯酚的分离测试,相关检测下限为:4.8×10-6(2-仲丁基苯酚)、4.9×10-6(邻甲酚)、5.4x10-6(间甲酚)、5.3×10-6(二氯酚)、7.1×10-6(苯酚)mol/L。后续实验,虽有4种酚类在静态注射中表现出对hemin-luminol-H2O2体系CL的抑制,但二氯酚却对发光信号有增强——因此,我们倾向于将该间接CE-CL检测过程的机理归结为CE电泳中待测物对luminol的离子取代。
In narrow terms, capillary electrophoresis (CE) usually means the capillary zone electrophoresis (CZE). which was performed in a narrow-bore open quartz tube filled with separation electrolyte. The separation efficiency of this technology is relied on the differential migration of ionic species in an electric field by their charge, frictional forces and hydrodynamic radius. In simple terms, it was designed to separate species based on their size to charge ratio. Introduced in1981, CE has been extensively investigated and applied for its high performance, rapid analysis and environmental friendliness; now, it has become an important liquid separation technology besides the traditional HPLC. For the micro volume of injection sample, CE confronts challenges for sensitive detection of the electrophoresis-separated analytes. To solve this problem, various technologies, such as fluorescence detection, UV-Vis absorbance detection and electrochemical detection were adopted to improve this micro separation technology. Being highly sensitive with simple equipment, chemiluminescence (CL) was expected to be an efficient detection method for CE. In practice, the CL reaction system was complicated and hard to be controlled. It made the explorations of CE-CL detection get in various difficulties.
     Using the CL reactions of luminol and TCPO (bis(2,4,6-trichlorophenyl)oxalate), this dissertation focused on finding new CE-CL detection methods to expand the application of this technology. Indirect CE-CL determination of saccharides and phenols were realized; ultra-fast CL reactions were discovered, making static reaction cell perform well as a compact CE-CL interface; the mechanism of TCPO CL reaction and the catalytic properties of hemin were further understood. Six parts were included in this dissertation, as following:
     Chapter one was the introduction. First, the development and theories of CE technology were overviewed involving the corresponding detection methods. The CL detection was introduced with its theories and characters. These CL reaction systems, which were frequently used in CE-CL, were especially displayed with various CE-CL interfaces, investigated status and developing tendency. The goals and significances of this dissertation were also introduced here.
     In chapter two, we designed a compact CE-CL system with a static detection cell, using an ultra-fast CL reaction of TCPO-H2O2system by the catalysis of imidazole in THF (tetrahydrofuran). There are three parts in this investigation. First, we recorded an ultra-fast CL duration of TCPO-H2O2reaction system, which was catalyzed by imidazole in the solvent of THF. A strong CL emission appeared with the reaction starting, going and finishing in0.6s. Based on this observation, a compact CE-CL system was realized using a static reaction cell for CL detection. With this simplest interface, the peak-spreading and-tailing caused by a redundant CL duration were avoided in CE-CL electropherograms. Then, relied on the CL system of imidazole-TCPO-H2O2-R6G (rhodamine6G), a NACE (nonaqueous capillary electrophoresis) method was applied to monitor the hydrolysis process of R6G in alkaline solutions with this compact CE-CL system. The relative rate constants and activation energy were gained. Adequate separation efficiency, stability and reproducibility with LOD (limit of detection) of6×10-8mol/L,7×10-8mol/L for R6G and R6G-COOH were gained in experiment. The CL duration of TCPO system was quite slow in normal conditions, and its mechanism did not be pointed out very clearly. So we further observed the discovered unusual fast CL duration (the fastest one in reports of TCPO) and investigated the effects of catalyst (imidazole), oxidant (H2O2) and solvents on the CL intensity and duration. With these data, a new intermediate was suggested in the CL reaction process of TCPO-H2O2catalyzed by imidazole, followed with a possible mechanism. Chapter three, a compact CE-CL system was developed for carbohydrate analysis with
     luminol-KIO4-K3Fe(CN)6reaction system. In this investigation, an ultra-fast CL reaction was realized with frequently-used CL reagent of luminol. In alkaline solution, a strong CL emission could be accomplished in0.65s by luminol with proper concentration of K3Fe(CN)6as catalyst and KIO4as oxidant. It made the CE-CL detection system performed efficiently with a static reaction cell. Using this system, we observed negative signals with carbohydrates in the CE-CL baseline of luminol and realized an indirect determination of rhamnose, D-fructose, sucrose and β-cyclodextrin with adequate sensitivities, linear ranges and reproducibilities. As a novel analysis method for carbohydrates, it performed with simple equipment to achieve rapid determination of mono-, di-and oligo-saccharides with adequate sensitivities (10-5mol/L). This job expanded the application area of CE-CL detection and provided a new approach to realize simplified CE-CL system. In chapter four. the indirect CE-CL carbohydrate analysis was further investigated, α-,β-
     and y-cyclodextrins (CDs) were used as a mixed sample to find out the efficiency of this indirect CE-CL method for the determination of oligo-saccharides; further, it was applied to detect the cyclodextrin additives in a real sample. Here, the alkaline and dimethylsulfoxide (DMSO) contents in separation electrolyte were studied to find out their effects on the saccharide separation and detection. A higher content of DMSO would lead more stable electrophoresis and better separation, while the baseline became weaker with longer operation time. So the separation voltage was increased to24kV to determine those CDs in24min with a separation electrolyte of40%DMSO. The limits of detection for α-, β-and y-CD were6.0×10-5,6.5×10-5,5.5×10-5mol/L correspondingly. In this job, electroosmotic flow (EOF) was regulated by DMSO to improve the resolution of analytes in CE. With the determination of cyclodextrin additives (β-,γ-CD) in wax gourd tee drink, it's confirmed to be useful in practice.
     In chapter five, an improved sheath flow CE-CL system was utilized to perform accurate determination of vitamin B12(VB12) in drugs based on the catalytic ability of VB12(Co(Ⅱ)). which was reduced from VB12(Co(Ⅲ)), in CL reaction of luminol-H2O2.There are two sections in this chapter. In the first one, a previously lab-constructed sheath flow CE-CL system was improved. An equipment of "gravity driving-pressure control" was set up to control the flow velocity of CL reagents in the outer channel. By this way, the time window for the CL detection of analytes could be calculated and modified easily. The light resistant container was enhanced. To remove the interference of inner-appearing bubbles on CE, we shifted the cathode of separation voltage closer to the outlet of capillary. In the second section, sodium hydrosulfite (Na2S2O4) was found to an competent reagent to pre-reduce VB12(Co(Ⅲ)) into VB12(Co(Ⅱ)) gently. In this process, some interfering CL noise was also introduced and CE was used to remove it. In20min, an accurate CL detection of VB12could be accomplished with limit of detection (LOD)2×10-1mol/L (S/N=3) by CE-CL method. It's applied to determine VB12in tablets, gained satisfactory results.
     Chapter six was focused on the catalytic characters of hemin as an efficient CL catalyst and its potential application in CL detection. With this exploration, we realized an indirect CE-CL detection for phenols analysis in hernin-luminol-H2O2system. There are two sections in this chapter. Section one performed static injection tests to observe catalytic characters of hemin in CL reaction of luminol-H2O2. It's observed that hemin did best in a neutral solution compared with acidic or alkaline medium. Though halide ions, such as Br, F-could further enhance the CL signal catalyzed by hemin, it's found to be difficult while we tried to couple this CL system with CE, caused by the self-polymerization of hemin to hinder CE from going smoothly. In section two. quite high concentration of NH3·H2O was added in the DMSO aqueous solution of hemin-luminol to gain a stable CE-CL baseline (the electrophoresis of hemin could perform smoothly). With experiments, it's confirmed that the achievement of this CE-CL process was mostly due to the coordination between NH3and Fe(Ⅲ) of hemin to eliminate the interference of self-polymerization. The significance of this result is obvious for the application of hemin in CE-CL technologies. As a further job, we explored to detect phenols by indirect CE-CL method:five phenols could be separated and determined in15min with corresponding LODs of4.8×10-6mol/L (o-sec-butylphenol),4.9×10-6mol/L (o-cresol),5.4×10-6mol/L (m-cresol),5.3×10-6mol/L (dichlorophenol) and7.1×10-6mol/L (phenol). In the following static injection tests, four kinds of phenols were found to be inhibitive for the CL emission of hemin-luminol-H2O2, while dichlorophenol did enhance the emission. So, we tend to attribute this novel indirect CE-CL determination coming from ions displacement of luminol by phenols in CE process.
引文
[1]G A Luo, Y M Wang, Chinese J. Chromatogr.:1995,13,254.
    [2]化学发光基础理论与应用,林金明:2004,化学工业出版社,北京.
    [3]S Hjerten, Chromatogr. Rev:1967,9,122.
    [4]F E P Mikkers, F M Everaerts, Th. P E M Verheggen, J. Chromatogr.:1979,169,11.
    [5]J O N Hinkley, J. Chromatogr.:1975,109,209.
    [6]J W Jorgenson, K D Lukacs, Anal. Chem.:1981,53,1298.
    [7]S Hjerten, J. Chromatogr.:1983,270,1.
    [8]S Hjerten, M D Zhu, J. Chromatogr.:1985,346,265.
    [9]S Terabe, K Otsuka, K Ichikawa, et al., Anal. Chem.:1984,56,111.
    [10]H H Lauer, D Mcmanigill, Anal. Chem.:1986,58,166.
    [11]A Hjerten, J Liao, K Yao, J. Chromatogr.:1987,387,127.
    [12]A Cohen. B Karger. J. Chromatogr.:1987,397,409.
    [13]毛细管电泳技术及应用(第二版),陈义:2006,化学工业出版社,北京.
    [14]N W Frost. M Jing. M T Bowser, Anal. Chem.:2010.82.4682.
    [15]F Priego-Capote, L Ye, S Shakil, et al., Anal. Chem.:2008,80,2881.
    [16]J Rossier, F Reymond, P E Michel, Electrophoresis:2002,23(6),858.
    [17]J W Jorgenson, K D Lukacs. Science:1983,222,266.
    [18]A T Aranas, A M Guidote Jr., R R Haddad, et al., Talanta:2011,85,86.
    [19]Y H Xu, L Y Fang, E K Wang, Electrophoresis:2009,30,365.
    [20]C Stathakis, P L Walburton, R M Cassidy, J. Chromatogr. A:1994,659,443.
    [21]K Otsuka, M Higashimori, R Koike, et al., Electrophoresis:1994,15,1280.
    [22]H Ozaki, N Itou, S Terabe, et al., J. Chromatogr. A:1995,716,69.
    [23]S Yang, J G Baumgartner, M G Khaledi, J. Chromatogr. A:1996,738,265.
    [24]S Hjerten, M Zhu, J. Chromatogr.:1985,327,157.
    [25]S Hjerten, J. Chromatogr.:1985,347,191.
    [26]王杰,丁洁,中国医药工业杂志:1997,28(7),327.
    [27]高效毛细管电泳,邓延倬,何金兰:1996,145,科学出版社.
    [28]沈含熙,刘跃龙,冶金分析:1987,7(1),54.
    [29]J Snopek,I Jelinek, E Smolkova-Keulemansova, J. Chromatogr.:1988,438,211.
    [30]D Tsikas, A Hofrichter, G Brunner, Chromatographia:1990,30,657.
    [31]P Gebauer, Z Mala, P Bocek, Electrophoresis:2011,32(1),83.
    [32]Handbook of capillary electrophoresis, P J Landers:1993,9, CRC Press, Boca Ra ton.
    [33]M N Schultz, R T Kennedy, Anal. Chem.:1993,65,3161.
    [34]H Rebscher, V Pyell, J. Chromatogr.:1996,737,171.
    [35]G Choudhary, Cs Horvath, J. Chromatogr. A:1997,781,161.
    [36]C Yan, R Dadoo, R N Zare, et al., Anal. Chem.:1996,68,2726.
    [37]X C Huang, M A Quesada, R A Mathies, Anal. Chem.:1992,64(18),2149.
    [38]Y Shi, P C Simpson, J R Scherer, et al., Anal. Chem.:1999,71(23),5354.
    [39]A T Woolley, D Hadley, P Landre, et al., Anal. Chem.:1996,68(23),4081.
    [40]Y Walbroehl, J W Jorgenson, J. Chromatogr.:1984,315,135.
    [41]F Steiner, M Hassel, Electrophoresis:2000,21,3994.
    [42]T Tsuda, J V Sweedler, R N Zare, Anal. Chem.:1990,62,2149.
    [43]J P Chervet, R E J Van Soest, M Ursem, J. Chromatogr. A:1991,543,439.
    [44]J P Chervet, M Vrsm, J P Salzmann, et al., J. Chromatogr.:1989,12,278.
    145] T Wang, J H Aiken. C W Huie, et al., Anal. Chem.:1991,63.1372.
    [46]S E Moring, J C Colburn, P D Grosaman, et al., LC-GC:1990,8,34.
    [47]D N Heiger, P Kaltenbach, H-J P Sievert, Electrophoresis:1994,15(1),1234.
    [48]A Alnajjar, H H AbuSeada, A M Idris, Talanta:2007,72(2),842.
    [49]R Huang, Y G Wang, H M Wang, et al., J. Mod. Lab. Med.:2007,22,4.
    [50]A W Lantz, Y Bao, D W Armstrong, Anal. Chem.:2007,79,1720.
    [51]J A Olivares, N T Nguyen, C R Yonker, R D Smith*, Anal. Chem.:1987,59,1230.
    [52]R D Smith, J A Loo, C J Barinaga, et al., J. Chomatogr. A:1989,480,211.
    [53]V N Reinhold, B B Reinhold, C E Costello, Anal. Chem.:1995,67(11),1772.
    [54]A Z Carvalho, M N EI-Attug, J A F Silva, et al., J. Separation Science:2012,35,1336.
    [55]J S Mellors, K Jorabchi, L M Smith, et al., Anal. Chem.:2010,82(3),967.
    [56]R P Baldwin, Electrophoresis:2000,21,4017.
    [57]Z Yang, Z L, J Zhu, et al., J. Separation science:2010,33,1312.
    [58]J N Ye, R P Baldwin, Anal. Chem.:1993,65,3525.
    [59]Q Wang, F Ding, H Li, et al., Electrophoresis:2003,24,1687.
    [60]S Dong, S Zhang, X Cheng, et al., J. Chromatogr. A:2007,1161,327.
    [61]T J O'Shea, S M Lunte, Anal. Chem.:1993,65,948.
    [62]X Huang, R N Zare, S. Sloss, et al., Anal.Chem.:1991,63(2),189
    [63]N Avdalovic, C A Pohl, R D Rocklin, et al., Anal. Chem:1993,65(10),1470.
    [64]M N EI-Attug, E Adams, A V Schepdael, Electrophoresis:2012, DOI: 10.1002/elps.201100688.
    [65]M A Ruberto, M L Grayeski, Anal. Chem.:1992,64(22),2758.
    [66]X Y Wang, J M Zhou, W Yun, et al., Anal. Chim. Acta:2007,598(2),242.
    [67]W Zhan, A J Bard, Anal. Chem.:2007,79(2),459.
    [68]K Asian, S N Malyn, C D Geddes, J. Am. Chem. Soc.:2006,128(41),13372.
    [69]M J R Previte, K Asian, S N Malyn, et al.. Anal. Chem.:2006,78(23),8020.
    [70]L Zhao, L Sun, X Chu, TrAC Trends in Analyitcal Chemistry:2009,28(4),404.
    [71]施丽娟,检验医学与临床:2012,9(4):454.
    [72]M Wada, Y Ochi, K Nogami, et al., Analytical and Bioanalytical Chemistry:2012,403(9), 2569.
    [73]J Zhu, L Shu, M Wu, et al., Talanta:2012,93,428.
    [74]P Gravel, O Golaz. C Walzer, et al., Analytical Biochemistry:1994,221(1).66.
    [75]K Robards, J P Worsfold, Anal. Chim. Acta:1992,266,147.
    [76]Y Wu, S Yu,F Yu, etal., Spectrochimica Acta Part A:2011,81,544.
    [77]H Liu, J Ren, Y Hao, et al., Talanta:2007,72(3),1036.
    [78]S Baj, T Krawcyk, Anal. Chim. Acta:2007,585(1),147.
    [79]B Huang, J Li, L Zhang, et al., Anal. Chem.:1996,68,2366.
    [80]R Dadoo, A G Seto, L A Colon, et al., Anal. Chem.:1994,66,303.
    [81]J Zhu, L Shu, F Zhang, et al., Luminescence:DOI 10.1002/bio.1379.
    [82]E B Liu, Y M Liu, J K Cheng, Anal. Chim. Acta:2002,456,177.
    [83]J Wang, L Li, W. Huang, et al., Anal. Chem.:2010,82,5380.
    [84]Q Xu, X Ji, H Li, et al., J. Chromatogr. A:2010,1217(35),5628.
    [85]J Y Zhao, J Labbe, N J Dovichi, Microcol. Sep.:1993,5,331.
    [86]J Ren, X Huang. Anal. Chem.:2001,73,2663.
    [87]Y M Liu, E B Liu, J K Cheng, J. Chromatogr. A:2001,443,101.
    [88]E B Liu, Y M Liu, J K Cheng, Anal. Chim. Acta:2001,443,101.
    [89]X J Huang, Q S Pu, Z L Fang, Analyst:2001,126,281.
    [90]Y M Liu, J K Cheng, Electrophoresis:2002,23,556.
    [91]M Yamaguchi, H Yoshida, H Nohta, J. Chromatogr. A:2002,950,1.
    [92]X Mu, SZhao, Y Huang, et al., Separation science:2012,35(2),280.
    [93]H L Jiang, Y Z He, H Z Zhao, et al., Anal. Chim. Acta:2004,512,111.
    [94]S Han, Anal. Sci.:2005,21,1371.
    [95]Y Hu, X Li, Z Pang, J. Chromatogr. A:2005,1091,194.
    [96]W W He, X W Zhou, J Q Lu, J. Chromatogr. A:2006,1131,289.
    [97]S Han, H Li, E Liu, Microchim. Acta:2005,150,167.
    [98]S Zhao, W Bai, H Yuan, et al., Anal. Chim. Acta:2006,559,195.
    [99]S Han, E. Liu, H. Li, J. Pharm. Biomed. Anal.:2005,37,733.
    [100]S Zhao, J Wang, F Ye, et al., Anal. Biochem.:2008,378,127.
    [101]X Huang, J Ren, J. Liq. Chromatogr. Relat. Technol.:2003,26,355.
    [102]K Tsukagoshi, K Nakahama, R Nakajima, Anal. Chem.:2004,76,4410.
    [103]S L Zhou, J H Wang, W H Huang, et al., J. Chromatogr. B:2007,850,343.
    [104]Q Zhi, C Xie, X Huang, et al., Anal. Chim. Acta:2007,583,217.
    [105]T Li. B Li, S Dong. Anal. Bioanal, Chem.:2007,389,887.
    [106]J Wang, W Huang, Y Liu, et al., Anal. Chem.:2004,76,5393.
    [107]Y M Liu, H B Mu,Y L Zheng, et al., J. Chromatogr. B:2007,855,280.
    [108]Y Liu, H Yue, W Tian, et al., Anal. Letters:2009,42,45.
    [109]Y Zhang, Z Zhang, F Yang, Luminescence:2007,22,511.
    [110]X Ji, Z He, X Ai, et al., Talanta:2006,70,353.
    [111]Y Zhang, Z Zhang, F Yang, J. Chromatogr. B:2007,857,100.
    [112]W Wang, S Zhang, Y Liu, et al., Electrophoresis:2009,30,3092.
    [113]K Tsukagoshi, K Matsumoto, F Ueno, et al., J. Chromatogr. A:2006,1123,106.
    [114]K Tsukagoshi, F Ueno, R Nakajima, et al., Anal. Sci.:2007,23,227.
    [115]Y Zhang, Z Zhang, F Yang, Chromatographia:2007,66,539.
    [116]S Zhao, T Niu, Y Song, et al., Electrophoresis:2009,30,1059.
    [117]S Zhao, X Lan, Y M Liu, Electrophoresis:2009,30,2676.
    [118]W P Yang, Z J Zhang, W Deng, Anal. Chim. Acta:2003,485,169.
    [119]W P Yang, Z J Zhang, W Deng, J. Chromatogr. A:2003,1014,203.
    [120]W Yang, Z Zhang, W Deng, Talanta:2003,59,951.
    [121]S Zhao, C Xie, X Lu, et al., Electrophoresis:2005,26,1745.
    [122]S Zhao, C Xie, X Lu, et al., J. Chromatogr. B:2006,832,52.
    [123]S Zhao, Y Huang, M Shi, et al., J. Chromatogr. A:2009,1216,5155.
    [124]S Zhao, Y Huang, M Shi, et al., Anal. Chem.:2010,82,2036.
    [125]Y Huang, M Shi, S Zhao, et al., Electrophoresis:2011,32,3196.
    [126]G B Schuster, K A Horn, et al., Chemically Initiated Electron-Exchange Luminescence in Chemical and Biological Generation of Excited States:1982, Academic Press, New York.
    [127]E H White, D F Roswell, Accts. Chem. Res.:1970,3,54.
    [128]M Hashimoto, K Tsukagoshi, R Nakajima, et al., J. Chromatogr. A:2000,867,271.
    [129]R Su, J M Lin, K Uchiyama, et al., Talanta:2004,64,1024.
    [130]C Kuyper, K. Denham, J Dickson, et al., Chromatographia:2001,53,173.
    [131]A Carr, J Dickson, M Dickson, et al., Chromatographia:2002,55,687.
    [132]J H Lee, J Je, J Hur, et al., Analyst:2003,128.1257.
    [133]M A Ruberto, M L Grayeski, J. Microcol. Sep.:1994,6.545.
    [134]K Mizuno, S Hata, S Tomioka, Chem. Pharm. Bull:1970,18,2588.
    [135]N W Barnett. B J Hindson. S W Lewis, Analyst:2000,125,91.
    [1]C Ding, H Li, X Li, et al., Chem. Commun.:2010,46,7990.
    [2]Y Weizmann, Z Cheglakov, I Willner., J. Am. Chem. Soc.:2008,130,17224.
    [3]H Cui, C He, G Zhao, J. Chromatogr. A:1999,855,171.
    [4]A Dapkevicius, TA van Beek, HAG Niederlander, et al., Anal. Chem.:1999,71,736.
    [5]SY Liao, CW Whang, J. Chromatogr. A:1996,736,247.
    [6]D Yin, C Xie, L Zhang, et al., Luminescence:2008,23,434.
    [7]NW Barnett, BJ Hindson, SW Lewis, Analyst:2000,125,91.
    [8]XJ Huang, ZL Fang, Anal. Chim. Acta:2000,414,1.
    [9]FJ Lara, AM Garcia-Campana, Al Velasco, Electrophoresis:2010,31,1998.
    [10]J Wang, L Li, W Huang, et al., Anal. Chem.:2010,82,5380.
    [11]Y Zhang, Z Gong, H Zhang, et al.. Anal. Commun.:1998,35,293.
    [12]H Zhao, H Jiang, Y He, Chin. J. Anal. Chem.:2004,32,153.
    [13]R Dadoo, AG Seto, LA Colon, et al., Anal. Chem.:1994,66,303.
    [14]C Kuyper, K Denham, J Dickson, et al., Chromatographia:2001,53,173.
    [15]A Carr, J Dickson, M Dickson, et al., Chromatographia:2002,55,687.
    [16]K Tsukagoshi, K Nakahama, R Nakajima, Anal. Chem.:2004,76,4410.
    [17]C-G Zhan, D W Landry, R L Ornstein, J. Am. Chem. Soc.:2000,122,2621.
    [18]J Chen, A Zheng, A Chen, et al., Anal. Chim. Acta.:2007,599,134.
    [19]M Honty, M D Craen, L Wang, et al. Appl. Geochem.:2010,25,825.
    [20]J-M Liu, Z-B Liu, L-X Hu, et al., Anal. Biochem.:2006,357,173.
    [21]X Chen, SW Nam, MJ Jou, et al., Org. Lett.:2008,10,5235.
    [22]F J Alvarez, N J Parekh, B Matuszewski, et al., J. Am. Chem. Soc.:1986,108,6435.
    [23]AG Hadd, AL Robinson, KL Rowlen, et al., J. Org. Chem.:1998,63,3023.
    [24]B Mann, ML Grayeski, Anal. Chem.:1990,62,1532.
    [25]K Tsukagoshi, A Tanaka, R Nakajima, et al., Anal. Sci.:1996,12,525.
    [26]F Steiner, M Hassel, Electrophoresis:2000,21,3994.
    [27]N Imaizumi, K Hayakawa, M Miyazaki, Analyst:1989,114,161.
    [28]JH Lee, J Je, J Hur, et al., Analyst:2003,128,1257.
    [29]N Hanaoka, RS Givens, RL Schowen, et al., Anal. Chem.:1988,60,2193.
    [30]T Jonsson, K Irgum, Anal. Chem.:2000,72,1373.
    [31]K Honda, J Sekino, K Imal, Anal. Chem.:1983,55,940.
    [32]SM Silva, K Wagner, D Weiss, et al., Luminescence:2002,17,362.
    [33]E Tommila, ML Murto, Acta Chem. Scand.:1963,17,1947.
    [1]Y Weizmann, Z Cheglakov, I Willner, J. Am. Chem. Soc.:2008,130,17224.
    [2]J Wang, W Huang, Y Liu, et al., Anal. Chem.:2004,76,5393.
    [3]X Ji, Z He, X Ai, et al., Talanta:2006,70,353.
    [4]M Yamaguchi, H Yoshida, H Nohta, J. Chromatogr. A:2002,950,1.
    [5]X Huang, Z Fang, Anal. Chim. Acta:2000,414,1.
    [6]K Tsukagoshi, A Tanaka, R Nakajima, et al., Anal. Sci.:1996,12,525.
    [7]R Dadoo, A G Seto, L A Colon, et al., Anal. Chem.:1994,66,303.
    [8]J Wang, L Li, W Huang, et al., Anal. Chem.:2010,82,5380.
    [9]X Huang, J Ren, Electrophoresis:2005,26,3595.
    [10]E H White, O Zafjriou, H H Kagi, et al., J. Am. Chem. Soc.:1964,86,940.
    [11]Y Mechref, G K Ostrander, Z E Rassi, J. Chromatogr. A:1995,695,83.
    [12]R A Evangelista, M Liu, F A Chen, Anal. Chem.:1995,67,2239.
    [13]C Patrick, Capillary Electrophoresis Theory And Practice,2nd ed., CRC Press LLC, FL, 1998.
    [14]G Huang, Y Lv, S Zhang, et al., Anal. Chem.:2005,77,7356.
    [15]J Zhu, L Shu, F Zhang, et al., Luminescence, in press ((DOI: 10.1002/bio.1379)http://onlinelibrary.wiley.com/doi/10.1002/bio.1379/pdf)
    [16]Q Wang. Y Fang. J. Chromatogr. B:2004,812.309.
    [17]Q Hu, T Zhou, L Zhang, et al., Analyst:2001,126,298.
    [18]S Dong, S Zhang, X Cheng, et al., J. Chromatogr. A:2007,1161,327.
    [19]H Tsai, C Whang, Electrophoresis:1999,20,2533.
    [20]Y Zhang, B Huang, J Cheng, Anal. Chim. Acta:1998,363,157.
    [21]S Liao, C Whang, J. Chromatogr. A:1996,736,247.
    [22]J Lin, M Yamada, Anal. Chem.:1999,71,1760.
    [23]J Ren, X Huang, Anal. Chem.:2000,73,2663.
    [1]A D McNaught, Nomenclature of carbohydrates (Recommendations 1996):1997, Carbohydr. Res.,297.1.
    [2]J L Bernal. M J Del Nozal, L Toribio, et al., J. Agric. Food Chem.:1996,44(2),507.
    [3]J Ye, R P Baldwin, J. Chromatogr. A:1994,687(1),141.
    [4]C Campa, M Rossi, Methods in Molecular Biology:2008, vol.384:Capillary Electrophoresis,247-305.)
    [5]S Hoffstetter-Kuhn, A Paulus, E Gassmann, et al., Anal. Chem.:1991,63,1541.
    [6]R A Evangelista, M-S Liu, F-T A Chen, Anal. Chem.:1995,67,2239.
    [7]J Ye, R P Baldwin, Anal. Chem.:1993,65,3525.
    [8]R P Baldwin, Carbohydrate Analysis by Modern Chromatography and Electrophoresis: 2002, Journal of Chromatography Library, Vol.66, Elsevier, Amsterdam:pp.947-959.
    [9]S Dong, S Zhang, X Cheng, et al., J. Chromatogr. A:2007,1161(1-2),327.
    [10]X Cheng, S Zhang, H Zhang, et al., Food Chemistry:2008,106(2),830.
    [11]Z Yang, L Zhang, G Li, et al., Chromatographia:2010,71,439.
    [12]W Lu, R M Cassidy, Anal. Chem.:1993,65(20),2878.
    [13]P L Weber, S M Lunte, Electrophoresis:1996,17,302.
    [14]C. Patrick, Capillary Electrophoresis Theory and Practice,2nd ed., CRC Press:1998.
    [15]P L Weber, S M Lunte, Electrophoresis:1996,17,302.
    [16]M Stefansson, M Novotny, Anal. Chem.:1994,66,1134.
    [17]A Zamfir, D G Seidler, E Schonherr, et al., Electrophoresis:2004,25,2010.
    [18]J Zhu, L Shu, M Wu, et al., Talanta:2012,93,428.
    [19]F M C Menezes, Synthesis and Chemiluminescence Studies of Luminol and Derivatives: 2010, Universidade Tecnica de Lisboa, p 12.
    [20]S G Penn, R W Chiu, C A Monnig, J. Chromatogr. A:1994,680,233.
    [21]F Steiner, M Hassel, Electrophoresis:2000,21,3994.
    [22]J W Jorgenson, K D Lukacs, Anal. Chem.:1981,53,1298.
    [23]M Voicescu. M Vasilescu, T Constantinescu, et al., Journal of Luminescence:2002,97(1), 60.
    [24]化学发光基础理论与应用,林金明:2004,36,化学工业出版社,北京.
    [25]陈龙然,袁唐培,王雅芬,et al.,食品科学:2003,24(8),268.
    [1]H C Tsai, C W Whang, Electrophoresis:1999,20,2533.
    [2]B Huang, J J Li, L Zhang, et al., Anal. Chem.:1996,68(14),2366.
    [3]X J Huang, Z L Fang, Anal. Chim.Acta:2000,414,1.
    [4]赵化章,姜会丽,何友昭,分析化学:2004,32(2),153.
    [5]Ministry of Health of the People's Republic of China, Determination of vitamin B12 in health foods[M], GB/T 5009.217-2008, Beijing:Standards Press of China,2009.
    [6]Ministry of Health of the People's Republic of China, Determination of vitamin B12 in foods for infants and young children, milk and milk products[M], GB/T 5009.217-2008, Beijing:Standards Press of China,2010.
    [7]M K Sahni, S Spanos, M Z Wahrman, et al., Analytical Biochem.:2001,289,68.
    [8]H B Li, F Chen, Y Jiang, J. Chromatogr. A:2000,891,243.
    [9]X Luo, B Chen, L Ding, et al., Anal. Chim. Acta:2006,562,185.
    [10]H B Li, F Chen, Fresenius J. Anal. Chem.:2000,368,836.
    [11]S C Alcock, P M Finglas. M R A Morgan, Food Chem.:1992,45(3),199.
    [12]Y Gao, F Guo, S Gokavi, et al., Food Chem.:2008.110,769.
    [13]T LSheehan, D M Hercules, Anal. Chem.:1977,49(3),446.
    [14]S S Kumar, R S Chouhan, M S Thakur, Anal. Biochem.:2009,388,312.
    [15]O Schindler, Helvetica Chimica Acta:1951,163,1356.
    [16]R N Boos, J E Carr, J B Conn, Science:1953,117,603.
    [17]T DStaller, M J Sepaniak, Electrophoresis:1997,18,2291.
    [1]http://en.wikipedia.org/wiki/Hemin,2012-8-7.
    [2]E L Bastos, P Romoff, C R Eckert, et al., J. Agric. Food Chem.:2003,51,7481.
    [3]G Merenyi, J. Lind, T E Eriksen, J. Biolumin. Chemilumin.:1990,5,53.
    [4]P Jones, N R Scowen, Photochem. Photobiol.:1987,45,283.
    [5]A L Dounce, S P Sichak, Free Radical Biol. Med.:1988,5,89
    [6]T Li, B Li, S Dong, Anal. Bioanal. Chem.:2007,389,887.
    [7]D Thirstrup, G S Baird, Anal. Chem.:2010,82,2498.
    [8]Y Xiao, V Pavlov, R Gill, et al., Chembiochem:2004,5(3),374.
    [9]V Pavlov, Y Xiao, R Gill, et al., Anal. Chem.:2004,76(7),2152.
    [10]1 A Cohen, D K Lavelle, A B Kopelove, Inorg. Chem.:1980,19,1100.
    [11]1 A Cohen, J. Am. Chem. Soc.:1969,91(8),1980.
    [12]J Simplicio, Biochemisty:1972,11(13),2522.
    [13]http://www.mpbio.com/detailed_info.php?family_key=02194025&country=44.
    [14]W Liu, W Cao, W Liu, et al., Spectrochimica Acta Part A:2012,85,283.
    [15]D Thirstrup, G S Baird, Anal. Chem.:2010,82,2498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700