低损伤玉米摘穗部件表面仿生技术和不分行喂入机构仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不分行技术和低损伤摘穗技术是玉米收获机械化的关键技术。长期以来,不分行收获问题一直被视为玉米收获机发展的瓶颈,相当一部分人员呼吁统一玉米种植行距,要求种植农艺适应收获工艺。由于各地种植模式差异较大,而且玉米收获的时间性不像小麦那么紧迫,所以这一要求一直未能被接受,我国玉米收获机械化水平在2002年仅为1.73%,到2005年也只有3.12%。同时,玉米机械化收获中的基础理论工作也没有得到足够的重视。
     本研究工作在国家杰出青年科学基金项目“土壤机具系统摩擦学表面仿生研究”(50025516)、国家高技术研究发展计划(863计划)“不分行玉米收获机技术与装备”(2005AA420250)及其子课题“玉米联合收获机低损伤摘穗机构仿生表面技术”资助下,基于工程仿生基本原理和机械系统仿真方法,对玉米机械化收获中诸如不分行(不对行)收获技术和减轻机收损伤等关键性难点技术进行了系统的研究。分析了玉米收获机摘穗辊辊型、作业速度、摘穗辊转速和割台水平倾角四种因素对卧辊式摘穗机构性能的影响。探索玉米茎秆进入摘穗机构的姿态对摘穗机构性能的影响,通过仿真模拟确定保持玉米茎秆直立姿态的工作参数组合。应用机械系统动力学仿真软件MSC.ADAMS对玉米不分行(不对行)收获作业中分禾机理及其影响参数进行研究,以保持茎秆直立姿态为优化目标,分别探索了具有扶禾杆的链式分禾机构和具有指形拨禾轮的无链分禾机构之较优结构参数和工作参数。对适收期玉米植株的力学性能进行了研究,探讨了含水率和植株结穗高度对机械化收获的影响。依据工程仿生学原理,构思了旨在通过增大摘穗辊与玉米茎秆之间当量摩擦系数而增强攫取能力的具有表面凸起和凹坑的仿生几何结构表面的几种摘穗辊结构,并进行了田间考察试验。研制开发了卧辊式摘穗辊多因素试验台,并进行室内试验进一步考察玉米摘穗各因素对摘穗性能之影响,验证了新型具有仿生几何结构表面结构摘穗辊的实际效果。
     上述研究工作及其所取得的研究成果,对于玉米收获机械化技术基础性研究工作具有重要意义,对于仿生摩擦学研究是一项有意义的探索。
Research & Development in corn (maize) no-row harvesting technology and its equipment is an urgent project at present in China. The FDP (Functional Digital Prototyping) is an advanced product development technology in 21st century. FDP is a quickly and effectively means for the mechanical products. But it isn't reported that the FDP was used in R&D of the corn (maize) harvest machinery, at present, with the exclusion of the research works about this dissertation.
     This work was supported by National Science Fund for Distinguished Young Scholars of China, and Hi-tech Research and Development Program (863 Program) of China. The work puts forward to Research & Develop the no-row corn (maize) harvesting technology based on FDP, and centering on to analyze some key problems in corn (maize) harvesting technology, especially in the technology of lower damage with snapping rolls to pick down the corn (maize) ears based on bionical technology.
     Firstly, it was discussed that the key problems in corn (maize) harvesting, and the research thought and the technical route of the work was introduced. The design norm for snapping rolls design was bring forward after the detailed expounding on the working principle of pick off the ear from cornstalk. And some ignored questions in snapping corn cob was put forward. A series field tests for corn harvesting were done with the cooperative supports famed national corn harvester company. And series multi-factor tests were done in snapping rolls tester which was been trial-manufactured by this work. The degree of influencing factor on the performance of corn picking was demonstrated. The new type roll with bionic surface structures was been designed. By minishing the rolls diameter markedly based on the bionical engineering, the damage of snapping rolls was reduced evidently.
     Based on the CAD/CAE technology, the simulation model for the feed-in mechanism with guide rod of a national no-row corn harvester was set up. The kinematic simulation of holding and supporting the corn stalks was carried out for the diverse working parameters based on software MSC.ADAMS. The results demonstrated that the driving feed-in mechanism was able to avoid the forward collapse and the guide-rod played an important role of avoiding the lateral leaning in no-row corn harvesting. Some ameliorative suggestions were given for the designing of the feed-in mechanism.
     The feed-in mechanism model of a harvester with finger rotor has been researched based on CAD software. The mechanical dynamics software MSC.ADMAS was used to establish the 3-D kinematic simulation model of corn stalks feed-in mechanism for no-row corn harvesting. The process of making kinematics model and its simulating were been statement in detail. The simulation based on software MSC.ADAMS was successfully got along. The results demonstrated that the harvesting speed and the rotating speed of finger rotor were main influencing parameters on the performance of the feed-in mechanism. The shape of finger rotator, especially the shape of the fingers' end, had a notable influence on the motion of corn stalks. Some ameliorative suggestions were provided to the corresponding physical mechanism.
     The no-row harvesting technology,the bottleneck in the development of maize (corn) harvest machinery, was lucubrated. The influencing principle of key components, the feed-in mechanical components with varying parameter, was been analyzed using the techniques of virtual simulation.
     The main contents and innovative works in the dissertation are as follows:
     a) The working principle of snapping corn ears was lucubrated on the base of present research in corn harvest machinery. The working process of snapping rolls with an obliquity was analyzed. It was put forward that the design norm for snapping rolls design aimed to lower damage of corn ears by rolls.
     b) The mechanics performance of cornstalk in harvesting period was been studied. Its influences of water content of cornstalks to corn harvesting mechanization were discussed. The results demonstrated that the water content is the main factor which influencing the harvesting performance and the height of corn ears isn't observably related to the height of corn plant.
     c) A series field tests for corn harvesting were done with the main national corn harvester to discover the main factor which influencing the corn harvesting performance. The results were demonstrated that the rolls' type play an important role in picking corn ears, and the working speed had an unobservable influence to picking corn ears but feed-in mechanism.
     d) A device for testing the performance of snapping rolls of corn harvester was researched and developed. The influencing factors on picking maize-cob were discussed. In the designing of the tester, the regulating and controlling factors influencing the roller-type picking mechanism were considered. The working factors can be adjusted and controlled in monofactorial tests & multifactorial tests. The snapping-rolls of main corn harvester made in China can be installed easily.
     e) According to the engineering bionics principle, several structures of snapping rolls with bionical geometry structures, protruding surface & concave hole on the roll's surface, were been worked out to keep up the seizing ability by enlarging equivalent coefficient friction to between the cornstalk and the rolls which the diameter was observably minished. The field tests about it were conducted, and the results showed that the expectant purpose were come true. The sizes and mass was minished observably.
     f) The feed-in process of cornstalks was studied based on the theoretical, simulation analysis, and verifying testing. It is discovered which the basis to analyze the key mechanism for no-row corn harvesting.
     In the dissertation, the next research is suggested that the mechanics basis of corn plants and the innovation of corn-pick mechanism. The studies should go on in the cooperation with multi-system and multi-domain, and the R&D of corn (maize) harvesting technology should lucubrate between the whole work tache.
引文
1. 胡伟.中国玉米收获机械化发展研究[D].硕士学位论文,北京:中国农业大学,2005.
    2. 张宝文.科学谋划夯实粮食安全的战略基础[J].求是.2007, (7): 41-43
    3. 佟金,贺俊林.玉米收获机械的现状和发展建议[A].胡伟,张宝苓主编.第十一届全国联合收获机技术发展及市场动态研讨会论文集[C].北京:中国农业机械学会农机化分会,2004.10:66-70
    4. 中华人民共和国农业部市场与经济信息司.全国农业统计提要(2006年)[EB/OL].http://www.agri.gov.cn/sjzl/nongyety.htm, 2007-09-03
    5. 李庆章,冯艳辉,李景岩.玉米收获机械的发展现状和前景分析[J].农机市场.2006, (11): 16-20
    6. 佟屏亚.中国玉米生产形势和新世纪发展策略——兼议中国实施“大玉米发展战略”[J].农业信息探索.2000, (3): 1-5
    7. 董振国.玉米大国呼唤秋收革命[EB/OL].http://www.sd.xinhuanet.com/news/ 2004-09/30/content_2964138.htm, 2004-10-02
    8. 董佑福.玉米收获机械化现状与发展战略[EB/OL].http://www.sdnj.gov.cn/data/2006-02/4758.htm, 2006-04-14
    9. 杨敏丽.我国玉米生产机械化现状及发展对策[J].中国农机化.2000, (5): 3-6
    10. 胡伟,刘玉乐.我国玉米收获机械化发展浅析[J].农机市场.2003, (6): 17-19
    11. 胡伟.玉米收获机械化曙光在前[J].农机科技推广,2003, (5): 11, 9
    12. 胡伟.我国玉米收获机械技术进展分析[A].胡伟,张宝苓主编.第十一届全国联合收获机技术发展及市场动态研讨会论文集[C].北京:中国农业机械学会农机化分会,2004, 10-15
    13. 贺俊林,佟金.我国玉米收获机械的现状及其发展[J].农机化研究,2006, (2): 29-31
    14. 籍俊杰.国外玉米收获机发展趋势[J].农机推广与安全.2006, (5): 22-23
    15. Hanna H M,Kohl K D,Haden D A.Machine losses from conventional versus narrow row corn harvest [J].Applied Engineering in Agriculture, July, 2002, 18(4), 405-409
    16. Maschinenfabrik Kemper.Rotation intake system [EB/OL].http://www.kemper-stadtlohn.de/index_inhalt_e.html, 2006-9-25
    17. Champion Danmark.Maize cob-picker-header ‘CornStar’ [EB/OL].http://www.championdenmark.dk/3/e3_5.html, 2006-9-13
    18. 郭玉富.卧式玉米摘穗机割台的扶禾装置[P].中国专利:ZL01 2 68395.7,2002-07-24
    19. 郭玉富.卧式不对行玉米收割机割台[P].中国专利:ZL01 2 79087.7,2003-01-15
    20. 胡伟.中国玉米收获机械化发展评价[J].世界农业,2005, (10): 43-46
    21. 天津农机局.富康玉米联合收获机通过科研鉴定[N].天津日报, 2003-04-18
    22. 贺俊林,佟金,胡伟,等.辊型和作业速度对玉米收获机摘穗性能的影响[J].农业机械学报,2006, 37(3): 46-49
    23. 路甬祥.仿生学的意义与发展[J].科学中国人,2004,04:22~24
    24. 佟金,马云海,任露泉.天然生物材料及其摩擦学[J].摩擦学学报,2001, 21(4): 315-320
    25. 陈秉聪.仿生学对松软地面车辆行走系统的研究启发[J].世界科技研究与发展,1996, (3): 132-133
    26. Ren L Q,Tong J, Zhang S J, et al.Reducing sliding resistance of soil against bulldozing plates by unsmoothed bionics surfaces.[J]. J Terra mechanics, 1995, 32: 303-309
    27. 李建桥,任露泉,刘朝宗,等.减粘降阻仿生犁壁的研究[J].农业机械学报,1996, 27(2):1-4
    28. 任露泉,王云鹏,李建桥,等.土壤动物柔性非光滑体表及其防粘减阻特性[J].科学通报,1997, 42: 1887-1889
    29. 陈秉聪.车辆行走机构形态学及仿生减粘脱土理论[M].北京: 机械工业出版社,2001.
    30. 任露泉,佟金,陈秉聪,等.生物脱附与机械仿生——多学科交叉新技术领域[J].中国机械工程,1999, 10(9): 984-986
    31. 曾德超.机械土壤动力学[M].北京:北京科学技术出版社,1995.
    32. 陈秉聪.土壤车辆系统力学[M].北京:中国农业机械出版社,1981.
    33. Hare Clive H.Non-skid and non-stick coatings: the extremes of lubricity.Journal of Protective Coatings & Linings, 1997, 14(3): 85-98
    34. Delanne Yves.Modelisation de la relation adherence/texture en fonction de la vitesse (Modeling of the grip/texture relationship as function of speed).Bulletin de Liaison des Laboratoires des Ponts et Chaussees, 1993, 185: 93-98
    35. 陈钊钰,杨承杰,丁绍兰.鞋底止滑性能的研究进展[J].中国皮革,2005, 34(5): 44-47
    36. 张建春,梁高勇,陈绮梅,等.提高布面胶鞋鞋底防滑性能研究[J].中国个体防护装备,2002, (5): 21
    37. 罗向东,弓太生,杨敏贞.鞋底花纹与止滑性能间的关系[J].中国皮革,2004, 3(8): 154-155
    38. http://www.sg.com.cn/662/662d4.htm, 2005-08-23
    39. http://home.focus.cn/ newshtml/39650.html, 2005-08-23
    40. http://www.carsfun.com/product/dpl.jsp?smallId= 24 57K 2005-8-23
    41. 唐伏良,张向明,茅及愚,等.科学计算可视化的研究现状和发展趋势[J].计算机应用,1997, 17 (3): 8-10
    42. Rhyne T M.Going virtual with geographic information and scientific visualization [J].Computers & Geosciences, 1991, 23 (4): 489-491
    43. Gu C X, Liao G Y, Jiang H X, et al.Nonlinear programming and scientific computing visualization in the optimization design of electron optical system [J].Nuclear Instruments and Methods in Physics Research Section A, 1999, 427: 321-328
    44. Pottmann H, Leopoldseder S, Hofer M, Steiner T, et al.Industrial geometry: recent advances and applications in CAD [J].Computer-Aided Design 2005, 37: 751-766
    45. 苏春.数字化设计与制造[M].北京:机械工业出版社,2005.
    46. Lau H Y K, Mak K L, Lu M T H. A virtual design platform for interactive product design and visualization [J]. Journal of Materials Processing Technology 2003, 139: 402-407
    47. Maertens K, Baerdemaeker J D. Design of a virtual combine harvester [J]. Mathematics and Computers in Simulation 2004, 65: 49-57
    48. Shyamsundar N, Rajit G. Internet-based collaborative product design with assembly features and virtual design spaces [J]. Computer-Aided Design, 2001, 33: 637-651
    49. Li S P, Meng Y M, Ma F L, Tan H H, Chen WX. Research on the working mechanism and virtual design for a brush shape cleaning element of a sugarcane harvester [J]. Journal of Materials Processing Technology, 2002, 129: 418-422
    50. 刘宏增,黄靖远.虚拟设计[M].北京:机械工业出版社,1999.
    51. 陈晓勇.可视化动态虚拟设计研究[J].机械研究与应用, 2004, 17(2): 57-58
    52. 邵立,钟延修.虚拟制造环境与仿真[J].中国机械工程,2000, 11(8): 919-922
    53. 陈琪,徐林林.产品开发与虚拟设计制造技术[J].机械产品开发与创新,2002, (3): 20-23
    54. Zahed S, David W R. A virtual prototyping approach to product disassembly reasoning [J]. Computer-Aided Design, 1997, 29: 847-860
    55. Choi S H, Chan A M M. A virtual prototyping system for rapid product development [J]. Computer-Aided Design, 2004, 36: 401-412
    56. Shyamsundar N, Gadh N. Collaborative3 virtual prototyping of product assemblies over the Internet [J]. Computer-Aided Design, 2002, 34: 755-768
    57. Halttunen V, Tuikka T. Augmenting Virtual Prototyping with Physical Objects [R]. HCI & Group Technology Laboratory Department of Information Processing Science, University of Oulu, Oulu, Finland, 1999.
    58. Shen Q, Gausemeier J, Bauch J, Radkowski R. A cooperative virtual prototyping system for mechatronic solution elements based assembly [J] Advanced Engineering Informatics, 2005, 19: 169-177
    59. Hari S, Ramon F, Rajit G. Selective disassembly for virtual prototyping as applied to de-manufacturing [J]. Robotics and Computer Integrated Manufacturing, 1999, 15: 231-245
    60. 陈立平,张云清,任卫群,等.机械系统动力学及ADAMS应用教程[M].北京:清华大学出版社,2006.
    61. 王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的应用[M].西安:西北工业大学出版社,2002.
    62. 童秉枢,李学志,吴志军,等.机械CAD技术基础(第2版)[M].北京:清华大学出版社,2003.
    63. 郑长松,谢昱北,郭军,等.SolidWorks2006中文版机械设计高级应用实例[M].北京:机械工业出版社,2006.
    64. Shih R H. Parametric Modeling with Autodesk Inventor [M]. Oregon Institute of Technology, SDC (Schroff Development Corporation) Publications, USA, 2006.
    65. 过小容,吴洁.Autodesk Inventor Professional R9/R10 培训教程[M].北京:化学工业出版社,2006.
    66. 陈伯雄.工程导向设计[R].汉略(上海)信息技术有限公司(上海),2006.
    67. Bass C.通过数字化技术实现创新:功能导向设计[OL/EB].http//www.autodesk.com.cn, 2006-10-09
    68. A template functional-gage design using parameter-file table in autodesk inventor [A]. 2005 ASEE Annual Conference and Exposition, Conference Proceedings [C], 2005: 14285-14294. Portland, USA, 2005.
    69. Ryan R R.Functional Virtual Prototyping: Realizaion of "The Digital Car" white paper.http://www.adams.com/solution/auto/Digital_Car_Paper.pdf,2006-06-06
    70. 施普尔,克劳舍著.宁汝新等译.虚拟产品开发技术[M].北京:机械工业出版社,2000.
    71. Haug E J 著.刘兴祥,李吉蓉,林梅等译.机械系统的计算机辅助运动学和动力学[M].北京:高等教育出版社,1996.
    72. 洪江振著.计算机多体系统动力学[M].北京:高等教育出版社,1999.
    73. Shabana A A.Dynamics of Multibody Systems[M].Cambridge University Press,1989.
    74. Hang E J.Computer Aided Analysis and Optimization of Mechanical System Dynamics [M].New York: Springer-Verlag Berlin Heideberg New York Tokyo, 1984.
    75. McConville J B, McGrath J F.Introduction of ADAMS Theroy [N].MDI,1997.
    76. Negrut D, Harris B.ADAMS Theory in a Nutshell [N].MDI,2001.
    77. 北京农业工程大学.农业机械学 下册(第二版)[M].北京:中国农业出版社,1999.
    78. 中国农业机械化科学研究院.农业机械设计手册(下册)[M].北京:机械工业出版社,1988.
    79. 卡那沃依斯基著.曹崇文,吴春江,柯保康,等译校.收获机械[M].北京:中国农业机械出版社,1983.
    80. 南京工学院农业机械教研组.特种作物收获机械和畜牧场用机械[M].北京:机械工业出版社,1958.
    81. 范国昌,王惠新,籍俊杰,等.影响玉米摘穗过程中籽粒破碎和籽粒损失率的因素分析[J].农业工程学报,2002, 18(4):72-74.
    82. Smith H P, Wilkes L H 著.朱继培,吴叙兰译.农业机械与设备[M].北京:中国农业机械出版社,1982.
    83. 文内尔 H L,等著.《现代农业机械化技术》翻译组译.现代农业机械化技术[M].北京:机械工业出版社,1990.
    84. Gary Huitink.Corn harvesting [EB/OL].http://www.uaex.edu/Other_Areas/publications/ PDF/MP%20437/chap8.pdf,2005-10-12
    85. Benock G, Loewer, O J, Bridges T C, Loewer D H.Influence of weather on the selection of harvesting, delivery and drying equipment.American Society of Agricultural Engineers, 1979, 23(1): 24-30
    86. Waelti H, Buchele W F, Farrell M.Progress report on losses associated with corn harvesting in Iowa.Journal of Agricultural Engineering Research, 1969, 14(2): 134-138
    87. 山西信联集团实业有限公司.新型玉米摘穗辊[P].中国专利:CN1774974A,2006-05-24
    88. 李凤咏.玉米收获机综合摘穗装置[P].中国专利:CN1625933A,2005-06-15
    89. Aasland J J.Corn harvesting unit with auxiliary snapping rolls [P].美国专利:2651143,1953-09-08
    90. Ashton B, Bulter J G.Multi-row corn harvester [P].美国专利:3520121,1970-07-14
    91. Johnson R A.Picking head for corn harvesting machine [P].美国专利:3606743,1971-09-21
    92. Anazodo U G N, Wall G L, Norris E R.Corn physical and mechanical properties as related to combine cylinder performance.Canadian Agricultural Engineering, 1981, 23(1): 23-30
    93. Dave Nicolai.Reducing harvest losses in lodged corn fields [EB/OL].http://www.extension.umn.edu/cropenews/2006/06MNCN54.htm,2006-11-13
    94. 董树亭.植物生产学[M].北京:高等教育出版社,2003.
    95. 张国平,周伟军.作物栽培学[M].杭州:浙江大学出版社,2001.
    96. 山东省农业科学院.中国玉米栽培学[M].上海:上海科学技术出版社,1986.
    97. 佟屏亚,罗振锋,矫树凯.现代玉米生产.北京:中国农业科技出版社,1998.
    98. 杜心田.作物群落栽培学[M].郑州:郑州大学出版社,2003.
    99. 郭玉明,袁红梅,阴妍,等.作物茎秆抗倒伏的力学分析及综合评价探讨[J].农业工程学报,2007, 23(7): 14-18
    100. 郭新宇,赵春江,肖伯祥,等.玉米三维重构及可视化系统的设计与实现[J].农业工程学报,2007, 23(4): 144-148
    101. 宋建农,王苹,魏文军,等.水稻秧苗抗拉力学特性及穴盘拔秧性能的力学试验研究[J].农业工程学报,2003, 19(6): 10-13
    102. Hirai Y, Inove E, Mori K, et al.Investigation of mechanical interaction between a combineharvester reel and crop stalk [J].Biosystems Engineering, 2002, 83(3): 307-317
    103. Kronbergs E.Mechanical strength testing of stalk materials and compacting energy evaluation [J].Industrial Crops and Products, 2000, 11(2-3): 211-216
    104. 康福华.矮丰三号小麦茎秆的力学性质初探[J].西北农业大学学报,1986, 14(3): 17-19
    105. 王勇,李朝恒.小麦品种抗倒伏性的研究进展[J].山东农业大学学报,1996, 27(4): 503-508
    106. 袁红梅,郭玉明,李洪波.小麦茎秆弯折力学性能的试验研究[J].山西农业大学学报(自然科学版),2005, 25(2): 173-176
    107. O’Dogherty M J.A review of research on forage chopping [J]. J.Agric. Engng.Res., 1982, 27(4):267-289
    108. O’Dogherty M J, Gilbertson H G, Gale G E.Measurements of the physical and mechanical properties of wheat straw [C].Fourth International Conference on the Physical Properties of AgriculturalMaterials, Rostock, Germ an, 1989.
    109. O’Dogherty M J ,Huber J A ,Dyson J ,et al.A study of the physical and mechanical properties of wheat straw [J].J. Agric. Engng Res, 1995, 62(2): 133-142
    110. 孙骊,赵豪杰,李锁牢.麦秆压缩剪切特性的研究[J].西北农业大学学报,1998, 26(4): 106-109
    111. Prasad J , Gupta C P. Mechanical properties of maize stalks as related to harvesting [J]. J. Agric. Engng. Res. , 1975, 20(1): 79-87
    112. 张彦河.玉米秸破碎力学特性的研究[J].黑龙江八一农垦大学学报,2003: 15(4): 43-45
    113. 高梦祥,郭康权,杨中平.玉米秸秆的力学特性测试研究[J].农业机械学报, 2003, 34(4): 47-52
    114. 吴子岳,高焕文,张晋国.玉米秸秆切断速度和切断功耗的试验研究[J].农业机械学报,2001, 32(2): 38-41
    115. 倪长安,蔺公振,姬江涛,等.圆盘切割器切割玉米茎秆的试验方法[J].洛阳工学院学报,1995, 16(4): 36~41
    116. 马彦华,刘伟峰,杨明韶,等.喂入量对新鲜玉米秸秆压缩规律影响的试验研究[J].农机化研究,2005, (1): 187-189
    117. Chatopadhyay P S, Pandey K P. Impact cutting behavior of sorghum stalk using a flail cutter a mechanical model and its experimental verification [J]. J. Agric. Engng. Res.,2001, 78 (4): 369-376
    118. 卿上乐,区颖刚,刘庆庭.土壤支撑下甘蔗茎秆的内力和变形[J].华中农业大学学报,2005, (36): 109-113
    119. Bashford L L, Maranvile J W, Weeks S A, et al.Mechanical properties of affecting lodging of sorghum [J].J. ASAE, 1976, 19(6): 962-966
    120. 刘庆庭,区颖刚,卿上乐,等.甘蔗茎秆在扭转、压缩、拉伸荷载下的破坏试验[J].农业工程学报,2006, 22(6): 201-204
    121. 刘庆庭,区颖刚,袁纳新.甘蔗茎在弯曲荷载下的破坏[J].农业工程学报,2004, 20(3): 6-9
    122. 刘庆庭,区颖刚,卿上乐,等.甘蔗茎秆切割力试验[J].农业工程学报,2007, 23(7): 90-94
    123. Roberto Da Cunha Mello, Harry Harris. Cane damage and mass losses for conventional and serrated basecutter blades[C]. Proceedings of Australia Society Sugarcane Technology Meeting, 2000, 22: 84-91
    124. Roberto Da Cunha Mello, Harry Harris. Angle and serrated blades reduce damage, force and energy for a harvester basecutter[J ].Proceedings of Australia Society Sugarcane Technology Meeting, 2001, 23: 1212-1218
    125. Mesquita C M, Hanna M A. Physical and mechanical properties of soybean crops [J]. Transaction of the ASAE, 1995, 38(6): 1655-1658
    126. 薛运凤,曹望成.茶树新梢的弯曲力学特性[J].浙江农业大学学报,1994, 20(1): 43-48
    127. 曹望成,薛运凤,周巨根.茶树新梢的剪切力学特性的研究[J].浙江农业大学学报,1995, 21(1): 11-16
    128. 宋建农,王苹,魏文军,等.水稻秧苗抗拉力学特性及穴盘拔央性能的力学试验研究[J].农业工程学报,2003, 19(6): 10-13
    129. 孙永海,常振臣,李宝霖,等.大豆收割机圆盘式切割器切割参数的研究[J].农业机械学报,1999, 33(4): 26-30
    130. 马洪顺,张忠君,曹龙奎.薇菜类蔬菜生物力学性质试验研究[J].农业工程学报,2004, 20(5) : 74-76.
    131. 陈翠英,王志华,李青林.油菜脱出物物理机械特性及振动筛参数优化[J].农业机械学报,2005, 36 (3): 60-70
    132. 李扬汉.禾本科作物的形态与解剖[M].上海:上海科学技术出版社,1979.
    133. 陈桂华.农作物秸秆表面性能及胶合重组技术研究[D].博士学位论文,长沙:中南林业科技大学,2006.
    134. 邱白晶,赵杰文.农业物料不规则应力应变关系的分形描述问题[J].农业工程学报,1995, 11(4): 133-138
    135. 王晖,孙作玉.麦类作物的力学分析[J].黑龙江八一农垦大学学报,1995, 8(2): 69-73
    136. 袁志华,李云东,陈合顺.玉米茎秆的力学模型及抗倒伏分析[J].玉米科学,2002, 10(3): 74-75
    137. 袁志华,冯宝萍,赵安庆,等.作物茎秆抗倒伏的力学分析及综合评价探讨[J].农业工程学报,2002, 18(6): 30-31
    138. Chatopadhyay P S, Pandey K P.Impact cutting behavior of sorghum stalk using a flail-cutter–a mechanical model and its experimental verification[J].J.Agric.Engang Res,2001,78(4):369-376
    139. Kroes S, Harris H D.Splitting of stool during an impact cut of sugarcane stalks [C].Eur. Ag. Eng.,’96 Madrid, 1996.
    140. Hirai Y, Inove E, Mori K.Application of a quasi-static stalk bending analysis to the dynamic response of rice and wheat stalks gathered by a combine harvester reel [J].Biosystem Engineering, 2004, 88 (3): 281-294
    141. 刘庆庭,区颖刚,卿上乐.农作物茎秆的力学特性研究进展[J].农业工程学报,2007, 23(7): 172-176
    142. Hearn E J 著.孙立谔译.奚绍中校.材料力学[M].北京:人民教育出版社,1982.
    143. 陆璇.数理统计基础[M].北京:清华大学出版社,1998.
    144. 梁晓军.纵卧辊式玉米收获机收获损失试验研究[D].硕士学位论文,长春:吉林大学,2006.
    145. 扬州大学生物科学与技术学院.茎的解剖结构[EB/OL].http://jpkc.yzu.edu.cn/course/zwx/0501kcjc_0603.htm, 2007-09-14
    146. 任露泉.试验优化设计与分析[M].北京:高等教育出版社,2003
    147. Hitzhushe TE,Marley SJ,Buchele WF.Beefmaker 2:Developing a total corn harvester.Agricultural Engineering, v51, n11, Nov, 1970, p632-635
    148. 中华人民共和国机械工业部.JB/T6680~6681-93玉米收获机械[S].北京:机械工业部机械标准化研究所,1993.
    149. 贺俊林,裘祖荣.新型气压式精密排种器的试验研究[J].农业工程学报.2001, 17(2): 80~83
    150. 屠秉恒.农业机械试验设计与直观分析选优法[M].北京:农业出版社,1982.
    151. Shields John W,Nawrocki Walt,Fornstrom K. James,Smith, James L.Variables in forage harvester cornhead gathering system performance.American Society of Agricultural Engineers, 1984, 84-1529, 21p
    152. Loewer O J,Bridges T C,White G M,Razor R B.Optimum moisture content to begin harvesting corn as influenced by energy cost.Transactions of the ASAE, v27, n2, Mar-Apr, 1984, p362-365
    153. Loewer O J,Bridges T C,White G M,Razor R B.Energy expenditures for drying and harvesting losses as influenced by harvesting capacity and weather.American Society of Agricultural Engineers, 1982, 82-3515, 25p
    154. Paulsen M R,Nave W R.Corn damage from conventional and rotary combines.American Society of Agricultural Engineers, 1978, 78-1562, 23p
    155. WAELTI,H., W.P.BUCHELE, M.FARRELL. Progress report on losses associated with corn harvesting in lowa.J.Agr.Eng.Res.1969, 14: 134-138
    156. Quaye S A, Schertz C E.Corncob harvest with counter-rotating rollers [J].Transactions of the ASAE, 1983, 26:(5): 1303~1307, 1311
    157. Lien R M,Haugh C G,Ashman R B,et al..Machines losses in field harvesting popcorn [C].ASAE Pap.74-1579 67th, Stillwater, 1974.
    158. 张道林,孙永进,赵洪光,等.立辊式玉米摘穗与茎秆切碎装置的设计[J].农业机械学报,2005, 36(7): 50-52, 76
    159. Smith C W, Yness W E, Kiesselbach T A.Factors affecting the efficiency of the mechanical corn picker.Nebraska Agr. Expt. Sta. Bull. 1949, 394
    160. 佟金,贺俊林,陈志,梁晓军.玉米摘穗辊试验台的设计和试验[J].农业机械学报,2007, 38(11): 48-51
    161. Lu Yongxiang. Significance and Progress of Bionics [J]. Journal of Bionics Engineering, 2004, 1(1): 1-3
    162. Dai Zhendong,Tong Jin,Ren Luquan.Researches and developments of biomimetics intribology [J].Chinese Science Bulletin, 2006, 51(22), 2681-2689
    163. 戴振东,佟金,任露泉.仿生摩擦学研究及进展[J].科学通报,2006, 51(20): 2353-2359
    164. Tong J., Ma Yunhai, Chen Donghui, Sun Jiyu, Ren L. Effects of vascular fiber content on abrasive wear of bamboo [J]. Wear, 2005, 259: 78-83
    165. Tong J., Moayad B.Z., Ren L., Chen B. Biomimetics in Soft Terrain Machines: a Review [J]. International Agricultural Engineering Journal, 2004, 13(3): 71-86
    166. Balasubramanian A K, Miller A C, Rediniotis O K. Microstructured Hydrophobic Skin for Hydrodynamic Drag Reduction. [EB/OL]. http://aerounix.tamu.edu/fluids/ Microstructured_hydrophobic.doc. 2006-10-01
    167. Autumn, K,Liang, Y A. Hsieh S T, et al. Adhesive Force of a Single Gecko Foot-hair. Nature, 2000, 405(8): 681~685
    168. 佟金,任露泉,戴振东.仿生摩擦学[M].周仲荣,雷源忠,张嗣伟.摩擦学发展前沿(第十三章),北京:科学出版社,2006:p283-305
    169. Hazel J., Stone M., Grace M.S., Tsukruk V.V. Nanoscale Design of Snake Skin for Reptation Locomotions via Friction Anisotropy [J]. Journal of Biomechanics, 1999, (32): 477-484
    170. 徐灏.机械设计手册(第3卷)[M].北京:机械工业出版社,1991.
    171. 中国机械工程学会,中国机械设计大典编委会编.中国机械设计大典.江西:江西科学技术出版社,2002
    172. 程友联,贺俊林,李娟玲,江家伍.机械原理[M].北京:中国农业出版社,2007.
    173. A template functional-gage design using parameter-file table in autodesk inventor [A]. 2005 ASEE Annual Conference and Exposition, Conference Proceedings [C], 2005: 14285-14294. Portland, USA, 2005.
    174. Ma Y S, Tong T. Associative feature modeling for concurrent engineering Integration [J]. Computers in Industry, 2003, 51(1): 51-71
    175. 陈伯雄.Inventor R8 应用培训教程——机械设计[M].北京:清华大学出版社,2004.
    176. 杨文敏,官春云,吴明亮,等.精密排种器的特征造型及其装配关联设计—基于Solidworks [J].农机化研究,2006, (3): 110-113
    177. 魏宗平.基于装配关系转轴装配体的关联设计[J].煤矿机械,2006, 27 (1): 74-76
    178. 杨欣,贾晶霞,佟金,等.农业机械典型部件装配关联设计[J].计算机辅助设计与图形学学报,2006, 18 (1): 156-159
    179. 杨欣,刘俊峰,冯晓静.小麦精密排种器特征造型及装配关联设计[J].农业工程学报,2004, 20 (3): 89-92
    180. 段星光,徐岩,刘胜永,等.基于Inventor的零件夹具关联设计[J].机械加工与自动化,2004, (9): 20-22
    181. 李畅,李建军,温建勇,等.基于UG的关联设计技术及其在级进模CAD系统中的应用[J].中国机械工程,2002, 13 (22): 1967-1970
    182. 张汉夫.回首跨区机收[J].农机科技推广,2005, (4): 13-15
    183. 李斯华.我国跨区机收的发展现状、效益分析及对策[J].农机化研究,2004, (1): 1-8
    184. 籍俊杰,刘焕新,郝金魁,等.国内外玉米收获机械发展综述[J].现代农机,2006, (4): 18-21
    185. 赵箐.玉米收获机械化现状与发展战略[J].科学之友,2005, (12): 62-63
    186. 胡伟.对我国玉米收获机械技术进步的分析[J].农机推广与安全,2006, (5): 8-9
    187. 籍俊杰,刘焕新,吴海岩,等.我国玉米机械收获技术发展走向[J].农机推广与安全,2006, (5): 6-7
    188. 中国农业机械化科学研究院.不分行玉米联合收割机[P].专利国别:中国:200520023278.7,2006-11-26
    189. 张旭,毛恩荣.机械系统虚拟样机技术的研究与开发[J].中国农业大学学报,1999, 4(2): 94-98
    190. J ayaram S,Connacher H,Lyons K.Virtual assembly using virtual-reality techniques [J].Computer Aided Design,1997, 29(8): 575-584
    191. Otto N K, Wood K L.Product Design——Techniques in Reverse Engineering and New Product Development [M].北京:清华大学出版社,2003.
    192. Zahed s, David W R. Virtual prototyping approach to product disassembly reasoning [J]. Computer-Aided Design, 1997, 29(12): 847-860
    193. Choi S H, Chan A M M. A virtual prototyping system for rapid product development [J]. Computer-Aided Design, 2004, 36(5): 401-412
    194. Shyamsundar N, Gadh N. Collaborative virtual prototyping of product assemblies over the Internet [J]. Computer-Aided Design, 2002, 34(10): 755-768
    195. Halttunen V, Tuikka T. Augmenting Virtual Prototyping with Physical Objects [R]. HCI &Group Technology Laboratory Department of Information Processing Science, University of Oulu, Oulu, Finland, 1999.
    196. Shen Q, Gausemeier J, Bauch J, Radkowski R. A cooperative virtual prototyping system for mechatronic solution elements based assembly [J] Advanced Engineering Informatics, 2005, 19(2): 169-177
    197. Hari S, Ramon F, Rajit G. Selective disassembly for virtual prototyping as applied to de-manufacturing [J]. Robotics and Computer Integrated Manufacturing, 1999, 15(1): 231-245
    198. Yang X, Liu J F, Tong J. Virtual Assembling Associative Design for Ccombined Digging Spade of Potato Harvester. International Agriclutural Engineering Conference (IAEC2005). Bangkok Thailand, 2005.12
    199. 任卫群.车路系统动力学中的虚拟样机[M].北京:电子工业出版社,2005.
    200. 胡珊珊,李尚平,孙秀花.小型甘蔗联合收割机虚拟设计及仿真分析技术[J].农机化研究,2006, (3): 76-80
    201. 李杰,阎楚良,杨方飞.联合收获机数字化建模与关键部件仿真[J].农业机械学报,2006, 37(4): 83-86
    202. 王志华,陈翠英.基于ADAMS的联合收获机振动筛虚拟设计[J].农业机械学报,2003, 34(4): 53~56
    203. 贾晶霞,张东兴,郝新明,等.马铃薯收获机参数化造型与虚拟样机关键部件仿真[J].农业机械学报,2005, 36(11): 65-67
    204. 贺俊林,胡伟,郭玉富,佟金.扶禾杆在不对行导入玉米茎秆中的运动仿真[J].农业工程学报,2007, 23(6): 125-129
    205. 贺俊林,佟金,陈志,等.指形拨禾轮分禾机构的虚拟设计与运动仿真[J].农业机械学报,2007, 38(6): 62-65
    206. 蒙艳玫.基于可视化虚拟设计的甘蔗收获机械设计开发若干关键技术研究[D].博士学位论文,合肥:合肥工业大学,2003.
    207. 孙裕晶.虚拟样机技术及其在精密排种部件设计中的应用[D].博士学位论文,长春:吉林大学,2005.
    208. MSC.Software著,邢俊文,陶永忠译.MSC.ADAMS/View高级培训教程[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700