油酸甲酯提纯及氧化裂解制醛
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统化学工业是以石化资源,如石油、煤炭、天然气等为原料,实现物质转换得到所需要的最终产品。随着可再生生物能源的发展,生物柴油正在作为一种柴油机燃料的添加剂、一种极具潜力的车用燃料替代品,推动着以可再生的生物资源替代石化资源作为原料的化工产业迅猛发展。以生物柴油为原料制备出高附加值产品,一方面可以大大提高资源利用率,另一方面对生物柴油的产业化显得异常重要。发展以生物柴油为基础的化工产业链逐步成为现阶段的研究热点。
     由于醛/酸及其衍生物是制药、化妆品等重要的化工中间体,具有较高的附加值,所以在对双键转化的众多工艺过程中,将较长的不饱和脂肪链氧化裂解得到短链脂肪醛或酸是比较令人感兴趣的。相对于将油酸甲酯氧化裂解得到壬酸和壬二酸氢甲酯来说,将其裂解为壬醛和壬醛酸甲酯研究较少,所以本论文将围绕油酸甲酯氧化裂解制备醛展开工作。从以往的文献中可以看出采用油酸甲酯一步法氧化裂解制醛过程中存在转化率较低或者转化率高了但选择性较低,采用多步法制醛多为有机合成常用方法,不经济,所以本文选用两步法对油酸甲酯进行氧化裂解(即:经环氧化—氧化裂解)。下面对研究的内容进行介绍:
     1.油酸甲酯的精馏提纯。为得到纯度较高的油酸甲酯供后续反应需要,选择乌桕皮油作为初始原料。首先采用两步法(预酯化-酯交换)将乌桕皮油转化为生物柴油(脂肪酸甲酯,FAME)。其次,自行搭建精馏塔,在塔顶绝压为1mmHg左右将生物柴油分离得到高纯度的棕榈酸甲酯(>99.5%)和油酸甲酯(>85%)。然后,将间歇精馏改为分批进料方式。在分批进料3次后,C18:1(>85%)的收率提高到63.2%,C18:1(>90%)的收率达到了45%,而C18:1(>93%)收率达到了10%。由此可以看出,通过分批进料方式大大的提高了高纯度油酸甲酯的收率。继续增加分批进料次数,最终获得了C18:1(>97%),且收率有25%的高纯度油酸甲酯。
     2.油酸甲酯的环氧化。这部分本文分两种环氧化方法进行考察。
     (1)考察了甲酸原位环氧化各工艺条件的影响:反应温度、反应时间、双氧水:油酸甲酯、带水剂:油酸甲酯,采用L16(45)正交试验筛选环氧油酸甲酯工艺条件。从极差值结果看出甲酸的加入量是对油酸甲酯环氧化有较大影响,而溶剂对环氧化的影响相对最小。从方差分析结果看出反应温度和甲酸的添加比例对环氧化效果具有显著意义。提高反应温度,增长反应时间均有利于环氧化反应,但考虑到过高的反应温度会造成双氧水的分解,所以最优反应条件为温度80℃,反应4小时,甲酸和双氧水与油酸甲酯比例均取2,溶剂与油酸甲酯摩尔比为10的。通过试验验证,环氧油酸收率可达94%。
     (2)近年来众多文献报道了含钛分子筛在烯烃环氧化中取得了较为满意的环氧化效果。本文首次采用冷冻处理后的MCM-41载体,以含水的TiCl4溶液作为钛源,制备含钛分子筛TiO2/MCM-41(C)。同时,以未经冷冻处理的载体MCM-41为载体,采用同样的方法所制备了Ti02/MCM-41(H)。通过电感耦合等离子体质谱(ICP-MS)、X射线衍射(XRD)、BET表征、透射电镜(TEM)等技术对以上所制备的含钛分子筛进行表征。结果发现TiO2/MCM-41(C)具有更高的微孔有序性、氧化钛物种的分布更加均匀并且与载体之间具有更强的相互作用。当钛的负载量达到76.6mg/g时,孔径从3.4nm减少到了2.4nm。油酸甲酯在353K下环氧反应10h后,MO的转化率可达97.6%,环氧油酸甲酯(MES)选择性可达93.1%。TiO2/MCM-41(C)经3次循环使用后,仍可保持最初的优良催化性能。
     3.环氧油酸甲酯氧化裂解制备壬醛和壬醛酸甲酯。采用原子层沉积法(ALD)法制备出一系列不同WO3含量的WO3/HMS催化剂,通过ICP-MS、XRD、BET、TEM等技术对制备的催化剂进行了详细表征。在以双氧水为氧化剂的环氧油酸甲酯(MES)氧化裂解制壬醛酸甲酯(MAA)反应中考察了催化剂性能,并与以SBA-15和MCM-41为载体制备的含钨催化剂进行了比较。表征结果证实,对于载体HMS,钨含量小于5%时钨物种能均匀的分散在HMS的孔道中,而采用SBA-15和MCM-41为载体时,以5wt.%的比例制备时,钨的实际含量明显低于5wt.%,并且钨物种出现了团聚现象。反应结果表明,以HMS为载体,钨含量小于5wt.%的WO3/HMS表现出较好的选择性,MAA的产率可达80%以上;溶剂对反应选择性影响较大,以t-BuOH和二氧六环作为溶剂有利于反应进行;随着反应温度的升高,MES的转化率明显提高。另外,催化剂2-WO3/HMS重复使用3次后催化活性仍能基本保持。
     4.环氧油酸甲酯氧化裂解机理及动力学模型的建立。首先是对2-WO3/HMS氧化裂解MES中所产生的中间产物采用核磁,红外等表征手段证实在氧化裂解过程中,一个环氧化物分子首先形成了过氧化物,再经热重排而得到两分子的醛。在排除外扩散的影响下,并考察了内扩散对反应的影响。其次,在此基础上建立本征动力学模型。进行了一系列的本征动力学实验测定。最后,采用非线性最小二乘法对模型参数进行估算,且估算值达到F检验值的要求。
Non-renewable fossil, such as oil, coal, natural gas, is used as raw material in the traditional chemical industry. With the development of renewable biological resources, biodiesel was used as an additive of diesel fuel and a potential succedaneum of fuel, which promot the rapid development of chemical industries base on renewable resources. Producing high value-added products from biodiesel as raw material will increase resource utilization rate and is important for biodiesel industrialization. Recently, development chemical industry chain base on biodiesel gradually become a research hotspot.
     In particular, the oxidative cleavage of long aliphatic chain fatty acid methyl esters, leading to short aliphatic chain aldehydes and acids is interesting among so many possible carbon double bond functionalizations, because acids, aldehydes and their derivations is important chemical intermediates for lubricants, plastictizers, adhesives, cosmetics and pharmaceuticals with high value-added. The research on oxidative cleavage to aldehydes is less relative to the research on oxidative cleavage to acid. From the previous literatures, we can find low conversion or high conversion with low selectivity using one-step oxidative cleavage of methyl oleate to aldehydes. And multi-steps methods are always applied in organic synthesis, diseconomic. Therefore, a process for the production of nonanal and methyl azelaaldehydate by oxidative cleavage of the methyl oleate (MO) in two reaction steps (epoxidation and oxidative cleavage) was studied in this paper. The details in this work are summarized as follows.
     1. MO purification. In order to get high purified MO for the following process requiring, tallow oil was chosed as the raw material. First, biodiesel was preparaed by two steps, esterification and interesterification, from tallow oil. Second, a vacuum rectification tower was built. And the high purify MO (90%) and methyl palmitate (>99.8%) were obtained by vacuum rectification (about1mmHg). Then, the operation process was changed to batch feeder. After3times feeder, the yield of C18:1was improved to63.2%(>85%),45%(>90%), as well as10%(>93%). The results show that, the batch-feeded process has improved the yield of high purity C18:1. Last but most, the yield of C18:1(>97%) was25%by using muti batch-feed process.
     2. The epoxidation of MO. Two kinds of epoxidation process were investivaged.
     (1) The influences of process condition, temperature, reaction time, molar ratio of H2O2/MO and molar ration of solvent/MO, were investigated for the epoxidation of MO with performic acid generated in situ. And the L16(45) orthogonal experimental design was used to optimize the conditions of the epoxidation of MO. The maxmium results show that the moler ratio of formic acid/MO significantly affected the epoxidation yield, and influence of molar ratio of solvent/MO is relatively small. Besides, the results of variance analysis shows that temperature and addition amount of formic acid significantly affected the epoxidation. Improving temperature and extending reaction time are of benefit of the epoxidation. Considering the decomposition of hydrogen peroxide at high temperature, the optimum condition is the mole ratio of formic acid/MO=2, H2O2/MO=2, solvent/MO=10,80℃and reaction for4hours. At last, the yield of epoxide can reach94%at optimum condition.
     (2) Since titanium-containing molecular sieves have shown to be efficient catalysts for the epoxidation of olefins, titanium-containing mesoporous silica TiO2/MCM-41(C) was first prepared by impregnating MCM-41, pretreated by refrigeration at278K, with aqueous TiCl4solution as titanium precursor. In addition, TiO2/MCM-41(H) was produced by same method but the support MCM-41without refrigeration in order to investigate the influence of unrefrigerated pretreatment on the structure of TiO2/MCM-41. The dispersion and nature of titanium species were characterized by inductively coupled plasma mass spectrometry (ICP-MS), powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance spectra (UV-vis DRS), standard Brunauer Emmnett Teller (BET), X-ray photoelectron spectra (XPS), scanning electron micrographs (SEM), transmission electron microscopy (TEM). The results indicate that TiO2/MCM-41(C) showed better mesoscopic order, higher dispersion of titanium oxide species, stronger interaction with the MCM-41support. But the pore size decreases from3.4nm to2.4nm when the titanium content increases to76.6mg/g. TiO2/MCM-41(C2) exhibits more excellent catalytic performance than others, and the97.6%conversion of methyl oleate (MO) and93.1%selectivity to epoxidation methyl oleate (MES) can be obtained at353K for10h.
     3. The oxidative cleavage of MES. A series of WO3/HMS catalysts were prepared by atomic layer deposition (ALD) method and characterized by ICP-MS, XRD, BET, and TEM. The application to oxidative cleavage of methyl9,10-epoxystearate (MES) to methyl azelaaldehydate (MAA) with H2O2as oxidant under mild condition was studied. And the effect of catalyst support (SBA-15, MCM-41), reaction temperature and solvents was investigated. The characterization results showed that tungsten species was highly dispersed on the HMS surface as the WO3content of catalyst below5wt.%. However, the contents of tungsten is5wt.%in theory, but lower than5wt.%by ICP-MS for the catalysts supported on SBA-15and MCM-41. And tungsten species partially congregate and form low-crystalline metal oxide species on the surface of supporter. As a consequence, the catalysts WO3/HMS of tungsten content below5%give higher MES conversion and excellent MAA selectivity. On the other hand, elevating reaction temperature and using t-BuOH or dioxane as solvent will favor the oxidation cleavage of MES reaction. In addition,2-WO3/HMS catalyst has good regeneration and can be reused for three times in the oxidation system.
     4. The mechanism and dynamic model of oxidative cleavage of MES was studied. First, the intermediate of the oxidative cleavage was invesitaged by NMR and FT-IR. The results proved that the intermediate is a kind of peroxide and thermal rearranged to aldehydes under heated condition. And the dynamic model was built base on the above results. Then the dynamic experiments were carried under the elimination the influence of internal and external diffusion. Last, the dynamic parameters were determinated by least square method base on the experimental data and the result achieves the requirement of the F test value.
引文
[1]闵恩泽,张利雄.生物柴油产业链的开拓——生物柴油炼油化工厂[M].北京:中国石化出版社,2006:61283.
    [2]闵恩泽,姚志龙.近年生物柴油产业的发展[J].化学进展.2007,19(7/8),1050-1059
    [3]Aresta M, Dibenedetto A, Carone M, et al. Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction [J]. Environmental Chemistry Letters,2005,3 (3):136-139.
    [4]Miao X L, Wu Q Y. Biodiesel production from heterotrophic microalgae oil [J]. Bioresource Technology,2006,97 (6):841-846.
    [5]闵恩泽,姚志龙.我国发展生物柴油产业的挑战与对策[J].天然气工业,2008,28(7):1-4.
    [6]阂恩泽.利用可再生农林生物质资源的炼油厂——推动化学工业迈入“碳水化合物”新时代[J].化学进展,2006,18(2/3):131-141.
    [7]中国产业信息网http:\\www.chyxx.com\
    [8]Adams C, Peters J F, Rand M C, Schroer B J, Ziemke M C. Investigation of soybean oil as a diesel fuel extender:Endurance tests [J]. Journal of the American Oil Chemists'Society,1983,60(8):1574-1579.
    [9]Ma F R, Clements L D, Hanna M A. The effect of mixing on transesterification of beef tallow [J]. Bioresource Technolgy,1999,69:289-293
    [10]Peterson C L, Auld D L, Korus R. A. Winter rape oil fuel for diesel engines:Recovery and utilization [J]. Journal of the American Oil Chemists' Society,1983,60:1579-1587.
    [11]Altin R, Cetinkaya S, Yucesu H S. The potential of using vegetable oil fuels as fuel for diesel engines [J]. Energy Conversion and Management,2001,42: 529-538
    [12]Engler C R, Johnson L A, Lepori W A, Yarbrough C M. Efects of processing and chemical characteristics of plant oils on performance of an indirect-injection diesel engine [J]. Journal of the American Oil Chemists' Society,1983,60: 1592-1596
    [13]Ziejewski M Z, Kaufman K R, Schwab A W. Diesel engine evaluation of non-sunflower oil-aqueous ethanol microemlsion [J]. Journal of the American Oil Chemists' Society,1984,65:1630-1626
    [14]de Castro Dantas T N, da Silva A C, Neto A A D.New microemulsion systems using diesel and vegetable oils [J]. Fuel,2001,80(8):75-81.
    [15]Goering C E, Fry B. Engine durability screening test of a diesel oil/soy oil/alcohol microemulsion fuel [J]. Journal of the American Oil Chemists' Society,1984,61:1627-1632
    [16]Pioch D, Lozano P, Rasoanantoandro M C,Graille J, Genestep P, Guida A. Biofuels from catalytic cracking of tropical vegetable oils [J]. Oleagineux,1993, 48:289-291
    [17]Billaud F, Dominguez V, Broutin P, Busson C. Production of hydrocarbons by pyrolysis of methyl esters from rapeseed oil [J]. Journal of the American Oil Chemists'Society,1995,72:1149-1154
    [18]Vicente G, Martinez M, Aracil J. Integrated biodiesel production a comparison of different homogeneous catalysts systems [J].Bioresource Technology,2004,92: 297-305
    [19]Stavarache C, Vinatoru M, Nishimura R, Maeda Y.Fatty acids methyl esters from vegetable oil by means of ultrasonic energy [J]. Ultrasonics Sonochenistry,2005, 12:367-372
    [20]Karmee S K, Chadha A. Preparation of biodiesel from crude oil of Pongamia pinnata [J]. Bioresource Technology,2005,96:1425-1429
    [21]Crabbe E, Nolasco-Hipolito C, Kobayashi G, Sonomoto K, Ishizaki A. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties [J]. Process Biochemistry,2001,37(1):65-71
    [22]Lara P V, Park Enoch Y. Potential application of waste activated bleaching earth on the production of fatty acid alkyl esters using Candida cylindracea lipase in organic solvent system [J], Enzyme and Microbial Technology,2004,34: 270-277
    [23]Vicente G, Coteron A, Martinez, Aracil J. Application of the factorial design of experiments and response surface methodology to optimize biodiesel production[J].Industrial Crops and Products,1998,8:29-35
    [24]Kusdiana D, Saka S. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol [J]. Fuel,2001,80:693-698
    [25]Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol [J]. Fuel,2001,80:225-231
    [26]Zhang Y. biodiesel production from waste cooking oil:1. Process design and technological assessment Review [J]. Bioresource Technology,2003,89(1): 1-16.
    [27]计建炳,徐之超,王建黎.水力空化制备生物柴油的方法[P].CN:1687312A,2005,10,26
    [28]王云,俞云良,陆向红.水力空化技术强化酯交换反应合成生物柴油的研究[J].浙江工业大学学报,2008,36(1):12-15
    [29]Ji J B, Wang J L, Li YC.Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation [J]. Ultrasonics,2006,44:411-414
    [30]Biermann U, Friedt W, Lang S. New syntheses with oils and fats as renewable raw materials for the chemical industry [J]. Angewandte Chemie International Edition,2000,39:2206-2224.
    [31]Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals [J]. Chemical Review,2007,107:2411-2502.
    [32]Jenck F J, Agterberg F, Droescher M J. Products and processes for a sustainable chemical industry-a review of achievements and prospects [J]. Green Chemical, 2004,11:544-556.
    [33]Kockritz A, Martin A. Oxidation of unsaturated fatty acid derivatives and vegetable oils [J]. European Journal of Lipid Science and Technology,2008,110: 812-824.
    [34]Behr A, Westfechtel A, Gomes J P. Catalytic processes for the technical use of natural fats and oils [J]. Chemical Engineering & Technology,2008,31: 700-714
    [35]Heidbreder A. Oleochemical products as building blocks for polymers [J]. European Journal of Lipid Science and Technology,1999,101:418-424.
    [36]Warwel S, Bruse F, Demes C. Polymers and surfactants on the basis of renewable resources [J]. Chemosphere,2001,43:39-48
    [37]Behr A, Westfechtel A, Gomes J P. Catalytic Processes for the technical use of natural fats and oils [J]. Chemical Engineering & Technology,2008,31(5): 700-714
    [38]Kockritz A, Martin A. Oxidation of unsaturated fatty acid derivatives and vegetable oils [J]. European Journal of Lipid Science and Technology,2008,110: 812-824.
    [39]杨运财.脂肪酸甲酯混合物的分离及其溶解性能研究[D].浙江,浙江工业大学,2008
    [40]颜来达.蒸馏在脂肪酸工业中的应用[J].中国油脂,1996,21(5):41-47
    [41]毕艳兰,郭诤,杨天奎.油脂化学[M].北京,化学工业出版社,2005
    [42]Gouw T H, Vlugter J C. Physical properties of fatty acid methyl ester. V. Dielectric constant [J]. Journal of the American Oil Chemists' Society,1964,41: 675-678.
    [43]Gouw T H, Vlugter J C. Physical properties of fatty acid methyl. I. density and molar refraction [J]. Journal of the American Oil Chemists' Society,1964,41: 426-429.
    [44]Allen C A W, Watts K C, Ackrnan R G, Pegg M J. Predicting the viscosity of biodiesel fuels from theirFatty acid ester composition [J]. Fuel,1999,78: 1319-1326.
    [45]Hradetzky G, Lempe D A. Merseburg Data Bank for Thermophysical Properties of Pure Compounds [DB], MDB 5.0,1992-2007
    [46]Hayes D G, Alstine J V, Asplund A L. Triangular Phase Diagrams to predict the Fractionation of free fatty acid mixtures via urea complex formation [J]. Separation Science and Technology,2001,36(1):45-58.
    [47]翁新楚,董新伟,任国谱.脲包物在脂类分离技术中的应用[J].中国油脂,1994,16(6):40-44
    [48]Swern D. Urea and Thiourea Complexes in Separating Organic Compounds [J]. Industrial & Engineering Chemistry Research 1955,47:216-221.
    [49]张海满,刘福祯,戴玲妹.尿素包合法纯化砣亚麻酸工艺研究Ⅰ[J].中国油脂,2001,26(2):41-44
    [50]樊莉,张亚刚,马莉,文彬.尿素包合法富集高纯度棉籽油亚油酸甲酯的研究[J].石河子大学学报(自然科学版),2002,6(3):238-241
    [51]陈必春,郭晓东,许志杰,陈永森,甘学文.分子蒸馏及其在多不饱和脂肪酸中的应用[J].食品工程,2007,1:14-16
    [52]傅红,裘爱泳.分子蒸馏法富集鱼油中ω-脂肪酸[J].中国粮油学报,2006,21(3):156-159
    [53]ChenY M, Xiao B, Chang J, Fu Y, Lv P M, Wang X W. Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor [J]. Energy Convers Manage,2009,50:668-673.
    [54]徐世民,刘颖,胡晖.分子蒸馏富集海狗油中多不饱和脂肪酸[J].化学工业与工程,2006,23(6):495-498
    [55]Behr A, Westfechtel, Gomes J P. Catalytic Processes for the Technical Use of Natural Fats and Oils [J]. Chemical Engineering & Technology,2008, 31(5):700-714
    [56]陈元雄,毛宗强,吴宗斌,朱华平,汤志勇.麻风果油料的综合开发利用[J].中国油脂,2006,31(3),63-65
    [57]尹利君.乌桕梓油中甘油四酯、2,4--癸二烯酸及亚麻酸的提取[D].浙江,浙江工业大学,2009.
    [58]陈文伟.乌桕油制备生物柴油的研究[D].江西:南昌大学,2006.
    [59]刘伟雄,魏东芝.可可脂代用品的研究进展[J].食品与发酵工业.1998,24(4):53-57
    [60]陈才水,高荫榆.以乌桕脂(或籽)为原料制取类可可脂的方法[P].中国专利:85100005,1985-09-10
    [61]冯春发,彭素萍.一种代可可脂的制取方法[P].中国专利:1014016B,1991-09-25.
    [62]徐学兵,张虹.乌桕脂研究进展述评[J].粮食与油脂,1994,4:9-12
    [63]林一天,张克迪.中国乌桕脂深度开发及某些衍生物生产[J].粮食与油脂,1992,2:28-32
    [64]吴邦信,陈天祥.高纯度乌桕脂棕榈酸、油酸制取工艺研究[J].贵州化工,1999,2:14-17
    [65]吴邦信,陈天祥.联合法制取高纯度乌桕脂棕榈酸、油酸工艺研究[J].日用化学工业,1999,12:57-59
    [66]冯薇荪,汪盂言.润滑油的生物降解性能与其结构及组成的关系[J].石油学报(石油加工),2000,6:48-56
    [67]陈文伟.乌桕梓油制备生物柴油的研究[D].江西,南昌大学,博士论文2006.
    [68]Chaminand J, Djakovitch L, Gallezot P, Marion P, Pinel C, Rosier C. Glycerol hydrogenolysis on heterogeneous catalysts [J]. Green Chem,2004,6:359-362.
    [69]Behr A, Westfechtel A, Gomes J P. Catalytic Processes for the technical use of natural fats and oils [J]. Chem. Eng. Technol,2008,31(5):700-714
    [70]Kockritz A, Martin A. Oxidation of unsaturated fatty acid derivatives and vegetable oils [J]. Eur J Lipid Sci Technol,2008,110:812-824.
    [71]Behr P A, Gomes J P. The refinement of renewable resources:New important derivatives of fatty acids and glycerol [J]. Eur J Lipid Sci Technol,2010, 112(1):31-50.
    [72]Goebel C G, Brown A C, Oehlschlaeger H F. Method of making azelaic acid [J]. US:2813113,1957-11-12.
    [73]Charles G, Alexander C, Herman F, et al. Method of making azelaic acid [P]. US 2813113,1953
    [74]才震宇,乐清华,吴明喜.油酸臭氧氧化法制取壬二酸的研究[J],化学世界,2010,6:362-366
    [75]Santacesaria E, Ambrosio M, Sorrentino A. Double bond oxidative cleavage of monoenic fatty chains [J]. Catalysis Today,2003.5:59-65.
    [76]Venturello, Carlo, Ricci. Process for the preparation of carboxylic acids starting from vicinal water-soluble diols[P]. US:4550196,1985.
    [77]Nuramat A, Eli W. Improved synthesis process for azelaic acid with ionic liquid as a basi reaction system[J]. HuagongJinzhan,2007,26:1036-1040
    [78]Luong T M, Schriftman H, Swern D. Direct hydroxylation of fats and derivatives with a hydrogen peroxide tungstic acid system[J]. J Am Oil Chem,1967,5: 316-320
    [79]Santacesaria E, Aorrentino S, Rainone. Oxidative cleavage of the double bond of monoenic fatty chains in two steps:A new promising route to azelaic acid and other industrial products [J]. Ind Eng Chem Res,2000,39:2766-2771
    [81]Dunny E, Evans P. Stereocontrolled Synthesis of the PPAR-y Agonist 10-Nitrolinoleic Acid [J]. J Org Chem,2010,75:5334-5336.
    [82]Tamura S, Kaneko M, Shiomi A, Yang G M, Yamaura T, Murakami N. Unprecedented NES non-antagonistic inhibitor for nuclear export of Rev from Sida cordifolia [J]. Bioorg Med Chem Lett,2010,20:1837-1839.
    [83]Pryde E H, Moore D J, Cowan J C, Palm W E, Witnauer L P. Azelaaldehydic acid ester-acetal derivatives as plasticizers for poly(vinyl chloride) [J]. Polym Eng Sci, 1966,6:60-65.
    [84]Carlsen P H J. A greatly improved procedure for ruthenium tetraoxide catalysed oxidation of organic compounds [J]. J Org Chem,1981,46 (19):3936-3938.
    [85]Yang D, Zhang C. Ruthenium-Catalyzed Oxidative Cleavage of Olefins to Aldehydes [J]. J Org Chem,2001,66:4814-4818.
    [86]Ho C M, Yu W Y, Che C M. Ruthenium Nanoparticles Supported on Hydroxyapatite as an Efficient and Recyclable Catalyst for cis-Dihydroxylation and Oxidative Cleavage of Alkenes [J]. Angew Chem Int Ed,2004,43: 3303-3307.
    [87]Pryde E H, Anders D E, Teeter H M, Cowan J C. The Ozonization of Methyl Oleate [J]. J Org Chem,1960,25:618-621.
    [88]Zhang W J, Sun M J, Salomon R G. Preparative singlet oxygenation of linoleate provides doubly allylic dihydroperoxides:putative intermediates in the generation of biologically active aldehydes in vivo [J]. J Org Chem,2006,71: 5607-5615.
    [89]Maerker G, Haeberer E T. Direct cleavage of internal epoxides with periodic acid [J]. J Am Oil Chem Soc,1966,43:97-100.
    [90]Binder C M, Dixon D D, Almaraz E, Tius M A, Singaram B. A simple procedure for C-C bond cleavage of aromatic and aliphatic epoxides with aqueous sodium periodate under ambient conditions [J]. Tetrahedron Lett,2008,49:2764-2767.
    [91]Wang T, Wang C H, Zhang J L. Unexpected C-C bond cleavage of epoxide motif: Rhodium(i)-catalyzed tandem heterocyclization/[4+1] cycloaddition of 1-(1-alkynyl)oxiranyl ketones [J]. Chemical Commun,2011,47:5578-5580.
    [92]许新华,陈海鹰,邓景发,蒋安仁.过氧化氢水溶液催化氧化环戊烯制备戊二醛[J].化学学报,1993,51,399-403
    [93]杨新丽,戴维林,徐建华,et a1.新型WO3/HMS催化剂的制备及其对环戊烯选择氧化反应的催化性能[J].催化学报,2005,26:311-316.
    [94]Yang X L, Dai W L, Chen H, Xu J H, Cao Y, Li H X, Fan K N. Novel tungsten-containing mesoporous HMS material:its synthesis, characterization and catalytic application in the selective oxidation of cyclopentene to glutaraldehyde by aqueous H2O2 [J] Appl Catal A-Gen,2005,283:1-8
    [95]Yang X L, Gao R H, Dai W L, Fan K N. Influence of tungsten precursors on the structure and catalytic properties of WO3/SBA-15 in the selective oxidation of cyclopentene to glutaraldehyd [J]. J Phys Chem C,2008,112:3819-3826.
    [96]袁程远,陈静.介孔硅担载磷钨杂多酸催化剂的制备及其对环戊烯氧化反应的催化性能[J].催化学报,2011,32:1191-1198.
    [97]Zhu Z Q, Bian W. Characterization of tungsten based catalyst used for selective oxidation of cyclopentene to glutaraldehyde. Chinese J Chem Eng,2008,16(6): 895-900.
    [98]Beebe T R, Hii P, Reinking P. Oxiadative cleavage of 1,2-diol with N-iodosuccinimide [J].1981,46 (9):1927-1929.
    [99]Maerker G, Haeberer E T. Direct cleavage of internal epoxides with periodic acid [J]. J Am Oil Chem Soc,1966,43:97-100.
    [100]Kai K, Takeuchi J, Kataoka T, Yokoyama M, Watanabe N. Structure-activity relationship study of flowering-inducer FN against Lemna paucicostata [J]. Tetrahedron,2008,64(28):6760-6769.
    [101]Griegee R. Mechanism of Ozonolysis[J]. Angewandte Chemie International Edition in English,1975,14(11):745-752
    [102]Geletnety C, Berger S. The Mechanism of Ozonolysis Revisited by 17O-NMR Spectroscopy [J]. European Journal of Organic Chemistry,1998,1998(8): 1625-1627.
    [103]Warwel S, Sojka S, gen. Klaas M R. Synthesis of dicarboxylic acids by transition metal catalyzed oxidative cleavage [J]. Organic peroxygen chemistry, 1993,164:79-98
    [104]Smith B M, March J. March高等有机化学—反应机理与结构[M].化学工业出版社.北京,2011
    [105]Gary B. Schuster, Lynn A. Bryant. Exothermic cyclic peroxide reactions. Decomposition of a 1,2,4-Trioxane [J]. J. Org Chem,1978,43(3):521-522
    [106]戴维林,俞宏坤,邓景发,蒋安仁.过氧化氢水溶液催化氧化环戊烯制备戊二醛机理研究[J].化学学报,1995,53:188-192.
    [107]Pryde E H, Brekke O L, Mounts T L, et al. Handbook of Soy Oil Processing and Utilization [M]. AOCS Press, Champaign, IL,1980.
    [108]Frischinger I, Dirilikov S, Riew C K, Kinloch A K. Toughened Plastics I: Science and Engineering [M], American Chemical Society, Washington, DC, 1993.
    [109]Wu X, Zhang X, Yang S, et.al. The study of epoxidized rapeseed oil used as a potential biodegradable lubricant[J]. J. Am. Oil Chem. Soc.,2000,77(7):561.
    [110]Scheuffegen I, Meffert A. Oil components for cosmetics and pharmaceuticals [P]. US 4612192,1997.
    [111]Greenspan F P, Gall R J. Static and Dynamic Mechanical Properties of Vinylester Resin Matrix Composites Reinforced with Shellac-Treated Jute Yarns [J]. Ind Eng Chem,2006,45(8):2722-2730.
    [112]Nieschlag H J, Rothfus J A, Sohns V E, Perkins R B. Nylon-1313 from brassylic acid [J]. Ind. Eng. Chem., Prod. Res. Dev.,1977,16:101-107.
    [113]Warwel S, Briise F, Demes C, et al. Polymers and surfactants on the basis of renewable resources [J]. Chemosphere,2003,43:39-48
    [114]Scholnick F, MonROE H A, Saggese E J, et al. Urethane foams from animal fats. II. Reaction of propylene oxide with fatty acids [J]. J. Am. Oil Chem's Soc., 1967,44:40-42.
    [115]Benanibaa M T, Belhaneche-Bensemrab N, Gelbardc G. Kinetics of Tung sten-catalyzed sunflower oil epoxidation studied by 1H NMR [J]. Eur. J. Lipid Sci. Technol.,2007,109(12):1186-1193.
    [116]Czub P. Application of modified natural oils as reactive diluents for epoxy resins [J]. Macromol Symp,2006,242:60-64.
    [117]Overeem A, Buisman G H, Derksen J F. Seed oils rich in linolenic acid as renewable feedstock for environment-friendly crosslinkers in powder coatings [J]. Ind Crops Prod,1999,10:157-165.
    [118]Dantas T N C, Dantas A A, Santos R A. In situ epoxidation of vegetable oils from dende (Elaeis guineensis) and maracuya (Passiflora edulis) [J]. Inf Tecnol, 1999,10:73-81.
    [119]Scala J L, Wool R P. Effect of composition on epoxidation kinetics of tag[J]. J Am Oil Chem Soc,2002,79:373-378.
    [120]Iijima M, Kido F. Effect of cyclodextrin on the oxidation of unsaturated fatty acids[J]. Tsuruoka Kogyo Koto Senmon Gakko Kenkyu Kiyo,2002,37:5-6
    [121]施赛泉,蒋平平,史润萍等.无硫酸环境环氧化大豆油合成条件优化[J].化工进展,2008,27(5):753-756
    [122]Campanella A, Fontani C, Baltanas M A. High yield epoxidation of fatty acid methyl esters with performic acid generated in situ [J]. Chemical Engineering Journal,2008,144:466-475.
    [123]Poli E, Clacens J M, Barrault J, et al. Solvent -free Selective Epoxidation of Fatty Esters Over a Tungsten-based Catalyst[J]. Catal. Today,2009,140(1-2): 19-22
    [124]Goud V V, Patwardhan A V, Pradhan N C. Studies on the Epoxidation of Mahua Oil (Madhumica Indica) by Hydrogen Peroxide [J]. Bioresour. Technol.,2006, 97(12):1365-1371
    [125]Dinda S, Patwardhan A V, Goud V V, et al. Epoxidation of Cottonseed Oil by Aqueous Hydrogen Peroxide Catalysed by Liquid Inorganic Acids [J]. Bioresour. Technol.,2008,99(9):3737-3744
    [126]Goud V V, Narayan C, Pradhan K. Kinetics of in situ epoxidation of natural unsaturated triglycerides catalyzed by acid icion exchange resin[J]. Ind Eng Chem Res,2007,46:3078-3085
    [127]Eric J L. Process of epoxidation of oils [P]. US:4215058,1980-7-29
    [128]Petrovic Z S. Epoxidation of soybean oil in toluene withperoxoacetic and peroxoformic acids-kinetics and side reactions[J]. Eur J Lipid Sci Technol, 2002,104:293-299
    [129]曹卫东.由硫酸铝催化合成环氧大豆油[J].辽宁化工,1994,23(5):36-37
    [130]Sepulveda J, Teixeira S, Schuchardt U. Alumina-catalyzed epoxidation of unsaturated fatty esters with hydrogen peroxide [J]. Appl Catal A Gen,2007, 318:213-217
    [131]李德记,徐国财,黄磊,等.合成环氧大豆油工艺改进的研究[J].化工技术与开,2007,36(10):6-9
    [132]Barrio L, Campos-Martin J M, de Frutos M P, et al. Alkene epoxidation with ethylbenzene hydroperoxides using molybdenum heterogeneous catalysts [J]. Ind. Eng. Chem. Res.,2008,47:8016-8024
    [133]Suarez P A Z, Pereira M S C, Doll K M, et al. Erhan. Epoxidation of methyl oleate using heterogeneous catalyst [J]. Ind. Eng. Chem. Res.,2009,48: 3268-3270.
    [134]Guidotti M, Psaro R, Ravasio N, et al. Titanium-silica catalysts for the production of fully epoxidised fatty acid methyl esters [J]. Catal. Lett.,2008,122: 53-56
    [135]Poli E, Clacens J M, Barrault J, et al. Solvent-free selective epoxidation of fatty esters over a tungsten-based catalyst [J]. Catal. Today.,2009,140:19-22.
    [136]Sato K, Aoki M, Ogawa M, et al. A halide-free method for olefin epoxidation with 30% hydrogen peroxide [J]. Bull. Chem. Soc. Jpn.,1997,70:905-911.
    [137]Kuhn F E, Scherbaum A, Herrmann W A. Methyltriox orhenium and its Applications in Olefin Oxidation, Metathesis and Aldehyde Olefination [J]. Organomet. Chem.,2004,689(24):4149-4164
    [138]Gerbase A E, Gregorio J R, Martinelli M, etal. Epoxidation of Soybean Oil by the Methyltrioxorhenium-CH2Cl2/H2O2 Catalytic System [J]. Am. Oil Chem. Soc.,2002,79(2):179-181
    [139]Sobczak J M, Ziokowski J J. Molybdenum Complex-catalysed Epoxidation of Unsaturated Fatty Acids by Organic Hydroperoxides [J]. Appl. Catal. A:Gen., 2003,248(1/2):261-268
    [140]Kozhevnikov V, Mulder G P, Oostwal M G. Epoxidation of oleic acid catalyzed by peroxo phosphotungstate in a two-phase system [J]. J Mol Catal AChem, 1998,134:223-228
    [141]Guidotti M, Ravasio N, Psaro R, et al. Epoxidation of Unsaturated FAMEs Obtained From Vegetable Source Over Ti (IV)-grafted Silica Catalysts:A Comparison Between Ordered and Nonordered Mesoporous Materials [J]. J. Mol. Catal. A:Chem.,2006,250 (1-2):218-225
    [142]Rios L A, Weckes P, Schuster H, et al. Mesoporous and Amorphous Ti-silicas on the Epoxidation of Vegetable Oils [J]. Catal.,2005,232(1):19-26
    [143]Inumaru K, Okuhara T, Misono M. Elementary surface reactions in the preparation of vanadium oxide overlayers on silica by chemical vapor deposition [J]. J. Phys. Chem.,1991,95 (12):4826-4832.
    [144]Rios L A, Weckes P, Schuster H. Mesoporous and amorphous Ti-silicas on the epoxidation of vegetable oils [J]. J Catal,2005,232:19-26
    [145]Yao J M, Zhan W C, Liu X H, et al. Catalytic performance of Ti-SBA-15 prepares by chemical vapor deposition for propylene epoxidation [J]. Microporous Mesoporous Mater.,2012,15:131-136
    [146]Marino D, Gallrgos N G, Bengoa J F, et al. Ti-MCM-41 catalysts prepared by post-synthesis methods:Limonene epoxidation with H2O2[J]. Catal. Today,2008, 133-135:632-638
    [147]Aronson B J, Blanford C F, Stein A. Solution-phase graftiong of titanium dioxide onto the pore surface of mesoporous silicates:synthesis and structural characterization [J]. Chem. Mater.,1997,9:2842-2851.
    [148]Dong X C, Wang L, zhou J F, et al. Preparation of nano-polyethylene fibres using TiCl4/MCM-41 catalytic system [J]. Catal. Comm.,2006,7:1-5
    [149]Hilker I, Bothe D, Pruss J. Chemo-enzymatic epoxidation of unsaturated plant oils[J]. Chem Eng Sci,2001,56:427-432
    [150]Yadav G D, Devi K M. A kinetic model for the enzymecatalyzed self-epoxidation of oleic acid[J]. J Am Oil Chem Soc,2001,78:347-351
    [151]Chen Q, Li Z Y. Lipase catalyzed synthesis of epoxy-fatty acids [J]. Chin J Chem,2000,18:247-248等
    [152]高勇军,马晶军,王春.二氧杂环丙烷参与的烯烃环氧化反应[J].有机化学,2005,25(7):745-750。
    [153]Yang D, Yip Y C, Tang M W, et al. Design of Efficient Ketone Catalysts for Epoxidation by Using the Field Effect [J]. Org. Chem.,1998,63(26):9888-9894
    [154]Chou T C and Lee S V. Epoxidation of Oleic Acid in the Presence of Benzaldehyde Using Cobalt(II) Tetraphenylporphyrin as Catalyst [J]. Ind. Eng. Chem. Res.,1997,36 (5),1485-1490
    [155]Aguirre P, Zolezzi S, Parada J,et al. Ruthenium carbonyl complexes in catalytic epoxidation of olefins co-catalyzed by isobutyl-aldehyde [J]. Appl Oranomet Chem,2006,20(4):260-263
    [156]Ragagnin G, Knochel P. Aerobic Ru-catalyzed Epoxidations in Fluorous Biphasic System Using New Fluorous Benzimidazolic Ligands [J]. Synlett., 2004(6):951-954
    [157]Kockritz A, Blumenstein M, Martin A. Epoxidation of Methyl Oleate With Molecular Oxygen in Presence of Aldehydes [J]. Eur. J. Lipid Sci. Technol., 2008,110(6):581-586
    [1]Behr A, Westfechtel A, Gomes J P. Catalytic Processes for the technical use of natural fats and oils [J]. Chemical Engineering & Technology,2008,31(5): 700-714
    [2]Kockritz A, Martin A. Oxidation of unsaturated fatty acid derivatives and vegetable oils [J]. European Journal of Lipid Science and Technology,2008,110:812-824.
    [3]陈天祥,吴邦信.菜籽油芥酸提取甲酯化工艺研究[J].贵州化工,1996,(4):12-15
    [4]晋正茂,王维德.间歇精馏模拟及操作方式的研究进展[J].化工技术与开发,2006,35(9):34-38
    [1]Inumaru K, Okuhara T, Misono M. Elementary surface reactions in the preparation of vanadium oxide overlayers on silica by chemical vapor deposition [J]. J. Phys. Chem.,1991,95 (12),4826-4832.
    [2]Yao J M, Zhan W C, Liu X H, et al. Catalytic performance of Ti-SBA-15 prepares by chemical vapor deposition for propylene epoxidation [J]. Microporous Mesoporous Mater.,2012,15,131-136
    [3]Marino D, Gallrgos N G, Bengoa J F, et al. Ti-MCM-41 catalysts prepared by post-synthesis methods:Limonene epoxidation with H2O2[J]. Catal. Today,2008, 133-135,632-638
    [4]Aronson B J, Blanford C F, Stein A. Solution-phase graftiong of titanium dioxide onto the pore surface of mesoporous silicates:synthesis and structural characterization [J]. Chem. Mater.,1997,9,2842-2851.
    [5]Dong X C, Wang L, zhou J F, et al. Preparation of nano-polyethylene fibres using TiCl4/MCM-41 catalytic system [J]. Catal. Comm.,2006,7,1-5
    [6]Vermaire D C, Vanbere P C. The preparation of tungsten trioxide/titania and tungsten trioxide/alumina and characterization by temperature-programmed reduction [J]. J Chatal,1989,116(2):309-317.
    [7]S. Che, S. Lim, M. Kaneda, H. Yoshitake, O. Terasaki, and T. Tatsumi. The effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process. J. Am. Chem. Soc.,2002,124 (47),13962-13963.
    [8]M. S. Morey, S. O'Brien, S. Schwarz, and G. D. Stucky. Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium. Chem. Mater.,2000,12 (4),898-911
    [9]Y. Luo, G. Z. Lu, Y. L. Guo, and Y. S. Wang. Study on TiMCM-41 zeolites prepared with inorganic Ti sources:Synthesis, Characterization and catalysis. Catal. Comm.,2002,3,129-134
    [10]M. Rigutto. Vanadium and titanium-containing molecular sieves, PHD thesis [D]. Technische Universiteit Delft,1996.
    [11]B. J. Aronson, C. F. Blanford, and A. Stein. Solution-phase graftiong of titanium dioxide onto the pore surface of mesoporous silicates:synthesis and structural characterization. Chem. Mater.,1997,9,2842-2851.
    [12]A. O. T. Patrocinio, E. B. Paniago, R. M. Paniago, and N. Y. M. Iha. XPS characterization of sensitized n-TiO2 thin films for dye-sensitized solar cell applications. Appl. Surf. Sci.,2008,254,1874-1879.
    [13]Y. Hasegawa, and A. Ayame. Investigation of oxidation states of titanium in titanium silicalite-1 by X-ray photoelectron spectroscopy. Catal. Today,2001,71, 177-187.
    [14]A. Y. Stakheev, E. S. Shpiro, and J. Apijok. XPS and XAES study of titania-silica mixed oxide system. J. Phys. Chem.,1993,97 (21),5668-5672.
    [15]O. D. Trong, M. P. Kapoor, E. Thibault, J. E. Gallot, G. Lemay, and S. Kaliaguine. Influence of high-energy ball milling on the physico-chemical and catalytic properties of titanium silicalite TS-1. Micropor. Mesopor. Mater.,1998,20, 107-118.
    [1]Chen Y M, Xiao B, Chang J, et al. Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor [J]. Energy Convers Manage,2009, 50(3):668-673.
    [2]Chaminand J, Djakovitch L, Gallezot P, et al. Glycerol hydrogenolysis on heterogeneous catalysts[J]. Green Chem,2004,6(8):359-362.
    [3]Behr A, Westfechtel A, Gomes J P. Catalytic Processes for the technical use of natural fats and oils [J]. Chem Eng Technol,2008,31(5):700-714
    [4]Kockritz A, Martin A. Oxidation of unsaturated fatty acid derivatives and vegetable oils [J]. Eur J Lipid Sci Technol,2008,110(9):812-824.
    [5]Dunny E, Evans P. Stereocontrolled Synthesis of the PPAR-y Agonist 10-Nitrolinoleic Acid [J]. J Org Chem,2010,75(15):5334-5336.
    [6]Tamura S, Kaneko M, Shiomi A, et al. Unprecedented NES non-antagonistic inhibitor for nuclear export of Rev from Sida cordifolia [J]. Bioorg Med Chem Lett,2010,20(6):1837-1839.
    [7]Pryde E H, Moore D J, Cowan J C, et al. Azelaaldehydic acid ester-acetal derivatives as plasticizers for poly(vinyl chloride) [J]. Polym Eng Sci,1966,6(1): 60-65.
    [8]Carlsen P H J. A greatly improved procedure for ruthenium tetraoxide catalysed oxidation of organic compounds [J]. J Org Chem,1981,46 (19):3936-3938.
    [9]Yang D, Zhang C. Ruthenium-Catalyzed Oxidative Cleavage of Olefins to Aldehydes [J]. J Org Chem,2001,66(14):4814-4818.
    [10]Ho C M, Yu W Y, Che C M. Ruthenium Nanoparticles Supported on Hydroxyapatite as an Efficient and Recyclable Catalyst for cis-Dihydroxylation and Oxidative Cleavage of Alkenes [J]. Angew Chem Int Ed,2004,43(25): 3303-3307.
    [11]Kai K, Takeuchi J, Kataoka T, et al. Structure-activity relationship study of flowering-inducer FN against Lemna paucicostata [J]. Tetrahedron,2008,64(28): 6760-6769
    [12]Pryde E H, Anders D E, Teeter H M, et al. The Ozonization of Methyl Oleate [J]. J Org Chem,1960,25(4):618-621.
    [13]Zhang W J, Sun M J, Salomon R G. Preparative singlet oxygenation of linoleate provides doubly allylic dihydroperoxides:putative intermediates in the generation of biologically active aldehydes in vivo [J]. J Org Chem,2006,71(15): 5607-5615.
    [14]Beebe T R, Hii P, Reinking P. Oxiadative cleavage of 1,2-diol with N-iodosuccinimide [J]. J Org Chem,1981,46 (9):1927-1929.
    [15]Maerker G, Haeberer E T. Direct cleavage of internal epoxides with periodic acid [J]. J Am Oil Chem Soc,1966,43(2):97-100.
    [16]Binder C M, Dixon D D, Almaraz E, et al. A simple procedure for C-C bond cleavage of aromatic and aliphatic epoxides with aqueous sodium periodate under ambient conditions [J]. Tetrahedron Lett,2008,49(17):2764-2767.
    [17]Wang T, Wang C H, Zhang J L. Unexpected C-C bond cleavage of epoxide motif: Rhodium(i)-catalyzed tandem heterocyclization/[4+1] cycloaddition of 1-(1-alkynyl)oxiranyl ketones [J]. Chemical Commun,2011,47(19):5578-5580.
    [18]GB 16483-2000, General rules for preparation of chemical safty data sheet (危险化学品安全技术说明书编写规定)[s],2000
    [19]戴维林,俞宏坤,邓景发,等.过氧化氢水溶液催化氧化环戊烯制备戊二醛机理研究)[J].化学学报,1995,53(2):188-192.
    [20]杨新丽,戴维林,徐建华,等.新型WO3/HMS催化剂的制备及其对环戊烯选择氧化反应的催化性能[J].催化学报,2005,26(4):311-316.
    [21]Yang X L, Dai W L, Chen H, et al. Novel tungsten-containing mesoporous HMS material:its synthesis, characterization and catalytic application in the selective oxidation of cyclopentene to glutaraldehyde by aqueous H2O2 [J] Appl Catal A-Gen,2005,283(1-2):1-8
    [22]Yang X L, Gao R H, Dai W L, et al. Influence of tungsten precursors on the structure and catalytic properties of WO3/SBA-15 in the selective oxidation of cyclopentene to glutaraldehyd [J]. J Phys Chem C,2008,112(10):3819-3826.
    [23]袁程远,陈静.介孔硅担载磷钨杂多酸催化剂的制备及其对环戊烯氧化反应的催化性能[J].催化学报,2011,32(7):1191-1198.
    [24]Zhu Z Q, Bian W. Characterization of tungsten based catalyst used for selective oxidation of cyclopentene to glutaraldehyde [J]. Chinese J Chem Eng,2008, 16(6):895-900.
    [25]Campanella A, Fontanini C, Baltanas M A. High yield epoxidation of fatty acid methyl esters with performic acid generated in situ [J]. Chem Eng J,2008, 144(3):466-475.
    [26]Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature,1994, 368(6469):321-323.
    [27]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves [J]. Science,1995,267(5199):865-867.
    [28]Cai Q, Luo Z S, Pang W Q, et al. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium [J]. Chem Mater,2001, 13(2):258-263.
    [29]Ma L N, Ji J B, Yu F W, et al. Post-synthesis of TiO2/MCM-41 from aqueous TiCl4 solution:Structure characteristics and epoxy catalytic activity [J]. Micropor Mesopor Mat,2013:165(1):6-13.
    [30]Vermaire D C, Vanbere P C. The preparation of tungsten trioxide/titania and tungsten trioxide/alumina and characterization by temperature-programmed reduction [J]. J Chatal,1989,116(2):309-317.
    [1]Fogler H S. Elements of chemical reaction engineering [M]. Prentice-Hall:Upper Saddle River, NJ,1992
    [2]Mears D E. Test for transport limitations in experimental catalytic reactors [J]. Ind Eng Chem Process Des Devept,1971,10(4):541-547
    [3]Froment G F, Bischoff K B. Chemical reactor analysis and design [M]. Wiley and Sons, New York,1979,192-200
    [4]Reide R C, Prausnitz J M, Poling B E. The properties of gases & liquids [M]. McGraw-Hill, New York,1998
    [5]飞思科技产品研发中心编著.MATLAB6.5辅助优化计算与设计[M].北京:电子工业出版社,2003.1
    [6]阮沈勇,王永利,桑群芳遍.MATLAB程序设计[M].北京:电子工业出版社,2004.7
    [7]黄华江编.实用化工计算机模拟[M].北京:化学工业出版社,2004.7.
    [8]Graaf G. H., Winkelman J. G. M, Stamhuis E.J. et al. Kinetics of the three phase methanol synthesis[J]. Chemical Engeering Scinece,1988,43(8):2161-2168.
    [9]王正烈等.物理化学上册(第四版)[M].北京:高等教育出版社,2003.
    [10]陈诵英等.催化反应动力学[M].北京:化学工业出版社,2007.
    [11]J.M.Smith.化工动力学(第三版)[M].北京:化学工业出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700