乙醇脱水制乙烯γ-Al_2O_3催化剂的分子模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质乙醇制乙烯是绿色可持续发展工艺路线。目前乙醇脱水制乙烯工业化装置上使用的催化剂主要是γ-Al_2O_3催化剂。从原子和分子水平上对该催化剂进行深入认识,可为设计开发在较低温度下使用的乙醇脱水制乙烯高选择性催化剂提供指导。本文采用分子模拟方法,对γ-Al_2O_3(100)表面结构及热稳定性进行了深入研究,探究了该表面对乙醇脱水制乙烯反应的催化性能,对该表面上乙醇脱水制乙烯过程各物种的吸附性能以及反应动力学进行了考察,并采用程序升温脱附和原位漫反射红外-质谱联用方法,对γ-Al_2O_3催化剂的酸碱中心和γ-Al_2O_3催化剂上乙醇脱水制乙烯的反应机理进行了研究。
     γ-Al_2O_3(100)表面的Al终止面的f构型最稳定。当温度达到1000K时,表面发生再构;该表面的乙醇脱水制乙烯反应活性中心为Al_2和O_(2a);醇脱水反应要求催化剂具有中等偏弱酸强度;根据多位理论的几何适应规则,较低温度时乙醇分子内脱水生成乙烯最有可能按照E1机理进行;γ-Al_2O_3(100)表面羟基化后,反应活性中心数目减少,不利于物种在γ-Al_2O_3(100)表面上的吸附活化及发生反应。
     在温度为743K,压力为100~1500kPa时,乙醇、乙烯、乙醚和水单组分在γ-Al_2O_3(100)表面的吸附量由大到小依次为乙醚>乙醇>乙烯>水;各组分在γ-Al_2O_3(100)表面均为化学吸附,吸附热数值由大到小依次为乙烯>乙醇>水>乙醚;当以上物种形成共吸附时,乙醚的吸附热增大到246.9kJ/mol,成为吸附作用最强的物种,在原位继续发生反应,进而生成乙烯,是γ-Al_2O_3催化乙醇脱水生成乙烯具有高选择性的重要原因。
     在γ-Al_2O_3(100)表面上乙醇脱水制乙烯三个可能发生的反应按照反应能垒由大到小排列依次为乙醇脱β-氢生成碳负离子>乙醇直接脱水生成乙烯>乙醇脱羟基生成碳正离子。基于谐波过渡态理论(Harmonic Transition State Theory),由反应物和过渡态的振动频率和活化能计算出反应过程中每一步基元反应的反应速率常数,当温度低于500K时,反应速率常数由大到小依次为乙醇脱羟基生成碳正离子>乙醇直接脱水生成乙烯>乙醇脱β-氢生成碳负离子,当温度达到500K时,反应速率常数由大到小依次为乙醇脱β-氢生成碳负离子>乙醇直接脱水生成乙烯>乙醇脱羟基生成碳正离子。
     程序升温脱附和原位红外漫反射实验结果表明,真实的γ-Al_2O_3表面上存在不同强度的酸中心及碱中心,并存在少量B酸中心,说明真实的γ-Al_2O_3表面存在羟基化现象。原位漫反射红外-质谱联用研究结果表明,随温度的升高,乙烯的生成量增加,乙醚的生成量减少。乙醇脉冲进料实验发现,在停止乙醇进料一段时间后,体系中检测到乙炔,表明乙烯在γ-Al_2O_3催化剂上会被活化、继续反应生成乙炔,乙炔的多聚是造成催化剂表面积炭的可能原因。
The manufacture of ethylene from biomass-derived ethanol is an environmentallyfriendly and sustainable technological route. At present for the industrial manufactureof ethylene via ethanol dehydration, the γ-Al_2O_3catalyst is applied. The deep analysisof the catalyst could provide useful guidance to develop high selective catalyst used atlower temperature. In this work, by using molecular simulation approach, theappropriate γ-Al_2O_3(100) surface was choosed and the thermostability and catalyticproperties were studied. The adsorptive capabilities, as well as the reaction kineticswere also investigated. And the acidity and basicity of γ-Al_2O_3and reactionmechanism on γ-Al_2O_3were studied through TPD and DRIFTS.
     The f model of Al terminal surface was the most stable γ-Al_2O_3(100) surfacemodel. The reconstruction of surface would take place at temperature of1000K; thesurface reactive sites were the Al_2a cidic site and O_(2a) alkalic site; the moderate aciditywas required for ethanol dehydration; and according to the geometric adaptability rulein multi-site theory, it was reasonable to deduce that ethylene from ethanoldehydration at lower temperature might comply to the E1mechanism, as with thetemperature was increased, the ethylene formation would comply to E1、E2or E1cBmechanism. After the hydroxylation of γ-Al_2O_3(100) surface, the characteristics ofsurface was changed dramatically, and the hydroxyl groups were consistentlyadsorbed on the surface of catalyst, which could inhibit the adsorption and activationof ethanol molecules.
     At temperature743K and pressure100~1500kPa, the corresponding sequence ofadsorption amount of single components, such as ethanol, ethylene, diethyl ether andwater, was as following: diethyl ether>ethanol>ethylene>water; all of the fourcomponents could be chemically adsorbed on γ-Al_2O_3(100) surface, and thecorresponding sequence of adsorption heat was as following: ethylene>ethanol>water>diethyl ether; when above components co-adsorbed on γ-Al_2O_3(100) surface,diethyl ether was the strongest adsorption specie with the adsorption heat246.9kJ mol-1, which generated ethylene on adsorption site. It was the importantreason why γ-Al_2O_3catalyst performanced high dehydration selectivity.
     On the γ-Al_2O_3(100) surface, the sequence of reaction barriers were as following:β-dehydrogenation of ethanol to form carbanions> direct dehydration of ethanol toform ethylene>dehydroxylation of ethanol to form carbonium ions. With the harmonic transition state theory, the reaction rate constant for each elementary step wascalculated using the reaction barrier and the vibration frequencies of reactant andtransition state. When temperature under500K, the sequence of reaction rate constantwas as following: dehydroxylation of ethanol to form carbonium ions>directdehydration of ethanol to form ethylene>β-dehydrogenation of ethanol to formcarbanions. When temperature above500K, the sequence of reaction rate constantswere as following: β-dehydrogenation of ethanol>direct dehydration of ethanol toform ethylene>dehydroxylation of ethanol to form carbonium ions.
     The result of TPD and DRIFTS experiment showed that there were acid andalkali centers with different intensity on the real γ-Al_2O_3surface, and the presence ofa small amount of B acid center, showed that there was hydroxylation phenomenon onthe real γ-Al_2O_3surface. The result of DRIFTS-MS experiment showed that, with therise of temperature, the ethylene production increases and diethyl ether production isreduced from ethanol dehydration on γ-Al_2O_3. The result of ethanol pulse feedingexperiment showed that when ethanol feeding is stopped, acetylene was detected aftera short time, and ethylene may be activated to generate acetylene on γ-Al_2O_3catalystsurface. Polymerization of acetylene may cause carbon deposition on catalyst surfacearea.
引文
[1] Palsson B O, Afshar S F, Rudd D F, et al. Biomass as a Source of ChemicalFeedstocks: An Economic Evaluation. Science,1981,213(4507):513~517
    [2] Demirbas A. Bioethanol from Cellulosic Materials: A Renewable Motor Fuelfrom Biomass. Energy Sources,2005,27(4):327~337
    [3] Okkerse C, Bekkum H V. From Fossil to Green. Green Chemistry,1999,1(2):107~114
    [4] William Malisoff, Gustav Egloff. Ethylene. Journal of Physical Chemistry,1919,23(2):65~138
    [5]高鸿宾.有机化学(第四版).北京:高等教育出版社,2005,64~65
    [6]姚允斌,解涛,高英敏.物理化学手册.上海:上海科学技术出版社,1985,154~156
    [7]黄立道.乙烯及乙烯工业现状.中国氯碱,2005,5(5):1~5
    [8] Burg S P, Burg E A. Role of Ethylene in Fruit Ripening. Plant Physiology,1962,37(2):179~189
    [9]周丛,茅文星.拓展乙烯原料来源的研究现状.化工进展,2009,28(8):1313~1318
    [10]张婧元,孔凡贵,贺德福等.乙烯裂解原料生产现状.化工中间体,2007,8:31~34
    [11]唐苏欣,舒朝霞.从复苏走向景气—2010年世界和中国石化工业综述及2011年展望.国际石油经济,2011,5:62~69,113
    [12]鲁翼.2015年我国乙烯自给率将达92.3%.化工管理,2011,12:33~34
    [13]Okagami A, Matsuoka S. Process for Manufacturing Olefins by CatalyticOxidation of Hydrocarbons. US patent,3541179,1970-11-07
    [14]李作政,冷寅正.乙烯生产与管理.北京:中国石化出版社,1992,1~68
    [15]王松汉,何细藕.乙烯工艺与技术.北京:中国石化出版社,2000,1~82
    [16]王松汉,乙烯装置技术与运行.北京:中国石化出版社,2009,122~124
    [17]Ren T, Patel M, Blok K. Olefins from Conventional and Heavy Feedstocks:Energy Use in Steam Cracking and Alternative Processes. Energy,2006,31(4):425~451
    [18]Ren T, Patel M K, Blok K. Steam Cracking and Methane to Olefins: Energy Use,CO2Emissions and Production Costs. Energy,2008,33(5):817~833
    [19]Cai H Y, Krzywicki A, Oballa M C. Coke Formation in Steam Crackers forEthylene Production. Chemical Engineering and Processing: ProcessIntensification,2002,41(3):199~214
    [20]Idem R O, Katikaneni S P R, Bakhshi N N. Thermal Cracking of Canola Oil:Reaction Products in the Presence and Absence of Steam. Energy Fuels,1996,10(6):1150~1162
    [21]柯丽,冯静,张明森.甲醇转化制烯烃技术的新进展.石油化工,2006,35(3):205~211
    [22]Chen J Q, Bozzano A, Glover B, et al. Recent Advancements in Ethylene andPropylene Production Using the UOP/Hydro MTO Process. Catalysis Today,2005,106(1-4):103~107
    [23]Barger P T, Vora B V, Pujadó P R, et al. Converting Natural Gas to Ethylene andPropylene Using the UOP/HYDRO MTO Process. Studies in Surface Science andCatalysis,2003,145:109~114
    [24]Fatourehchi N, Sohrabi M, Royaee S J, et al. Preparation of SAPO-34Catalystand Presentation of a Kinetic Model for Methanol to Olefin Process (MTO).Chemical Engineering Research and Design,2011,89(6):811~816
    [25]Najafabadi A T, Fatemi S, Sohrabi M, et al. Kinetic Modeling and Optimizationof the Operating Condition of MTO Process on SAPO-34Catalyst. Journal ofIndustrial and Engineering Chemistry,2012,18(1):29~37
    [26]Freiding J, Kraushaar-Czarnetzki B. Novel Extruded Fixed-Bed MTO Catalystswith High Olefin Selectivity and High Resistance against Coke Deactivation.Applied Catalysis A: General,2011,391(1-2):254~260
    [27]Vora B V. Conversion of Methanol to Ethylene and Propylene UOP/Hydro MTOProcess.4th International Gas Conversion Symposium, South Africa,1995
    [28]Liu Z M, Cai Z Y, Sun C L, et al. Research Progress and Pilot Plant Test onSDTO Process. Studies in Surface Science and Catalysis,1998,119:895~900
    [29]Benson S W, Estates P V. Conversion of Methane. US Patent,957385,1980-04-22
    [30]Weissman M, Benson S W. Pyrolysis of Methyl Chloride, A Pathway in theChlorine-Catalyzed Polymerization of Methane. International Journal ofChemical Kinetics,1984,16(4):307~333
    [31]Weissman M, Benson S W. Mechanism of Soot Initiation in Methane Systems.Progress in Energy and Combustion Science,1989,15(4):273~285
    [32]何应登. MTO工艺与传统乙烯工业的经济性分析.炼油技术与工程,2005,35(10):55~58
    [33]Keller G E, Bhasin M M. Synthesis of Ethylene via Oxidative Coupling ofMethane: I. Determination of Active Catalysts. Journal of Catalysis,1982,73(1):9~19
    [34]Salernoa D, Arellano-Garciaa H, Wozny G. Techno-Economic Analysis forEthylene and Methanol Production from the Oxidative Coupling of MethaneProcess. Computer Aided Chemical Engineering,2011,29:1874~1878
    [35]M otek M, Sentek J, Krawczyk K, et al. The Hybrid Plasma–Catalytic Process forNon-Oxidative Methane Coupling to Ethylene and Ethane. Applied Catalysis A:General,2009,366(2):232~241
    [36]Graf P O, Lefferts L. Reactive Separation of Ethylene from the Effluent Gas ofMethane Oxidative Coupling via Alkylation of Benzene to Ethylbenzene onZSM-5. Chemical Engineering Science,2009,64(12):2773~2780
    [37]Chua Y T, Mohamed A R, Bhatia S. Oxidative Coupling of Methane for theProduction of Ethylene over Sodium-Tungsten-Manganese-Supported-SilicaCatalyst (Na-W-Mn/SiO2). Applied Catalysis A: General,2008,343(1~2):142~148
    [38]Machocki A, Denis A, Gryglicki J, et al. Highly Selective and Highly EfficientCatalytic Conversion of Methane into Ethylene by Oxidative Coupling. Studies inSurface Science and Catalysis,2000,130:3831~3836
    [39]Shi M, Lin C C H, Kuznicki T M, et al. Separation of A Binary Mixture ofEthylene and Ethane by Adsorption on Na-ETS-10. Chemical EngineeringScience,2010,65(11):3494~3498
    [40]侯伟.乙醇催化脱水制乙烯反应系统的数学模拟:[硕士学位论文],北京;北京化工大学,2008
    [41]Teramoto M, Shimizu S, Matsuyama H, et al. Ethylene/Ethane Separation andConcentration by Hollow Fiber Facilitated Transport Membrane Module withPermeation of Silver Nitrate Solution. Separation and Purification Technology,2005,44(1):19~29
    [42]Ilinich O M, Zamaraev K I. Separation of Ethylene and Ethane overPolyphenyleneoxides Membranes: Transient Increase of Selectivity. Journal ofMembrane Science,1993,82(1-2):149~155
    [43]Vora B V, Imai T. C2/C5Dehydrogenation Updated. Hydrocanbon Processing,1982,64(4):171~174
    [44]梁奇,高利珍,李庆等.乙烷脱氢制乙烯研究动向.石油与天然气化工,1999,28(3):160~162
    [45]李艳.乙烷催化氧化脱氢制乙烯催化剂研究进展.化工生产与技术,2011,18(1):38~42
    [46]Champagnie A M, Tsotsis T T, Minet R G, et al. A High Temperature CatalyticMembrane Reactor for Ethane Dehydrogenation. Chemical Engineering Science,1990,45(8):2423~2429
    [47]Champagnie A M, Tsotsis T T, Minet R G, et al. The Study of EthaneDehydrogenation in a Catalytic Membrane Reactor. Journal of Catalysis,1992,134(2):713~730
    [48]Ahchieva D, Peglow M, Heinrich S, et al. Oxidative Dehydrogenation of Ethanein a Fluidized Bed Membrane Reactor. Applied Catalysis A: General,2005,296(2):176~185
    [49]Mamedov E A, Corberán V C. Oxidative Dehydrogenation of Lower Alkanes onVanadium Oxide-Based Catalysts. The Present State of the Art and Outlooks.Applied Catalysis A: General,1995,127(1-2):1~40
    [50]Heracleous E, Lemonidou A A. Homogeneous and Heterogeneous Pathways ofEthane Oxidative and Non-Oxidative Dehydrogenation Studied byTemperature-Programmed Reaction. Applied Catalysis A: General,2004,269(1-2):123~135
    [51]Liu L C, Li H Q, Zhang Y. A Comparative Study on Catalytic Performances ofChromium Incorporated and Supported Mesoporous MSU-x Catalysts for theOxidehydrogenation of Ethane to Ethylene with Carbon Dioxide. Catalysis Today,2006,115(1-4):235~241
    [52]Nakagawa K, Kajita C, Okumura K, et al. Role of Carbon Dioxide in theDehydrogenation of Ethane over Gallium-Loaded Catalysts. Journal of Catalysis,2001,203(1):87~93
    [53]Zhao X H, Wang X L. Oxidative Dehydrogenation of Ethane to Ethylene byCarbon Dioxide over Cr/TS-1Catalysts. Catalysis Communications,2006,7(9):633~638
    [54]徐龙伢,王昌东,贾继飞等.乙烷与CO2制乙烯反应的热力学和动力学研究.催化学报,1998,19(6):506~509
    [55]李亚男.掺杂过渡金属的MCM-41介孔分子筛的制备、表征及其对CO2乙烷氧化脱氢制乙烯的研究,[博士学位论文],吉林;吉林大学,2006
    [56]Olaf W, Meng-Teck E. Make Ethylene from Ethanol. Hydrocarbon Processing,1976,55(11):125~133
    [57]Tynj l P, Pakkanen T T, Mustam ki S. Modification of ZSM-5Zeolite withTrimethyl Phosphite.2.Catalytic Properties in the Conversion of C1-C4Alcohols.Journal of Physical Chemistry B,1998,102(27):5280~5286
    [58]张东升. P改性HZSM-5分子筛上乙醇脱水制乙烯反应的催化性能研究,[博士学位论文],天津;天津大学,2009
    [59]Chum H L, Overend R P. Biomass and Renewable Fuels. Fuel ProcessingTechnology,2001,71(1-3):187~195
    [60]Demirbas M F, Balat M, Balat H. Potential Contribution of Biomass to theSustainable Energy Development. Energy Conversion and Management,2009,50(7):1746~1760
    [61]Yu S R, Tao J. Simulation-Based Life Cycle Assessment of Energy Efficiency ofBiomass-Based Ethanol Fuel from Different Feedstocks in China. Energy,2009,34(4):476~484
    [62]Piccolo C, Bezzo F. Ethanol from Lignocellulosic Biomass: A Comparisonbetween Conversion Technologies. Computer Aided Chemical Engineering,2007,24:1277~1282
    [63]Ojeda K, Sánchez E, Kafarov V. Sustainable Ethanol Production fromLignocellulosic Biomass–Application of Exergy Analysis. Energy,2011,36(4):2119~2128
    [64]Yu S, Tao J. Economic, Energy and Environmental Evaluations of Biomass-BasedFuel Ethanol Projects Based on Life Cycle Assessment and Simulation. AppliedEnergy,2009,86(Supplement1): S178~S188
    [65]Matano Y, Hasunuma T, Kondo A. Display of Cellulases on the Cell Surface ofSaccharomyces Cerevisiae for High Yield Ethanol Production from High-SolidLignocellulosic Biomass. Bioresource Technology,2012,108:128~133
    [66]Amigun B, Sigamoney R, Blottnitz H V. Commercialisation of Biofuel Industryin Africa: A Review. Renewable and Sustainable Energy Reviews,2008,12(3):690~711
    [67]曹湘洪.面向2020年我国炼油石化产业必须重视的若干问题.石油化工,2008,37(增刊):5~15
    [68]Sheehan J. The Road to Bioethanol: A Strategic Perspective of the U.S.Department of Energy's National Ethanol Program. NW Washington: AmericanChemical Society,1997,2~25
    [69]Bastianoni S, Marchettini N. Ethanol Production from Biomass: Analysis ofProcess Efficiency and Sustainability. Biomass and Bioenergy,1996,11(5):411~418
    [70]Huber G W, Iborra S, Corma A. Synthesis of Transportation Fuels from Biomass:Chemistry, Catalysts, and Engineering. Chemical Reviews,2006,106(9):4044~4098
    [71]Braskem S A. Bio-Ethanol Based Ethylene. Journal of Macromolecular Science,2009,49(2):79~84
    [72]章文贵.乙醇脱水制乙烯和芳烃催化剂及工艺研究,[硕士学位论文],长沙;湖南大学,2008
    [73]Sundaram K M, Shreehan M M, Olszewski E F. Ethylene. Kirk-OthmerEncyclopedia of Chemical Technology. New York: John Wiley&Sons, Inc,2010,1~39
    [74]Pearson D E. Process for Catalytic Dehydration of Ethanol Vapor to Ethylene. USPatent,4423270,1983-12-27
    [75]De Morais E R, Lunelli B H, Jaimes R R, et al. Development of An IndustrialMultitubular Fixed Bed Catalytic Reactor as CAPE-OPEN Unit Operation ModelApplied to Ethene Production by Ethanol Dehydration Process. ChemicalEngineering Transactions,2011,24:403~408
    [76]Pinho A R, Cabral J A R, Leite L F. Ethanol: A Green Raw Material for thePetrochemical Industry.234th ACS National Meeting; Boston, MA,2007
    [77]Andrigo P, Bagatin R, Pagani G. Fixed Bed Reactors. Catalysis Today,1999,52(2-3):197~221
    [78]Henning G P, Perez G A. Parametric Sensitivity in Fixed-Bed Catalytic Reactors.Chemical Engineering Science,1986,41(1):83~88
    [79]Froment G F. Fixed Bed Catalytic Reactors-Current Design Status. Industrial&Engineering Chemistry,1967,59(2):18~27
    [80]Lopez A S, Lasa H I D, Porras J A. Parametric Sensitivity of A Fixed BedCatalytic Reactor: Cooling Fluid Flow Influence. Chemical Engineering Science,1981,36(2):285~291
    [81]Froment G F. Fixed Bed Catalytic Reactors. Technological and FundamentalDesign Aspects. Chemie Ingenieur Technik,1974,46(9):374~386
    [82]Froment G F, Bischoff K B, Wilde J D. Chemical Reactor Analysis andDesign(3rd Edition). Hoboken: John Wiley&Sons Inc.,2010,498~505
    [83]Barrocas H V V, Assis R C D. Process for Preparing Ethane. US Patent,4232179,1980-11-04
    [84]Tavoulareas E S. Fluidized-Bed Combustion Technology. Annual Review ofEnergy and the Environment,1991,16:25~57
    [85]Zhang W. A Review of Techniques for the Process Intensification of FluidizedBed Reactors. Chinese Journal of Chemical Engineering,2009,17(4):688~702
    [86]Tsao U, Zasloff H B. Production of Ethylene from Ethanol. US Patent,4134926,1979-01-16
    [87]赵淑芳.燃料乙醇分离工艺的流程模拟及换热网络的最优综合,[硕士学位论文].天津;天津大学,2006
    [88]Quintero J A, Cardona C A. Process Simulation of Fuel Ethanol Production fromLignocellulosics using Aspen Plus. Industrial&Engineering Chemistry Research,2011,50(10):6205~6212
    [89]Alzate C A C, Toro O J S. Energy Consumption Analysis of IntegratedFlowsheets for Production of Fuel Ethanol from Lignocellulosic Biomass. Energy,2006,31(13):2447~2459
    [90]Kagyrmanova A P, Chumachenko V A, Korotkikh V N, et al. CatalyticDehydration of Bioethanol to Ethylene: Pilot-Scale Studies and ProcessSimulation. Chemical Engineering Journal,2011,176-177:188~194
    [91]王静.生物质乙醇制乙烯过程节能研究,[硕士学位论文].大连;大连理工大学,2008
    [92]陈誉.乙醇制乙烯工艺流程模拟及换热网络综合,[硕士学位论文].天津;天津大学,2007
    [93]胡铁钢,程可可,张建安等.生物乙醇催化制备乙烯的研究进展.现代化工,2007,27(2):96~99
    [94]潘履让.乙醇脱水制乙烯催化剂发展综述.精细石油化工,1986,4:41~64
    [95]Pearson D E, Tanner R D, Plcclotto I D, et al. Phosphoric Acid Systems.2.Catalytic Conversion of Fermentation Ethanol to Ethylene. Industrial&Engineering Chemistry Product Research and Development,1981,20(4):734~740
    [96]Adkins H, Perkins P P. Dehydration of Alcohols over Alumina. Journal of theAmerican Chemical Society,1925,47(4):1163~1167
    [97]Pines H, Haag W O. Alumina: Catalyst and Support. I. Alumina, its IntrinsicAcidity and Catalytic Activity. Journal of the American Chemical Society,1960,82(10):2471~2483
    [98]Kn zinger H, K hne R. The Dehydration of Alcohols over Alumina: I. TheReaction Scheme. Journal of Catalysis,1966,5(2):264~270
    [99]Kn zinger H, Zhao Y. Infrared Characterization of Mononuclear OsmiumCarbonyl Species on Alumina. Journal of Catalysis,1981,71(2):337~347
    [100] Carriera X, Lamberta J F, Kuba S, et al. Influence of Ageing on MoO3Formation in the Preparation of Alumina-Supported Mo Catalysts. Journal ofMolecular Structure,2003,656(1–3):231~238
    [101]朱晓茹.改性纳米HZSM-5催化剂上生物乙醇脱水制乙烯的研究,[硕士学位论文].大连;大连理工大学,2007
    [102]高滋,何鸣元,戴逸云.沸石催化与分离技术.北京:中国石化出版社,1999,405~424
    [103] Roca F F, Mourgues L D, Trambouze Y. Catalytic Dehydration of Ethanol overSilica-Alumina. Journal of Catalysis,1969,14(2):107~113
    [104]徐菁.高选择性乙醇脱水制乙烯催化剂的研制.化学反应工程与工艺,2011,27(1):64~67
    [105] Kochar N K, Merims R, Padia A S. Ethylene from Ethanol. ChemicalEngineering Progress,1981,77(6):66~70
    [106] Ezzo E M, Elnabarawy T, Youssef A M. Studies on the Mixed Oxide CatalystAl_2O_3-Cr2O3I. Surface Properties. Surface Technology,1979,9(2):111~118
    [107] Ezzo E M, El-Shobaky G A, Selim M M. Catalytic Conversion of Alcohols onAl_2O_3-Cr2O3Catalysts I: The Catalytic Decomposition of Ethanol. SurfaceTechnology,1980,10(1):47~54
    [108] Ezzo E M, Yousef N A, Mazhar H S. Studies of the Mixed Oxide CatalystAl_2O_3-Cr2O3II: The Catalytic Conversion of Ethanol. Surface Technology,1981,14(1):65~72
    [109] Kojima M, Takahiro A, Yukio A. Catalyst for Production of Ethylene fromEthanol. US Patent,4302357,1981-11-24
    [110] El-Katatny E A, Halawy S A, Mohamed M A. Recovery of Ethene-SelectiveFeOx/Al_2O_3Ethanol Dehydration Catalyst from Industrial Chemical Wastes.Applied Catalysis A: General,2000,199(1):83~92
    [111] Chen G W, Li S L, Jiao F J. Catalytic Dehydration of Bioethanol to Ethyleneover TiO2/γ-Al_2O_3Catalysts in Microchannel Reactors. Catalysis Today,2007,125(1-2):111~119
    [112]于云霞,刘必武. NC1301型乙醇脱水制乙烯催化剂的研制.化学工业与工程技术,1995,16(2):8~10
    [113]黎颖,陈晓春,孙巍等. γ-Al_2O_3催化剂上乙醇脱水制乙烯的实验研究.北京化工大学学报,2007,34(5):449~452
    [114]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学.北京:科学出版社,2004,245~258
    [115]李亚男,金照生,杨为民.乙醇催化脱水制乙烯沸石催化剂研究现状.化工进展,2009,28(1):67~72
    [116] Argauer R J, Landolt G R. Crystalline Zeolite ZSM-5and Method of Preparingthe Same. US Patent,3702886,1972-11-14
    [117] Dwyer F G, Jenkins E E. Crystalline Silicates and Method of Preparing theSame. US Patent,3941871,1976-03-02
    [118] Olson D H, Kokotailo G T, Lawton S L, et al. Crystal Structure andStructure-Related Properties of ZSM-5. Journal of Physical Chemistry,1981,85(15):2238~2243
    [119] Koningsveld H V, Jansen J C, Bekkum H V. The Monoclinic FrameworkStructure of Zeolite H-ZSM-5. Comparison with the Orthorhombic Frameworkof As-Synthesized ZSM-5. Zeolites,1990,10(4):235~242
    [120]郝彤.乙醇稀水溶液在ZSM-5分子筛上催化剂上脱水制乙烯.石油化工,1985,14(2):92~93
    [121] Mao R L V, Nguyen T M, McLaughlin G P. The Bioethanol-to-Ethylene(B.E.T.E.) Process. Applied Catalysis,1989,48(2):265~277
    [122] Phillips C B, Datta R. Production of Ethylene from Hydrous Ethanol onH-ZSM-5under Mild Conditions. Industrial&Engineering Chemistry Research,1997,36(11):4466~4475
    [123]潘履让,李赫暄.乙醇脱水制乙烯新型催化剂的研制(Ⅰ).石油化工,1985,14(3):154~157
    [124]潘履让,李赫暄. NKC-03A乙醇脱水制乙烯催化剂.石油化工,1987,16(11):764~768
    [125] Mao R L V, Dao L H. Ethylene Light Olefins from Ethanol. US patent,4698452,1987-10-06
    [126] Bun S, Nishiyama S, Tsuruya S, et al. Ethanol Conversion over Ion-ExchangedZSM-5Zeolites. Applied Catalysis,1990,59(1):13~29
    [127] Takahara I, Saito M, Inaba M, et al. Dehydration of Ethanol into Ethylene overSolid Acid Catalysts. Catalysis Letters,2005,105(3-4):249~252
    [128] Ouyang J, Kong F X, Su G D, et al. Catalytic Conversion of Bio-ethanol toEthylene over La-Modified HZSM-5Catalysts in a Bioreactor. Catalysis Letters,2009,132(1-2):64~74
    [129] Ramesh K, Jie C, Han Y F, et al. Synthesis, Characterization, and CatalyticActivity of Phosphorus Modified H-ZSM-5Catalysts in Selective EthanolDehydration. Industrial&Engineering Chemistry Research,2010,49(9):4080~4090
    [130] Lok B M, Messina C A, Patton R L. Silicoaluminophosphate Molecular Sieves:Another New Class of Microporous Crystalline Inorganic Solids. Journal of theAmerican Chemical Society,1984,106(20):6092~6093
    [131] Djieugoue M A, Prakash A M. Catalytic Study of Methanol-to-OlefinsConversion in Four Small-Pore Silicoaluminophosphate Molecular Sieves:Influence of the Structural Type, Nickel Incorporation, Nickel Location, andNickel Concentration. Journal of Physical Chemistry B,2000,104(27):6452~6461
    [132]王定一,李景林,范闽光. SAPO-34分子筛的合成及用于乙醇脱水的研究.催化学报,1992,13(3):234~236
    [133] Dahla I M, Wendelboa R, Andersen A, et al. The Effect of Crystallite Size on theActivity and Selectivity of the Reaction of Ethanol and2-Propanol overSAPO-34. Microporous and Mesoporous Materials,1999,29(1-2):159~171
    [134] Zhang X, Wang R J, Yang X X, et al. Comparison of Four Catalysts in theCatalytic Dehydration of Ethanol to Ethylene. Microporous and MesoporousMaterials,2008,116(1-3):210~215
    [135]周珽,史晓星,武丽娜等. SAPO-11/HZSM-5对乙醇脱水制乙烯反应的催化性能.高校化学工程学报,2011,25(3):453~458
    [136]潘锋,吴玉龙,张建安等.生物发酵乙醇催化脱水制乙烯发展状况.现代化工,2006,10(增刊2):27~31
    [137] Mizuno N, Misono M. Heteropolyacid Catalysts. Current Opinion in Solid Stateand Materials Science,1997,2(1):84~89
    [138]汪颖军,李长海,谷春旭.杂多酸及其负载型催化剂的研究进展.工业催化,2007,15(10):1~4
    [139]赵本良,赵宝中.以杂多酸催化法乙醇脱水制乙烯.东北师大学报然科学版,1995,1:70~72
    [140] Vázquez P, Pizzio L, Cáceres C. Silica-Supported Heteropolyacids as Catalystsin Alcohol Dehydration Reactions. Journal of Molecular Catalysis A: Chemical,2000,161(1-2):223~232
    [141] Haber J, Pamin K, Matachowski L, et al. Potassium and Silver Salts ofTungstophosphoric Acid as Catalysts in Dehydration of Ethanol and Hydrationof Ethylene. Journal of Catalysis,2002,207(2):296~306
    [142] Varislia D, Dogua T, Dogu G. Ethylene and Diethyl-Ether Production byDehydration Reaction of Ethanol over Different Heteropolyacid Catalysts.Chemical Engineering Science,2007,62(18-20):5349~5352
    [143] Shi B C, Davis B H. Alcohol Dehydration: Mechanism of Ether FormationUsing an Alumina Catalyst. Journal of Catalysis,1995,157(2):359~367
    [144] Kn zinger H, Bühl H, Kochloefl K. The Dehydration of Alcohols on Alumina:XIV. Reactivity and Mechanism. Journal of Catalysis,1972,24(1):57~68
    [145] Henne A L, Matuszak A H. The Dehydration of Secondary and Tertiary Alcohols.Journal of the American Chemical Society,1944,66(10):1649~1652
    [146] Takezawa N, Hanamaki C, Kobayashi H. The Mechanism of Dehydrogenationof Ethanol on Magnesium Oxide. Journal of Catalysis,1975,38(1-3):101~109
    [147] Chiang H, Bhan A. Catalytic Consequences of Hydroxyl Group Location on theRate and Mechanism of Parallel Dehydration Reactions of Ethanol over AcidicZeolites. Journal of Catalysis,2010,271(2):251~261
    [148] Costa E, Uguina A, Aguado J, et al. Ethanol to Gasoline Process: Effect ofVariables, Mechanism, and Kinetics. Industrial&Engineering ChemistryProcess Design and Development,1985,24(2):239~244
    [149] Saito Y, Niiyama H. Reaction Mechanism of Ethanol Dehydration on/inHeteropoly Compounds: Analysis of Transient Behavior Based onPseudo-Liquid Catalysis Model. Journal of Catalysis,1987,106(2):329~336
    [150] Okuhara T, Arai T, Ichiki T. Dehydration Mechanism of Ethanol in thePseudoliquid Phase of H3-xCsxPW12O40. Journal of Molecular Catalysis,1989,55(1):293~301
    [151] Domok M, Toth M, Rasko J, et al. Adsorption and Reactions of Ethanol andEthanol-Water Mixture on Alumina-Supported Pt Catalysts. Applied Catalysis B,2007,69(3-4):262~272
    [152] Rajakumar B, Reddy K P J, Arunan E, Thermal Decomposition of2-Fluoroethanol: Single Pulse Tube and ab Initio Studies. Journal of PhysicalChemistry A,2003,107(46):9782~9793
    [153] Galvita V V, Semin G L, Belyaev V D, et al, Synthesis Gas Production by SteamReforming of Ethanol. Applied Catalysis A,2001,220(1-2):123~127
    [154] Brey W S, Krieger K A. The Surface Area and Catalytic Activity of AluminumOxide. Journal of the American Chemical Society,1949,71(11):3637~3641
    [155] Tanabe K, Misono M, Ono Y, et al. New Solid Acids and Bases: Their CatalyticProperties. Tokyo: Kodansha Ltd., and Amsterdam: Elsevier Science PublishersB.V.,1989,260~272
    [156] Smith M B, March J. March’s Advanced Organic Chemistry: Reactions,Mechanisms, and Structure(Sixth Edition). The United States of America:Wiley-Interscience A John Wiley&Sons, Inc.,2006,1478~1495
    [157] Noller H, Thomke K. Transition States of Catalytic Dehydration andDehydrogenation of Alcohols. Journal of Molecular Catalysis,1979,6(5):375~392
    [158] Kn zinger H. Dehydration of Alcohols on Aluminum Oxide. AngewandteChemie International Edition in English,1968,7(10):791~805
    [159] Arai H, Take J I, Saito Y, et al. Ethanol Dehydration on Alumina Catalysts: I.The Thermal Desorption of Surface Compounds. Journal of Catalysis,1967,9(2):146~153
    [160] Jain J R, Pillai C N. Catalytic Dehydration of Alcohols over Alumina:Mechanism of Ether Formation. Journal of Catalysis,1967,9(4):322~330
    [161] El-Salaam K M A, Hassan E A. Active Surface Centres in a Heterogeneous CdOCatalyst for Ethanol Decomposition. Surface Technology,1982,16(2):121~128
    [162] Smith M B, March J. March’s Advanced Organic Chemistry: Reactions,Mechanisms, and Structure(Sixth Edition). The United States of America,Wiley-Interscience A John Wiley&Sons, Inc.,2006,432~446,534~535
    [163]高鸿宾.有机化学(第四版).北京:高等教育出版社,2005,364~374
    [164]张继光.催化剂制备过程技术.北京:中国石化出版社,2006,1~16
    [165]高滋,何鸣元,戴逸云.沸石催化与分离技术.北京:中国石化出版社,2009:1~19
    [166] Lindstr m B, Pettersson L J. A Brief History of Catalysis. Cattech,2003,7(4):130~138
    [167] Hutchings G J. Heterogeneous Catalysts—Discovery and Design. Journal ofMaterial Chemistry,2009,19(9):1222~1235
    [168]唐新硕,朱逸飞,金松寿等.非均相催化剂设计初探.杭州大学学报,1985,12(2):227~235
    [169] Somorjai G A. The Development of Molecular Surface Science and the SurfaceScience of Catalysis: The Berkeley Contribution. Journal of Physical ChemistryB,2000,104(14):2969~2979
    [170] Somorjai G A, McCrea K. Roadmap for Catalysis Science in the21st Century:A Personal View of Building the Future on Past and Present Accomplishments.Applied Catalysis A: General,2001,222(1-2):3~18
    [171] Arai Y. Computational Chemistry on Catalyst Technology and InternationalCollaboration. Catalysis Today,1995,23(4):439~448
    [172] Yoneda Y. Prospect, rather than Retrospect, on the Impact of Computers inCatalytic Research and Development. Catalysis Today,1995,23(4):305~310
    [173] N rskov J K, Bligaard T, Rossmeisl J, et al. Towards the Computational Designof Solid Catalysts. Nature Chemistry,2009,1(1):37~46
    [174]唐新硕.催化剂设计.杭州:浙江大学出版社,2010,3~8
    [175]唐睿康.分子间选择性作用力和控制论化学—金松寿教授研究简介.化学进展,2009,21(6):1080~1084
    [176] Yoneda Y. Linear Free Energy Relationships in Heterogeneous Catalysis: IV.Regional Analysis for Solid Acid Catalysis. Journal of Catalysis,1967,9(1):51~56
    [177] Mochida I, Yoneda Y. Linear Free Energy Relationships in HeterogeneousCatalysis: I. Dealkylation of Alkylbenzenes on Cracking Catalysts. Journal ofCatalysis,1967,7(4):386~392
    [178] Misono M M, Ochiai E, Saito Y, et al. A New Dual Parameter Scale for theStrength of Lewis Acids and Bases with the Evaluation of Their Softness.Journal of Inorganic and Nuclear Chemistry,1967,29(11):2685~2691
    [179] Grabowski W, Misono M, Yoneda Y. Quantum Chemical Study of Acid-baseProperties of Metal Oxides. I. Journal of Catalysis,1980,61(1):103~108
    [180]黄仲涛.工业催化剂手册.北京:化学工业出版社,2004,82~88
    [181] Leach A R. Molecular Modelling Principles and Applications. England: PearsonEducation Limited Harlow,2001,2~5
    [182]朱宇,陆小华,丁皓等.分子模拟在化工应用中的若干问题及思考.化工学报,2004,55(8):1213~1223
    [183]陈正隆,徐为人,汤立达.分子模拟的理论与实践.北京:化学工业出版社,2007,1~5
    [184] Szabo A, Ostlund N S. Modern Quantum Chemistry: Introduction to AdvancedElectronic Structure Theory. New York: Dover Publications, Inc.,1996,39~107
    [185]张玉清.化工工艺与工程研究方法.北京:科学出版社,2008,55~70
    [186] Pauling L. The Shared-Electron Chemical Bond. Proceedings of the NationalAcademy of Sciences of the United States of America,1928,14(4):359~362
    [187] Hall G G. The Molecular Orbital Theory of Chemical Valency. VIII. A Methodof Calculating Ionization Potentials. Proceedings of the Royal Society ofLondon. Series A,1951,205(1083):541~552
    [188] Curtis C D. Applications of the Crystal-Field Theory to the Inclusion of TraceTransition Elements in Minerals during Magmatic Differentiation. Geochimicaet Cosmochimica Acta,1964,28(3):389~403
    [189] Fukui K. Chemical Reactivity Theory-Its Pragmatism and Beyond. Pure andApplied Chemistry,1982,54(10): l825~l836
    [190] Sustmann R. Orbital Energy Control of Cycloaddition Reactivity. Pure andApplied Chemistry,1974,40(4):569~593
    [191]潘道皑,赵成大,郑载兴等.物质结构(第二版).北京:高等教育出版社,1989,27~35
    [192] Schr dinger E. An Undulatory Theory of the Mechanics of Atoms andMolecules. Physical Review,1926,28(6):1049~1070
    [193] Schr dinger E. über das Verh ltnis der Heisenberg-Born-JordanschenQuantenmechanik zu der meinem. Annalen der Physik,1926,384(8):734~756
    [194] Young D C. Computational Chemistry: A Practical Guide for ApplyingTechniques to Real-World Problems. New York: A John Wiley&Sons, Inc.,2001,19~31,42~48
    [195] Alder B J, Wainwright T E. Phase Transition for a Hard Sphere System. Journalof Chemical Physics,1957,27(5):1208~1209
    [196] Rahman A. Correlations in the Motion of Atoms in Liquid Argon. PhysicalReview,1964,136(2A):405~411
    [197] Rapaport D C. The Art of Molecular Dynamics Simulation(Second Edition).New York: Cambridge University Press,2004,11~43
    [198] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of StateCalculations by Fast Computing Machines. Journal of Chemical Physics,1953,21(6):1087~1092
    [199] Landau D P, Binder K. A Guide to Monte Carlo Simulations in StatisticalPhysics(Second Edition). New York: Cambridge University Press,2005,1~6
    [200]吉青,杨小震.分子力场发展的新趋势.化学通报,2005,68(2):111~116
    [201] Van Duin A C T, Dasgupta S, Lorant F. ReaxFF: A Reactive Force Field forHydrocarbons. Journal of Physical Chemistry A,2001,105(41):9396~9409
    [202] Ruberto C, Yourdshahyan Y, Lundqvist B I. Surface Properties of MetastableAlumina: A Comparative Study of κ-and α-Al_2O_3. Physical Review B,2003,67(19):195412.1~195412.18
    [203] Wang X G, Chaka A, Scheffler M. Effect of the Environment on α-Al_2O_3(0001)Surface Structures. Physical Review Letters,2000,84(16):3650~3653
    [204] Taniike T, Tada M, Morikawa Y, et al. Density Functional TheoreticalCalculations for a Co2/γ-Al_2O_3Model Catalyst: Structures of the γ-Al_2O_3Bulkand Surface and Attachment Sites for Co2+Ions. Journal of Physical ChemistryB,2006,110(10):4929~4936
    [205] Digne M, Sautet P, Raybaud P, et al. Use of DFT to Achieve a RationalUnderstanding of Acid–basic Properties of γ-alumina Surfaces. Journal ofCatalysis,2004,226(1):54~68
    [206] Gomes J R B, Lodziana Z, Illas F. Adsorption of Small Palladium Clusters onthe Relaxed α-Al_2O_3(0001) Surface. Journal of Physical Chemistry B,2003,107(26):6411~6424
    [207] Zhang R G, Wang B J, Liu H Y, et al. Effect of Surface Hydroxyls on CO2Hydrogenation over Cu/γ-Al_2O_3Catalyst: A Theoretical Study. Journal ofPhysical Chemistry C,2011,115(40):19811~19818
    [208] Mei D H, Kwak J H, Hu J Z, et al. Unique Role of AnchoringPenta-Coordinated Al3+Sites in the Sintering of γ-Al_2O_3-Supported Pt Catalysts.The Journal of Physical Chemistry Letters,2010,1(18):2688~2691
    [209] Hernández N C, Sanz F J. Molecular Dynamics Simulations of Pd Depositionon the α-Al_2O_3(0001) Surface. Journal of Physical Chemistry B,2001,105(48):12111~12117
    [210] Feng G, Huo C F, Deng C M, et al. Isopropanol Adsorption on γ-Al_2O_3Surfaces:A Computational Study. Journal of Molecular Catalysis A: Chemical,2009,304(1-2):58~64
    [211] Pan Y X, Liu C J, Ge Q F. Effect of Surface Hydroxyls on Selective CO2Hydrogenation over Ni4/γ-Al_2O_3: A Density Functional Theory Study. Journal ofCatalysis,2010,272(2):227~234
    [212] Li C L, Choi P. Molecular Dynamics Study of the Adsorption Behavior ofNormal Alkanes on a Relaxed α-Al_2O_3(0001) Surface. Journal of PhysicalChemistry C,2007,111(4):1747~1753
    [213] Hass K C, Schneider W F, Curioni A, et al. First-Principles Molecular DynamicsSimulations of H2O on α-Al_2O_3(0001). Journal of Physical Chemistry B,2000,104(23):5527~5540
    [214] Dabrowski J E, Butt J B, Bliss H. Monte Carlo Simulation of a CatalyticSurface: Activity and Selectivity of γ-Alumina for Dehydration. Journal ofCatalysis,1970,18(3):297~313
    [215]甄开吉,王国甲,毕颖丽等.催化作用基础(第三版).北京:科学出版社,2005,60~62
    [216] He H, Yu Y B. Selective Catalytic Reduction of NOxover Ag/Al_2O_3Catalyst:From Reaction Mechanism to Diesel Engine Test. Catalysis Today,2005,100(1-2):37~47
    [217] Krokidis X, Raybaud P, Gobichon A E, et al. Theoretical Study of theDehydration Process of Boehmite to γ-Alumina. Journal of Physical ChemistryB,2001,105(22):5121~5130
    [218] Ferreira M L, Nichio N N, Ferretti O A. A Semiempirical Theoretical Study ofNi/α-Al_2O_3and NiSn/α-Al_2O_3Catalysts for CH4Reforming. Journal ofMolecular Catalysis A: Chemical,2003,202(1-2):197~213
    [219] St ckigt D. The Mechanism of the Gas-Phase Ion Molecule Reaction betweenAl+and Ethanol. Journal of Physical Chemistry A,1998,102(51):10493~10500
    [220]魏运洋,李建.化学反应机理导论.北京:科学出版社,2004,6~12
    [221] Truong T N, Truhlar D G. Ab Initio Transition State Theory Calculations of theReaction Rate for OH+CH4→H2O+CH3. Journal of Chemical Physics,1990,93(3):1761~1769
    [222] Fermann J T, Auerbach S. Modeling Proton Mobility in Acidic Zeolite Clusters:II. Room Temperature Tunneling Effects from Semiclassical Rate Theory.Journal of Chemical Physics,2000,112(15):6787~6794
    [223] Bhatia B, Sholl D S. Quantitative Assessment of Hydrogen Diffusion byActivated Hopping and Quantum Tunneling in Ordered Intermetallics. PhysicalReview B,2005,72(22):224302.1~224302.8
    [224] Parr R G, Donnelly R A, Levy M, et al. Electronegativity: The DensityFunctional Viewpoint. Journal of Chemical Physics,1978,68(8):3801~3807
    [225] Perdew J P. Physical Content of the Exact Kohn-Sham Orbital Energies: BandGaps and Derivative Discontinuities. Physical Review Letters,1983,51(20):1884~1887
    [226] Sun J, Stirner T, Hagston W E, et al. A Simple Transferable InteratomicPotential Model for Binary Oxides Applied to Bulk α-Al_2O_3and the (0001)α-Al_2O_3Surface. Journal of Crystal Growth,2006,290(1):235~240
    [227] Rappe A K, Casewit C J, Colwell K S, et al. UFF, A Full Periodic Table ForceField for Molecular Mechanics and Molecular Dynamics Simulations. Journalof the American Chemical Society,1992,114(25):10024~10035
    [228] Morterra C, Magnacca G. A Case Study: Surface Chemistry and SurfaceStructure of Catalytic Aluminas, as Studied by Vibrational Spectroscopy ofAdsorbed Species. Catalysis Today,1996,27(3-4):497~532
    [229] Kn zinger H, Ratnasamy P. Catalytic Aluminas: Surface Models andCharacterization of Surface Sites. Catalysis Reviews: Science and Engineering,1978,17(1):31~70
    [230] Krokidis X, Raybaud P, Gobichon A E, et al. Theoretical Study of theDehydration Process of Boehmite to γ-Alumina. Journal of Physical ChemistryB,2001,105(22):5121~5130
    [231] Sun M Y, Nelson A E, Adjaye J. Examination of Spinel and Nonspinel StructuralModels for γ-Al_2O_3by DFT and Rietveld Refinement Simulations. Journal ofPhysical Chemistry B,2006,110(5):2310~2317
    [232] Gutiérrez G, Taga A, Johansson B. Theoretical Structure Determination ofγ-Al_2O_3. Physical Review B,2001,65(1):012101.1~012101.4
    [233] Wilson S J. The Dehydration of Boehmite, γ-AlOOH, to γ-Al_2O_3. Journal ofSolid State Chemistry,1979,30(2):247~255
    [234] Castro R H R, Ushakov S V, Gengembre L. Surface Energy andThermodynamic Stability of γ-Alumina: Effect of Dopants and Water.Chemistry of Materials,2006,18(7):1867~1872
    [235] Cai S H, Sohlberg K. Adsorption of Alcohols on γ-alumina (110C). Journal ofMolecular Catalysis A: Chemical,2003,193(1-2):157~164
    [236] Digne M, Sautet P, Raybaud P, et al. Hydroxyl Groups on γ-Alumina Surfaces:A DFT Study. Journal of Catalysis,2002,211(1):1~5
    [237] Kwak J H, Mei D, Peden C H F, et al.(100) facets of γ-Al_2O_3: The ActiveSurfaces for Alcohol Dehydration Reactions. Catalysis Letters,2011,141(5):649~655
    [238] Vitosa L, Rubana A V, Skriver H L, et al. The Surface Energy of Metals. SurfaceScience,1998,411(1-2):186~202
    [239] Hayes R L, Ortiz M, Carter E A. Universal Binding-Energy Relation forCrystals that Accounts for Surface Relaxation. Physical Review B,2004,69(17):172104.1~172104.4
    [240] Fiorentini V, Methfessel M. Extracting Convergent Surface Energies from SlabCalculations. Journal of Physics: Condensed Matter,1996,8(36):6525-6529
    [241] Boettger G C. Nonconvergence of Surface Energies Obtained from Thin-FilmCalculations. Physical Review B,1994,49(23):16798~16800
    [242] odziana Z, Tops e N Y, N rskov J K. A Negative Surface Energy for Alumina.Nature Materials,2004,3(5):289~293
    [243] Herring C. Some Theorems on the Free Energies of Crystal Surfaces. PhysicalReview,1951,82(1):87~93
    [244] Kwaka J H, Mei D H, Yi C W, et al. Understanding the Nature of SurfaceNitrates in BaO/γ-Al_2O_3NOxStorage Materials: A Combined Experimental andTheoretical Study. Journal of Catalysis,2009,261(1):17~22
    [245] Kim S, Sorescu D C, Byl O, et al. Perturbation of Adsorbed CO by AmineDerivatives Coadsorbed on the γ-Al_2O_3Surface: FTIR and First PrinciplesStudies. Journal of Physical Chemistry B,2006,110(10):4742~4750
    [246] Fiolhais C, Almeida L M, Henriques C. Extraction of Aluminium SurfaceEnergies from Slab Calculations: Perturbative and Non-Perturbative Approaches.Progress in Surface Science,2003,74(1-8):209~217
    [247] Fiolhais C, Henriques C, Sarría I, et al. Metallic Slabs: Perturbative Treatmentsbased on Jellium. Progress in Surface Science,2001,67(1-8):285~298
    [248] Blonski S, Garofalini S H. Molecular Dynamics Simulations of α-alumina andγ-alumina Surfaces. Surface Science,1993,295(1-2):263~274
    [249] Kittel C. Introduction to Solid State Physics(Eight Edition). New York: A JohnWiley&Sons, Inc.,2004,488~490
    [250] Tasker P W. The Stability of Ionic Crystal Surfaces. Journal of Physics C: SolidState Physics,1979,12(22):4977~4984
    [251]周公度,段连运.结构化学基础(第3版).北京:北京大学出版社,2005,315~316
    [252] Wei T C, Phillips J. Thermal and Catalytic Etching: Mechanisms of MetalCatalyst Reconstruction. Advances in Catalysis,1996,41:359~421
    [253] Ibach H. The Role of Surface Stress in Reconstruction, Epitaxial Growth andStabilization of Mesoscopic Structures. Surface Science Reports,1997,29(5-6):195~263
    [254] Pantazidis A, Burrows A, Kiely C J, et al. Direct Evidence of Active SurfaceReconstruction During Oxidative Dehydrogenation of Propane over VmgoCatalyst. Journal of Catalysis,1998,177(2):325~334
    [255] Oviedo J, Sanz J F, López N, et al. Molecular Dynamics Simulations of theStructure of Pd Clusters Deposited on the MgO(001) Surface. Journal ofPhysical Chemistry B,2000,104(18):4342~4348
    [256] Sedeek K, Adam A, Balboul M R, et al. Structural Correlations in LightIrradiated Ge36Se64Amorphous Films-Radial Distribution Function Study.Materials Research Bulletin,2008,43(6):1355~1362
    [257] Schmidt J, VandeVondele J, Kuo I F W, et al. Isobaric Isothermal MolecularDynamics Simulations Utilizing Density Functional Theory: An Assessment ofthe Structure and Density of Water at Near-Ambient Conditions. Journal ofPhysical Chemistry B,2009,113(35):11959~11964
    [258] Zhao Y Q, Wu Z M, Liu W W. Theoretical and Analytical Radial DistributionFunction for Non-Polar Mixtures. Physica A: Statistical Mechanics and itsApplications,2011,390(15):2812~2818
    [259] Blonski S, Garofalini S H. Molecular Dynamics Simulations of α-alumina andγ-alumina Surfaces. Surface Science,1993,295(1-2):263~274
    [260] Paglia G, Buckley C E, Rohl A L, et al. Tetragonal Structure Model forBoehmite-Derived γ-alumina. Physical Review B,2003,68(14):144110.1~144110.11
    [261] Gordy W. A Relation between Bond Force Constants, Bond Orders, BondLengths, and the Electronegativities of the Bonded Atoms. The Journal ofChemical Physics,1946,14(5):305~320
    [262] Badger R M. A Relation Between Internuclear Distances and Bond ForceConstants. The Journal of Chemical Physics,1934,2(3):128~131
    [263] Helfand E. Flexible vs Rigid Constraints in Statistical Mechanics. The Journalof Chemical Physics,1979,71(12):5000~5007
    [264] Neuefeind J, Liss K D. Bond Angle Distribution in Amorphous Germania andSilica. Berichte der Bunsengesellschaft für physikalische Chemie,1996,100(8):1341~1349
    [265] Mayer J M. Metal-Oxygen Multiple Bond Lengths: A Statistical Study.Inorganic Chemistry,1988,27(22):3899~3903
    [266] Ross S M. Introduction to Probability and Statistics for Engineers andScientists(Fourth Edition). Burlington: Elsevier Academic Press,2009,160~176
    [267] Shahbaba B. Biostatistics with R: An Introduction to Statistics throughBiological Data. New York: Springer Science+Business Media,2012,151~171
    [268]申泮文.无机化学.北京:化学工业出版社,2002,41~47
    [269] Shannon R D. Revised Effective Ionic Radii and Systematic Studies ofInteratomic Distances in Halides and Chalcogenides. Acta CrystallographicaSection A: Crystal Physics, Diffraction, Theoretical and GeneralCrystallography,1976,32(5):751~767
    [270] Petrie M A, Olmstead M M, Power P P. Synthesis and Characterization of theMononuclear Compounds t-Bu2MOAr (M=A1or Ga, Ar=Bulky ArylGroup):Are the Short A1-O and Ga-O Bonds a Consequence of dnteractions? Journal ofthe American Chemical Society,1991,113(23):8704~8708
    [271] Eng P J, Trainor T P, Jr G E B, et al. Structure of the Hydrated α-Al_2O_3(0001)Surface. Science,2000,288(5468):1029~1033
    [272] Wu S Y, Lia Y R, Ho J J, et al. Density Functional Studies of EthanolDehydrogenation on a2Rh/γ-Al_2O_3(110) Surface. Journal of Physical ChemistryC,2009,113(36):16181~16187
    [273] Hill R J, Craig J R, Gibbs G V. Systematics of the Spinel Structure Type.Physics and Chemistry of Minerals,1979,4(4):317~339
    [274] Brown I D, Shannon R D. Empirical Bond-Strength-Bond-Length Curves forOxides. Acta Crystallographica Section A,1973,29(3):266~282
    [275] Whangbo M H, Wolfe S, Bernardi F. A Correlation between Bond Length andIonic Bond Order. Application to the Ylide–Ylene Problem. Canadian Journal ofChemistry,1975,53(20):3040~3043
    [276] Tilley R J D. Crystals and Crystal Structures. Chichester: John Wiley&SonsLtd,2006,164~185
    [277] O'Keefe M, Brese N E. Atom Sizes and Bond Lengths in Molecules andCrystals. Journal of the American Chemical Society,1991,113(9):3226~3229
    [278] Weber J R, Janotti A,Van de Walle C G. Point Defects in Al_2O_3and TheirImpact on Gate Stacks. Microelectronic Engineering,2009,86(7-9):1156~1159
    [279] Smith J R, Zhang W. Stoichiometric Interfaces of Al and Ag with Al_2O_3. ActaMaterialia,2000,48(18-19):4395~4403
    [280] McHale J M, Auroux A, Perrotta A J, er al. Surface Energies andThermodynamic Phase Stability in Nanocrystalline Aluminas. Science,1997,277(5327):788~791
    [281] Alvarez L J, León L E, Sanz J F, et al. Micropore Formation Mechanisms inγ-Al_2O_3. Surface Science,1995,322(1-3):185~192
    [282] Magonov S N, Whangbo M H. Surface Analysis with STM and AFM:Experimental and Theoretical Aspects of Image Analysis. Federal Republic ofGermany: VCH Verlagsgesellschaft mbH,1996,1~5
    [283] Sautet P. Are Electronic Interference Effects Important for STM Imaging ofSubstrates and Adsorbates?: A Theoretical Analysis. Ultramicroscopy,1992,42-44(1):115~121
    [284] Chen C, Chu P, Bobisch C A, et al. Viewing the Interior of a Single Molecule:Vibronically Resolved Photon Imaging at Submolecular Resolution. PhysicalReview Letters,2010,105(21):217402.1~217402.4
    [285]福井谦一(廖代伟译).图解量子化学.北京:化学工业出版社,1984,14~23
    [286] Tanaka I, Adachi H. Calculation of Core-Hole Excitonic Features on AlL23-edge x-ray-absorption Spectra of α-Al_2O_3. Physical Review B,1996,54(7):4604~4608
    [287] Mulliken R S. Electronic Population Analysis on LCAO-MO Molecular WaveFunctions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies.Journal of Chemical Physics,1955,23(10):1841~1846
    [288] French R H. Electronic Band Structure of Al_2O_3, with Comparison to Alon andAIN. Journal of the American Ceramic Society,1990,73(3):477~489
    [289] Wang F, Landau D P. Efficient, Multiple-Range Random Walk Algorithm toCalculate the Density of States. Physical Review Letters,2001,86(10):2050~2053
    [290] Mead C A, Spitzer W G. Fermi Level Position at Metal-SemiconductorInterfaces. Physical Review,1964,134(3A): A713~A716
    [291]王桂茹.催化剂与催化作用(第三版).大连:大连理工大学出版社,2012,90~93
    [292] Beeck O. Hydrogenation Catalysts. Discussions of the Faraday Society,1950,8:118~128
    [293] Sinfelt J H. Specificity in Catalytic Hydrogenolysis by Metals. Advances inCatalysis,1973,23:91~119
    [294] Cen W L, Liu Y, Wu Z B, et al. A Theoretic Insight into the Catalytic ActivityPromotion of CeO2Surfaces by Mn Doping. Physical Chemistry ChemicalPhysics,2012,14(16):5769~5777
    [295] Gilardoni F, Weber J, Chermette H, et al. Reactivity Indices in DensityFunctional Theory: A New Evaluation of the Condensed Fukui Function byNumerical Integration. Journal of Physical Chemistry A,1998,102(20):3607~3613
    [296] Chattaraj P K, Maiti B, Sarka U. Philicity: A Unified Treatment of ChemicalReactivity and Selectivity. Journal of Physical Chemistry A,2003,107(25):4973~4975
    [297] Parr R G, Yang W T. Density Functional Approach to the Frontier-ElectronTheory of Chemical Reactivity. Journal of the American Chemical Society,1984,106(14):4049~4050
    [298] Lee M H, Cheng C F, Heine V, et al. Distribution of Tetrahedral and OctahedralA1Sites in Gamma Alumina. Chemical Physics Letters,1997,265(6):673~676
    [299] Chen Y, Zhang L F. Surface Interaction Model of γ-Alumina-Supported MetalOxides. Catalysis Letters,1992,12(1-3):51~62
    [300] Shimizu K, Maeshima H, Yoshida H, et al. Spectroscopic Characterisation ofCu–Al_2O_3Catalysts for Selective Catalytic Reduction of NO with Propene.Physical Chemistry Chemical Physics,2000,2(10):2435~2439
    [301] Luder W F. The Electronic Theory of Acids and Bases. Chemical Reviews,1940,27(3):547~583
    [302] Stair P C. The Concept of Lewis Acids and Bases Applied to Surfaces. Journalof the American Chemical Society,1982,104(15):4044~4052
    [303] Zaki M I, Hasan M A, Al-Sagheer F A, et al. In Situ FTIR Spectra of PyridineAdsorbed on SiO2–Al_2O_3, TiO2, ZrO2and CeO2: General Considerations for theIdentification of Acid Sites on Surfaces of Finely Divided Metal Oxides.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,190(3):261~274
    [304] Paukshtis E A, Yurchenko E N. Study of the Acid-Base Properties ofHeterogeneous Catalysts by Infrared Spectroscopy. Russian Chemical Reviews,1983,52(3):426~454
    [305] Morterra C, Bolis V, Magnacca G. IR Spectroscopic and MicrocalorimetricCharacterization of Lewis Acid Sites on (Transition Phase) A12O3UsingAdsorbed CO. Langmuir,1994,10(6):1812~1824
    [306] Shen J Y, Cortright R D, Chen Y et al. Microcalorimetric and InfraredSpectroscopic Studies of.gamma.-Al_2O_3Modified by Basic Metal Oxides.Journal of Physical Chemistry,1994,98(33):8067~8073
    [307] Bronsted J N. Acid and Basic Catalysis. Chemical Reviews,1928,5(3):231~338
    [308] Kozo Tanabe, Makoto Misono, Yoshio Ono, et al. New Solid Acids and Bases:Their Catalytic Properties. Tokyo: Kodansha Ltd., and Amsterdam: ElsevierScience Publishers B.V.,1989,78~89
    [309] Yamamoto T, Abla M, Murakami Y. Promotion of Reductive EliminationReaction of Diorgano(2,2′-bipyridyl) nickel(II) Complexes by Electron-Accepting Aromatic Compounds, Lewis Acids, and Br nsted Acids. Bulletin ofthe Chemical Society of Japan,2002,75(9):1997~2009
    [310] Um I H, Min J S, Ahn J A, et al. Effect of Acyl Substituents on the ReactionMechanism for Aminolyses of4-Nitrophenyl X-Substituted Benzoates. Journalof Organic Chemistry,2000,65(18):5659~5663
    [311] Lee K Y, Arai T, Nakata S. Catalysis by Heteropoly Compounds.20. An NMRStudy of Ethanol Dehydration in the Pseudoliquid Phase of12-Tungstophosphoric Acid. Journal of the American Chemical Society,1992,114(8):2836~2842
    [312] Okuhara T, Arai T, Ichiki T, et al. Dehydrationmechanism of Ethanol in thePseudoliquid Phase of H_(3-x)Cs_xPW_(12)O_(40). Journal of Molecular Catalysis,1989,55(1):293~301
    [313] Taft Jr R W. The Dependence of the Rate of Hydration of Isobutene on theAcidity Function, H0, and the Mechanism for Olefin Hydration in AqueousAcids. Journal of the American Chemical Society,1952,74(21):5372~5376
    [314] Boyd R H, Taft R W, Wolf Jr A P, et al. Studies on the Mechanism ofOlefin-Alcohol Interconversion. The Effect of Acidity on the O18Exchange andDehydration Rates of t-Alcohols. Journal of the American Chemical Society,1960,82(17):4729~4736
    [315] Timofeeva M N. Acid Catalysis by Heteropoly Acids. Applied Catalysis A:General,2003,256(1-2):19~35
    [316] Kolesnikov I M. Theory of Catalysis of Polyhedrons as the Basis forInvestigation and Selection of Catalysts. Chemistry and Technology of Fuelsand Oils,2005,41(2):120~130
    [317] Ling G V, Vlugter J C. Catalytic Hydrogenolysis of Saccharides. II. Formationof Glycerol. Journal of Applied Chemistry,1969,19(2):43~45
    [318] Santen R A V. Complementary Structure Sensitive and Insensitive CatalyticRelationships. Accounts of Chemical Research,2009,42(1):57~66
    [319] Block J H, Drachsel W, Gorodetskii V V. Direct Imaging of Catalytic SurfaceReactions in the Field-Ion Microscope: The Oxidation of Hydrogen on Platinum.Recueil des Travaux Chimiques des Pays-Bas,1994,113(10):444~447
    [320]季生福,张谦温,赵彬侠.催化剂基础及应用.北京:化学工业出版社,2011,75~78
    [321] Kraus M. Linear Correlations of Substrate Reactivity in HeterogeneousCatalytic Reactions. Advances in Catalysis,1967,17:75~102
    [322] Lippens B C, Boer J H D. Study of Phase Transformations during Calcination ofAluminum Hydroxides by Selected Area Electron Diffraction. ActaCrystallographica,1964,17(10):1312~1321
    [323] Peri J B. A Model for the Surface of γ-Alumina. The Journal of PhysicalChemistry,1965,69(1):220~230
    [324] Sanz J F, Rabaa H, Poveda F M, et al. Theoretical Models for γ-Al_2O_3(110)Surface Hydroxylation: An Ab Initio Embedded Cluster Study. InternationalJournal of Quantum Chemistry,1998,70(2):359~365
    [325] Turek A M, Wachs I E, DeCanio E. Acidic Properties of Alumina-SupportedMetal Oxide Catalysts: An Infrared Spectroscopy Study. The Journal of PhysicalChemistry,1992,96(12):5000~5007
    [326] Ripmeester J A. Surface Acid Site Characterization by Means of CP/MASNitrogen-15NMR. Journal of the American Chemical Society,1983,105(9):2925~2927
    [327] Liu X S, Truitt R E. DRFT-IR Studies of the Surface of γ-Alumina. Journal ofthe American Chemical Society,1997,119(41):9856~9860
    [328] McGreevya R L, Pusztai L. Reverse Monte Carlo Simulation: A New Techniquefor the Determination of Disordered Structures. Molecular Simulation,1988,1(6):359~367
    [329] Creutz M. Microcanonical Monte Carlo Simulation. Physical Review Letters,1983,50(19):1411~1414
    [330] Swendsen R H, Wang J S. Nonuniversal Critical Dynamics in Monte CarloSimulations. Physical Review Letters,1987,58(2):86~88
    [331]韩维屏.催化化学导论.北京:科学出版社,2003,72~74
    [332]陈诵英,孙予罕,丁云杰等.吸附与催化.郑州:河南科学技术出版社,2001,1~25
    [333] Giles C H, Smith D, Huitson A. A General Treatment and Classification of theSolute Adsorptionisotherm. I. Theoretical. Journal of Colloid and InterfaceScience,1974,47(3):755~765
    [334] Wiberg K B, Hadad C M, LePage T J, et al. Analysis of the Effect of ElectronCorrelation on Charge Density Distributions. Journal of Physical Chemistry,1992,96(2):671~679
    [335] Fahmi A, Santen van R A. Density Functional Study of Ethylene Adsorption onPalladium Clusters. Journal of Physical Chemistry,1996,100(14):5676~5680
    [336] Sautet P, Paul J F. Low Temperature Adsorption of Ethylene and Butadiene onPlatinum and Palladium Surfaces: A Theoretical Study of the diσ/π Competition.Catalysis Letters,1991,9(3-4):245~260
    [337] Pagni R M, Kabalka G W, Bains S, et al. A Chemical, Spectroscopic, andTheoretical Assessment of the Lewis Acidity of Lithium Perchlorate in DiethylEther. Journal of Organic Chemistry,1993,58(11):3130~3133
    [338] Fubini B, Gatta G D, Venturello G. Energetics of Adsorption in theAlumina—Water System Microcalorimetric Study on the Influence ofAdsorption Temperature on Surface Processes. Journal of Colloid and InterfaceScience,1978,64(3):470~479
    [339] Ionescu A, Allouche A, Aycard J P, et al. Study of γ-Alumina Surface Reactivity:Adsorption of Water and Hydrogen Sulfide on Octahedral Aluminum Sites.Journal of Physical Chemistry B,2002,106(36):9359~9366
    [340] Thullie J, Renken A. Forced Concentration Oscillations for Catalytic Reactionswith Stop-Effect. Chemical Engineering Science,1991,46(4):1083~1088
    [341] Golay S, Doepper R, Renken A. In-situ Characterisation of the SurfaceIntermediates for the Ethanol Dehydration Reaction over γ-alumina underDynamic Conditions. Applied Catalysis A: General,1998,172(1):97~106
    [342] Balandin A A. The Multiplet Theory of Catalysis-Energy Factors in Catalysis.Russian Chemical Reviews,1964,33(5):258~275
    [343]杨频.分子结构参量及其与物性关联规律.北京:科学出版社.2007,61~66
    [344] Pauling L(卢嘉锡,黄耀曾,曾广植等译).化学键的本质:兼论分子和晶体的结构.上海:上海科学技术出版社,1981,69~78
    [345] Liguras D K, Kondarides D I, Verykios X E. Production of Hydrogen for FuelCells by Steam Reforming of Ethanol over Supported Noble Metal Catalysts.Applied Catalysis B: Environmental,2003,43(4):345~354
    [346] Breen J P, Burch R, Coleman H M. Metal-Catalysed Steam Reforming ofEthanol in the Production of Hydrogen for Fuel Cell Applications. AppliedCatalysis B: Environmental,2002,39(1):64~74
    [347] Rioux R M, Komor R, Song H, et al. Kinetics and Mechanism of EthyleneHydrogenation Poisoned by CO on Silica-Supported Monodisperse PtNanoparticles. Journal of Catalysis,2008,254(1):1~11
    [348] Tang D C, Hwang K S, Salmeron M, et al. High Pressure Scanning TunnelingMicroscopy Study of CO Poisoning of Ethylene Hydrogenation on Pt (111) andRh (111) Single Crystals. Journal of Physical Chemistry B,2004,108(35):13300~13306
    [349] Al-Shammary A F Y, Caga I T, Winterbottom J M, et al. Palladium-BasedDiffusion Membranes as Catalysts in Ethylene Hydrogenation. Journal ofChemical Technology and Biotechnology,1991,52(4):571~585
    [350] Grant R B, Harbach C A J, Lambert R M, et al. Alkali Metal, Chlorine and otherPromoters in the Silver-Catalysed Selective Oxidation of Ethylene. Journal ofthe Chemical Society, Faraday Transactions1: Physical Chemistry inCondensed Phases,1987,83(7):2035~2046
    [351] Tan S A, Grant R B, Lambert R M. Pressure Dependence of Ethylene OxidationKinetics and the Effects of Added CO2and Cs: A Study on Ag(111) andAg/α-Al_2O_3Catalysts. Applied Catalysis,1987,31(1):159~177
    [352] Dufresne L A, Mao R. Hydrogen Back-Spillover Effects in the Aromatization ofEthylene on Hybrid ZSM-5Catalysts. Catalysis Letters,1994,25(3-4):371~383
    [353] Mohundro E L. Overview on C2and C3Selective Hydrogenation in EthylenePlants. American Institute of Chemical Engineers15th Ethylene ProducesConference,2003Spring National Meeting, New Orleans, LA,2003,531~560
    [354] Fleming H W, Gutmann W R. Purification of Olefins. US Patent,2959627,1960-11-08
    [355] Wert C, Zener C. Interstitial Atomic Diffusion Coefficients. Physical Review,1949,76(8):1169~1175
    [356] Jónsson H. Theoretical Studies of Atomic-Scale Processes Relevant to CrystalGrowth. Annual Review of Physical Chemistry,2000,51(1):623~653
    [357]陈诵英,陈平,李永旺等.催化反应动力学.北京:化学工业出版社,2007,92~94
    [358] Basagiannis A C, Panagiotopoulou P, Verykios X E. Low Temperature SteamReforming of Ethanol Over Supported Noble Metal Catalysts. Topics inCatalysis,2008,51(1-4):2~12
    [359]甄开吉,王国甲,毕颖丽等.催化作用基础(第三版).北京:科学出版社,2005,69~71
    [360]吴性良,孔继烈.分析化学原理(第二版).北京:化学工业出版社,2010,280~283
    [361] Dobson K D, McQuillan A J. In Situ Infrared Spectroscopic Analysis of theAdsorption of Aliphatic Carboxylic Acids to TiO_2, ZrO_2, Al_2O_3, and Ta_2O_5fromAqueous Solutions. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,1999,55(7-8):1395~1405
    [362]翁诗甫.傅里叶变换红外光谱分析(第二版).北京:化学工业出版社,2010,297~320
    [363]李润卿,范国梁,渠荣遴.有机结构波谱分析.天津:天津大学出版社,2002,95~97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700