氨基介孔二氧化硅吸附功能的研究及吸附过程模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的迅速发展,人类生产活动产生的大量CO_2气体和含重金属离子的废水对环境和人类的健康造成了严重的危害。CO_2作为一种温室效应的气体,其导致全球气候变暖已经成为了一个全球性的环境问题。同样,重金属离子由于不能被微生物降解、毒性长期持续和不可逆转等,因而如何消除重金属离子危害也成为当今世界环境保护工作的重要问题。吸附法在CO_2吸附回收和重金属离子吸附脱除方面有较大的优势,因此具有广阔的应用前景。
     本论文选用阴离子表面活性剂法合成一系列的带氨基介孔二氧化硅吸附剂用于CO_2吸附回收和重金属离子的吸附脱除。其中采用异丁酸、月桂酸、十六酸、碳十二谷氨酸、碳十八谷氨酸为模板剂,带氨基的有机硅烷γ-氨丙基三乙氧基硅烷为助结构导向剂,硅酸乙酯为硅源合成介孔二氧化硅。采用红外上负载的官能团进行表征、利用X射线衍射和高效透射电镜对样品孔道结构和晶型进行分析、低温氮气吸附脱附测量其比表面积、孔容和孔径分布、热重分析样品上负载氨基的量。采用静态法和动态法分别测量其对N_2和CO_2的吸附量,考察表面活性剂的种类、有机硅烷γ-氨丙基三乙氧基硅烷含量对介孔二氧化硅吸附剂结构、CO_2吸附量和CO_2/N_2吸附分离系数的影响,分别采用升温和抽真空的方法对吸附CO_2饱和的样品进行解吸,评价吸附剂的再生性能。同时采用样品C_(12)GluA-APS-0.3吸附脱除水中微量铜离子,测量吸附剂在不同浓度的溶液中对铜离子的吸附速率和吸附量。利用Freundlich和Langmuir吸附等温方程分析铜离子在样品C_(12)GluA-APS-0.3上的吸附形式,采用吸附准一级方程和二级方程分析此吸附过程动力学。
     在大量探索性实验和条件优化的基础上,选择测量CO_2吸附效果最好的样品C_(12)AA-APS-0.2在323.15K下对CO_2和N_2的吸附等温线,对吸附等温线方程进行拟合,得到吸附等温线参数。在323.15K,0MPa下对CO_2/N_2混合气进行变压吸附分离。由于数据库不完全、变压吸附过程本身复杂等原因使得变压吸附模拟计算很少报道,本文中我们利用Aspen adsim软件对上述吸附过程进行模拟,选择合适的模拟模型,发现模拟结果能够很好的描述整个吸附过程。为了进一步的应用模拟模型,并进一步建立液相吸附模型,我们用超临界吸附分离的方法分离中药川芎中的有效成分,并对此吸附过程进行模拟。在8.8MPa、323.15K,川芎中的成分被超临界CO_2溶解然后再在硅胶吸附剂上进行分离。为了更好的分析和模拟整个吸附分离过程,将川芎组分假设成二元组分,其中轻组分在吸附的过程中获得。利用添加夹带剂的方法对吸附在硅胶吸附剂上的重组分进行解吸,高浓度的重组分被脱附下来,而且其回收率高达85%。同时考察吸附时间、解吸液流速对产品浓度和回收率的影响。最后对模拟数据进行了实验验证,实验数据证明模拟选择模型非常合适,模拟数据和实验数据相符,模拟能够很好的指导实验进行。
With the development of modern industry, the emission of carbon dioxide andwaste water containing heavy metal ions cause serious harm to the environment andhuman health. Carbon dioxide as a greenhouse gas has become a global environmentproblem and it emission lead to the global temperature increased and the sea-level rise.Removal o f h eavy m etal i ons f rom w aste w ater i s es sential due t o t heirbio-accumulation tendency, toxicity, persistency and non-biodegradability in nature.Adsorption w as c onsidered f or t he b est w ay t o de aling w ith recovery of c arbondioxide and low concentration of copper waste water, and it was used more widely.
     In this paper, a series of amine-functionalized mesoporous silica were preparedvia an anionic surfactant-mediated synthesis method and applied to CO_2adsorptionand deep removal of copper ions from aqueous solution. With isobutyric acid, lauricacid, p almitic a cid, N-Lauroyl-L-glutamic a cid and N-stearoyl-l-glutamic acid asstructure directing agent, γ-aminopropyltriethoxysilane as co-structure directing agentand tetraethyl orthosilicate as silica source. The force of forming the silicamicelle isthe direct electrostatic interaction between the positively charged amino groups inγ-aminopropyltriethoxysilane and the negatively charged head groups in the anionicsurfactant via t he S-N~+~I~-mechanism, and t he a lkoxysilane s ite ofγ-aminopropyltriethoxysilane is co-condensed w ith i norganic pr ecursors (tetrathtylorthosilicate) to form silica wall. The am ine-functionalized mesoporous silica wascharacterized by Fourier transform infrared spectrometer, X-ray diffraction, nitrogenphysisorption and thermogravimetric analysis. The adsorption capacity of samples forCO_2and N_2was measured using static method and dynamic method. The effects ofthe type of surfactant and the content of γ-aminopropyltriethoxysilane on the structureof mesoporous silica, adsorption capacity for CO_2and N_2, and adsorption separationfactor of CO_2/N_2were studied. The saturated adsorbents were regenerated by hightemperature or vacuum, and the regenerative capacity of the adsorbents was evaluated.The C_(12)GluA-APS-0.3sample was also used to remove of Cu~(2+)ions from aqueoussolution, and adsorption capacity for Cu~(2+)and adsorption rate was measured in thesolution with different concentrations. Copper adsorption process had been studiedfrom both kinetic (Pseudo-first-order kinetic and Pseudo-second-order kinetic) and equilibrium (Freundlich and Langmuir) points of view for C_(12)GluA-APS-0.3material.
     The adsorption isotherms of C_(12)GluA-APS-0.3material for CO_2and N_2weremeasured at323.15K, and the mixture of CO_2and N_2was separated by pressureswing adsorption (323.15K,0M Pa) us ing C_(12)GluA-APS-0.3as a dsorbent. Thesimulation of pressure swing adsorption was rarely reported because of a variety ofreasons, aspen adsim software was used to simulate the adsorption process in thispaper, a nd t he a ppropriate s imulation m odel was w ell de scribed t he a dsorptionprocess. In order to further the application of simulation model, the components inLigusticum chuanxiong was separated by adsorption in supercritical carbon dioxide(SC-CO_2,8.8M Pa and323.15K), and then the process was simulated using aspenadsim. In order to further used simulation model and built simulation model for liquidphase a dsorption, Ligusticum chuanxiong i s a ssumed t o be a qua si-binary s ystemmade up of s lightly a dsorbed ps eudcomponents a nd s trongly a dsorbedpseudcomponents. The adsorbent was regenerated by adding a strippant in SC-CO_2,and t he s lightly adsorbed ps eudcomponents a nd s trongly ps eudcomponents (therecovery of85%) were successfully obtained in the adsorption and desorption step.The effects of the adsorption time and the flow rate of strippant on the concentrationsof t he c omponents i n t he e ffluent a nd t he r ecovery of t he p roducts were al soinvestigated. The w hole a dsorption s eparation process was s imulated with a spenadsim successfully and the amount of adsorbed components on t he adsorbents waspredicted graphically.
引文
[1]Aaron D, Tsouris C. Separation of CO2from flue gas: a r eview. Separ SciTechnol,2005.40(1-3),321-48
    [2]夏明珠,严莲荷,雷武等,二氧化碳的分离回收技术与综合利用,现代化工,1999,19(5):46-48
    [3]Yang H, Xu Z, Fan M, et al. Progress in carbon dioxide separation and capture:A review. Journal of Environmental Science,2008.20(1):14-27
    [4]费维扬,艾宁,陈建等,温室气体CO2的捕集和分离-分离技术面临的挑战与机遇,化工进展,2005,24(1):1-4
    [5]Figueroa J D, F out T, P lasynski S, e t a l. A dvances i n C O2capturetechnology-The U.S d epartment o f en ergy’s c arbon s equestration pr ogram.International Journal of Greenhouse Gas Control,2008.2(1):9-20
    [6]Pennline H W, Luebke D R, J ones K L, et al. Progress in carbon dioxidecapture and separation research for gasification-based power generation point sources.Fuel Processing Technology,2008.89(9):897-907
    [7]王桂红,余云松,张早校,化学吸收法分离烟气二氧化碳研究进展,青海大学学报,2011,29(4):35-39
    [8]闫平科,王来贵,二氧化碳的捕集及资源化研究进展,中国非金属矿工业导刊,2011,6::4-6
    [9]王志峰,NHD脱碳工业的先进性及应用前景,现代化工,1999,19(4):24-26
    [10]曲平,俞裕国,合成氨装置脱碳工艺发展与评述,大氮肥,1997,20(2):97-102
    [11]陈五平主编,无机化工工艺学(一)合成氨,北京:化学工业出版社,1996
    [12]Graham T. On the law of the diffusion of gases. J. Membr. Sci,1995.100(1):17-21
    [13]Graham T. Notice of the singular inflation of a bladder. J. Membr. Sci,1995.100(1):9-17
    [14]Baker RW. Future directions of membrane gas separation technology. Ind.Eng. Chem. Res,2002.41(6):1393-1411
    [15]Mckee B, Solutions for the21st Century, Zero Emissions Technologies forfossil fuels, Technology status report, International Energy Agency, Pairs2002
    [16]Rahaman M, Cheng LH, Xu XH, et al. A review of carbon dioxide captureand utilization by membrane integrated microalgal cultivation processes. Renewableand Sustainable Energy Reviews,2011.15:4002-4012
    [17]Powell CE, Qiao GG. Polymeric CO2/N2gas separation membranes for thecapture of carbon dioxide from power plant flue gases. J. Membr. Sci,2006.279:1-49
    [18]吕伯昇,赖春芳,盛新江等,烟气CO2膜吸收技术及其工艺因素分析,化工进展,2011,30(3):649-655
    [19]李士凤,基于水合物技术的模拟电厂烟气中二氧化碳捕获研究:[博士学位论文],大连;大连理工大学,2010
    [20]Yang RT,吸附剂原理与应用,北京:高等教育出版社,2010.2
    [21]Pires JCM, Martins FG, Alvim-Ferraz MCM, et al. Recent developments oncarbon capture and storage: An overview. Chemical Engineering Research and Design,2011.89:1446-1460
    [22]Ho MT, Allinson GW, Wiley DE. Reducing the cost of CO2capture fromflue gases using pressure swing adsorption. Ind Eng Chem Res,2008.47:4883-4890
    [23]Li G, Xiao P, Webley PA, et al. Capture of CO2from high humidity flue gasby vacuum swing adsorption with zeolite13X. Adsorption,2008.14:415-422
    [24]Zhang J, Webley PA. Cycle development and design for CO2capture fromflue gas by vacuum swing adsorption. Environ Sci Technol,2008.42:563-569
    [25]Zhang J, W ebley PA, X iao P. E ffect of pr ocess pa rameters on pow errequirements of vacuum swing adsorption technology for CO2capture from flue gas.Energ Convers Manage,2008.49:346-356
    [26]Drage T C, S mith K M, P evida C, e t al. D evelopment of a dsorbenttechnologies for post-combustion CO2capture. Energy Procedia,2009.1:881-884
    [27]Grande CA, Rodrigues AE. Electric swing adsorption for CO2removal fromflue gases. Int J Greenh Gas Con,2008.2:194-202
    [28]Grande CA, Ribeiro RPL, Oliveira ELG, et al. Electric swing adsorption asemerging CO2capture technique. Energy Procedia,2009.1:1219-1225
    [29]Grande CA, Ribeiro, RPL, Rodrigues AE. CO2capture from NGCC powerstations using electric swing adsorption (ESA). Energ Fuel,2009.23:2797-2803
    [30]Sjostrom S, Krutka H. Evaluation of solid sorbents as a retrofit technologyfor CO2capture. Fuel,2010.89:1298-1306
    [31]Lu C, Bai H, Wu B, et al. Comparative Study of CO2Capture by CarbonNanotubes, Activated Carbons, and Zeolites. Energy&Fuels,2008.22(5):3050-3056
    [32]Prezepio’risk J, Skrodzewicz M, Morawski AW. High temperature ammoniatreatment o f activated carbon f or en hancement of C O2adsorption. Appl S urf Sci,2004.225(1-4):235–242
    [33]Gao W, Butler D, Tomasko DL. High-pressure adsorption of CO2on NaYzeolite a nd m odel pr ediction of a dsorption i sotherms. Langmuir,2004.20(19):8083–8089
    [34]Siriwardane RV, Shen MS, Fisher EP, et al. JA Poston. Adsorption of CO2onzeolites at moderate temperatures. Energy&Fuels,2005.19(3):1153–1159
    [35]Hiyoshi N, Yogo K, Yashima T. Adsorption characteristics of carbon dioxideon or ganically functionalized S BA-15. Microporous M esoporous M ater,2005.84(1-3):357–365
    [36]Gray M L, Soong Y, Champagne KJ, et al. Improved immobilized carbondioxide capture sorbents. Fuel Processing Technol,2005.86(14-15):1449–1455
    [37]Cinke M, Li J, R icca A, e t al. CO2adsorption i n s ingle-walled car bonnanotubes. Chem Phys Lett,2003.376(5-6):761–766
    [38]White CM, Strazisar BR, Granite EJ, et al. Separation and capture of CO2from large stationary sources and sequestration in geological. Chem Lett,2003.53(6):645–715
    [39]Xu XC, Song CS, Andresen JM, et al. Preparation and characterization ofnovel C O2molecular ba sket a dsorbents ba sed on pol ymer-modified m esoporousmolecular sieve MCM-41. Microporous Mesoporous Mater,2003.62:29-45
    [40]Hiyoshi N, Yogo K, Yashima T. Adsorption of carbon dioxide on aminemodified SBA-15in the presence of water vapor. Chem Lett,2004.33(5):510-511
    [41]Xu X C, Song CS, A ndresen JM, et al. N ovel polyethylenimine-modifiedmesoporous molecular sieve o f C M-41type as high-capacity adsorbent f or C O2capture. Energy Fuels,2002.16:1463-1469
    [42]Xu XC, Song CS, Andresen JM, et al. Separation of CO2from power plantflue gas using a novel CO2“molecular basket” adsorbent. Fuel Chemistry DivisionPreprints,2003.48(1):162-163
    [43]Xu X C, Song CS, A ndresen J M, et al. A dsorption s eparation of c arbondioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecularbasket” adsorbent. Fuel Process Technology,2005.86:1457–1472
    [44]Franchi R S, H arlick P JE, Sayari A. A pplications of por e-expandedmesoporous silica.2.development of a high-capacity, water-tolerant adsorbent for CO2.Ind Eng Chem Res,2005.44:8007-8013
    [45]Kim S, Ida J, Guliants V, et al. Tailoring pore properties of MCM-48silicafor selective adsorption of CO2. J. Phys. Chem. B,2005.109:6287-6293
    [46]Yue, M.B., C hun, Y., C ao, Y., D ong, X., Z hu, J.H.,“CO2capture b yas-prepared S BA-15w ith a n oc cluded or ganic t emplate”, Adv. F unct. M ater.,16,1717-1722(2006)
    [47]Huang HY, Yang R T, Chinn D, et al. Amine-grafted MCM-48and silicaxerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng. Chem.Res,2003.42:2427-2433
    [48]Knowles GP, Graham JV, Delaney SW, et al. Aminopropyl-functionalizedmesoporous silicas as CO2adsorbents. Fuel Process Technol,2005.86:1435-1448
    [49]Yokoi T, Y oshitake H, T atsumi T. S ynthesis of a mino-functionalizedMCM-41via direct co-condensation and post-synthesis grafting methods using mono-,di-and tri-amino-organoalkoxysilanes. J. Mater. Chem.2004.14:951-957
    [50]Harlick PJE, Sayari A. Amine grafted, pore-expanded MCM–41for acid gasremoval: Effect of grafting temperature, water, and amine type on performance. Stud.Surf. Sci. Catal,2005.158:987-994
    [51]Harlick PJE, Sayari A. Applications of pore-expanded mesoporous silicas.3.triamine silane grafting for enhanced CO2adsorption. Ind. End. Chem. Res,2006.45:3248-3255
    [52]Harlick PJE, Sayari A. Applications of pore-expanded mesoporous silica.5.triamine grafted material with exceptional CO2dynamic and equilibrium adsorptionperformance. Ind. End. Chem. Res,2005.46(2):446-458
    [53]Kim S, S on W, C hoi J, et al. C O2adsorption us ing amine-functionalizedmesorporous silica prepared via anionic surfactant-mediated synthesis. MicroporousMesoporous Materials,2008.115:497-503.
    [54]Chang ACC, Chuang SSC, Gray MM, et al. In-Situ Infrared Study of CO2Adsorption on S BA-15Grafted with γ-(Aminopropyl)triethoxysilane. Energy Fuels,2003.17(2):468-473
    [55]Son WJ, Choi J S, Ahn W S. Adsorptive r emoval of c arbon di oxide us ingpolyethyleneimine-loaded mesoporous silica materials. Microporous and MesoporousMaterials,2008.113(1-3):31-40
    [56]Su FS, Lu C, Kuo SC, et al. Adsortpion of CO2on amine-functionalizedY-type zeolite. Energy&Fuels,2010.24:1441-1448
    [57]Yan W, Tang J, Bian ZJ, et al. Carbon dioxide capture by amine-impregnatedmesocellular f oam c ontaining t emplate. Ind. E ng. C hem. R es.,2012.51(9):3653-3662
    [58]Mohn T, Potterat O, Hamburger M. Quantification of active principles andpigments in leaf extracts of Isatis tinctoria by HPLC/UV/MS. Plant Medica,2007.73(2):151-156
    [59]DiRenzo F, C ambon H, D utartre R. A28-year-old s ynthesis ofmicelle-templated mesoporous silica. Microposous Materials,1997.10(4-6):283-286
    [60]徐如人,分子筛与多孔材料化学,北京:科学出版社,2004
    [61]Beck J S, V artuli JC, R oth W J, e t a l. A new family of m esoporousmolecular-sieves prepared with liquid-crystal templates. J Am Chem Soc,1992.114:10834-10843
    [62]Chen CY, Li HX, Davis ME. Studies on mesoporous materials1.Synthesisand characterization of MCM-41. Microporous Mater,1993.2:1242-1244
    [63]Huo QS, Margclese DI, Ciesla U, et al. Generalized synthesis of periodicsurfactant inorganic composite materials. Nature,1994.368:317-321
    [64]Inagaki S, Fukushima Y, Kuroda K. Syntheiss of highly ordered mesoporousmaterials from a layered polysilicate. J Chem SocChem Commun,1993.680-682
    [65]Monnier A, S chuth F, H uo Q, e t a l. C ooperative f ormation ofinorganic-organic interfaces in the synthesis of silicate mesostructures. Science,1993.261:1299-1303
    [66]Corma A. From microporous to molecular sieve materials and their use incatalysis. Chem Rev,1997.97:2373-2382
    [67]易中周,重金属污染物在水体中的络合效应,蒙自师范高等专科学校学报,1999,4(1):12-14
    [68]王湖坤,复合累托石颗粒材料的制备及处理铜冶炼工业废水的研究:[博士论文],湖北;武汉理工大学,2007
    [69]Skarstrom CW. Method and apparatus for fractionation gaseous mixtures byadsorption[P]. US2944627,1960
    [70]梁其煜,李式模,邵皓平,变压吸附技术的发展,低温工程,1997,(5):7-11
    [71]吕昌忠,新型四塔变压吸附提纯氢气过程研究:[博士论文],天津;天津大学,2003
    [72]曾嵘,变压吸附电路网络模型:[硕士论文],广州:华南理工大学,2002
    [73]Lewandowski J, Lemcoff NO, Palosaari S. Use of neural netwoeks in thesimulation and optimization of pressure swing adsorption. Chem Eng Tchnol.,1998.21(7):593-597
    [74]Fernandez G F, K enney KS. M odeling t he pr essure s wing a ir s eparationprocess. Chem Eng Sci,1983.38(6):827-834
    [75]王啸,马正飞,周汉涛等,两床吸附空分制氧过程的模拟,天然气化工,2003,28:50-56
    [76]Barcia P S, S ilva J AC, R odrigues A E. A dsorption d ynamics of C5-C6isomerate fractions in zeolite beta for the octane improvement of gasoline. Energy&Fuels,2010.24:1931-1940
    [77]Barcia P S, S ilva J AC, R odrigues A E. Octane up grading of C5/C6lightnaphtha b y l ayered pr essure s wing a dsorption. E nergy&F uels,2010.24(9):5116-5130
    [78]Yang SL, C hoi DY, J ang SC, et al. Hydrogen s eparation by mu lti-bedpressure swing adsorption of synthesis gas. Adsorption,2008.14:583-590
    [79]何东荣,周向辉,张东辉,利用Aspen-adsim模拟变压吸附分离过程,天然气化工,2009,34(5):11-15
    [80]周圆圆,杨华伟,张东辉,甲烷/氮气变压吸附分离的实验与模拟,天然气化工,2011,36(5):21-27
    [81]张玲,刘友平,李旻等,川芎化学成分分离鉴定与藁本内酯的含量测定,中国药房,2010,21(15):1381-1383
    [82]李秋怡,川芎超临界CO2萃取物化学成分及其质量分析研究:[硕士论文],湖北;湖北中医学院,2007
    [83]陈友鸿,莫尚志,李洁仪等,川芎挥发成分研究,中药材,2004,8:580-582
    [84]范宋玲,张建军,熊带水等,川芎微波提取工艺优选,2011,18(17):46-48
    [85]彭英利,马承愚,超临界流体技术应用手册,北京:化学工业出版社,2005
    [86]Bracey W, kman U, Sunol AK. High pressure adsorption and supercriticaldesorption of a queous f ructose-glucose mix ture. J. S upercritical Fluids,1991.4:60-68
    [87]Iwai Y, Uchida H, Mori Y, et al. Separation of i somericDimethylnaphthalenes mixture in supercritical carbon dioxide by using zeolite. Ind.Eng. Chem. Res,1994.33:2157-2160
    [88]Uchida H, Iwai Y, Amiya M, et al. Adsorption be haviors of2,6-and2,7-Dimethylnaphthalenes in supercritical carbon dioxide using NaY-type zeolite. Ind.Eng. Chem. Res,1997.36:424-429
    [89]Uchida H, Iwai Y, Nitta M, et al. Impulse Response Analysis for Adsorptionof2,6-and2,7-Dimethylnaphthalenes in supercritical carbon dioxide using NaY-typezeolite. Ind. Eng. Chem. Res,1998.37:595-598.
    [90]Iwai Y, Higuchi M, Nishioka H, et al. Adsorption of supercritical carbondioxide+2,6-and2,7-Dimethylnaphthalene isomers on NaY-type zeolite. Ind. Eng.Chem. Res,2003.42:5261-5267
    [91]Sate M, Goto M, Kodama K, et al. New fractionation process for citrus oil bypressure swing adsorption in supercritical carbon dioxide, Chem. Eng. Sci,1998.53:4095-4104
    [92]Goto M, Fukui G, Wang HT, et al. Deterpenation of bergamot oil by pressureswing adsorption in supercritical carbon dioxide. Journal of chemical engineering ofJapan,2002.35:372-376
    [93]Wang HT, Goto M, Sasaki M, et al. Separation of Separation of α-tocopheroland squalene by pressure swing adsorption in supercritical carbon dioxide, Ind. Eng.Chem. Res,2004.43:2753-2758
    [94]Che S, Garcia-Bennett A E, Yokoi T, et al. A nove l a nionic s urfactanttemplating r oute f or s ynthesizing m esoporous s ilica w ith uni que s tructure. Naturematerials,2003,2:801-805
    [95]胡智辉,合成负载氨基的介孔二氧化硅用于CO2/N2吸附分离:[硕士论文],天津:天津大学,2009
    [96]Garcia-Bennett A E, K upferschmidt N, S akamoto Y, e t a l. Synthesis ofmesocage structures by kinetic control of self-assembly in anionic surfactants. AngewChem,2005.117:5451-5456
    [97]Zelenak V, B adanicova M, H alamova D, e t a l. A mine-modified or deredmesoporous silica: effect of pore size on carbon dioxide capture. Chem Eng J,2008.144:336-342
    [98]Serna-Guerrero R, Dana E, Sayari A. New insights into the interactions ofCO2with amine-functionalized silica. Ind Eng Chem Res,2008.47:9406-9412
    [99]Lam K F, C hen X, Mckay G, e t a l. A nion e ffect on C u2+adsorption onNH2-MCM-41. Ind Eng Chem Res,2008.47(23):9376-9383
    [100]Wang H, Kang J, Liu H, et al. Preparation of organically functionlized silicagel as adsorbent for copper ion adsorption. J Environ Sci,2009.21(11):1473-1479
    [101]Zhang D H, K odama A, G oto M, e t a l. Recovery o f t race h ydrogen b ycryogenic adsorption. separation and purification technology,2004.35:105-112
    [102]Sun Y, Li S, Quan C. The measurement of the solubility of ferulic acid andtetramethylpyrazine in supercritical carbon dioxide. Journal of Chemical Engineeringof Chinese Universities (China),2005.6:839-842

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700