钢管高速冲裁工艺分析与冲裁机构优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的稳步发展,科学技术的进步,工业生产技术水平也有显著的提高。在工业加工过程中,不仅要求在提高加工质量的同时提高加工效率,还要求减少加工工序、节约原材料、减少人工操作、减低生产成本、降低噪音等。在钢管连续生产过程中,在线高速切断设备是整个生产线中的关键设备之一,其性能的优劣将直接影响钢管的剪切质量和整条生产线的生产效率。通常所采用的管材切断方法存在许多问题,既影响加工质量又增加生产成本。
     本文将对影响飞剪机(钢管高速冲裁机构)剪切质量的因素进行分析,并通过对模拟结果的比较得出合理的工艺参数。同时,对飞剪机的结构原理和运动原理进行分析研究,提出优化方案,使其结构更加合理,运动更加平稳。
     在钢管的剪切过程中,剪切方式、横向拉刀的切削深度、纵向切刀的形状、冲裁间隙、冲裁速度是影响剪切质量的主要因素。理论分析纵向切刀的轮廓曲线,由于刀尖部分细而长,刀具刚性差,寿命短,进而采用二次剪切的剪切方式,并通过合理的刀尖角度设计,得到合理的刀片轮廓曲线。理论分析横向拉刀的切削深度对纵向切刀受力和横向切削质量的影响,以及剪切速度、冲裁间隙对剪切质量的影响,得到合理的横向切削深度、剪切速度和合理的冲裁间隙。随着计算技术的飞速发展,CAE技术也得到了快速的发展。利用计算机进行有限元仿真研究具有系统性好、继承性好、可延续性好等优点,还不受时间、空间和实验条件的限制。本文运用金属塑性成形有限元软件Deform进行钢管剪切过程的动态有限元模拟,将模拟数值与理论值相比较,验证理论分析的正确性。
     对飞剪机进行实体测量,根据实际测量并修正后的数据,运用SolidWorks三维软件建立飞剪机的3D模型,观察其结构原理和各部分的运动原理,运用SolidWorks软件中的Cosmos Motion插件进行运动仿真分析,并输出主要运动零件的位移曲线、速度曲线和加速度曲线,并对其进行分析。输出飞剪机运动的时序图,进一步了解飞剪机的整体运动情况,针对其结构的不合理之处提出优化建议,使其结构更加合理、运动更加平稳,提高剪切质量和生产效率的同时,降低工作噪声,提高安全系数。
     飞剪机的应用使钢管生产迅速向高速化、连续化、自动化、高加工质量的方向发展,提高剪切质量的同时提高生产效率,并广泛适用于各种材料和壁厚的管材。
With the steady development of the social economy and the progress of science technology, the manufacturing technologies have been improved significantly. In industrial processing process, not only requires to raise processing quality while improve machining efficiency, but also demands to reduce processing operations, economize on raw materials, reduce artificial operation, reduce production costs, reduce the noise, and so on. In the continuous production process of steel tube, online high-speed cutting equipment is one of the key equipments in the whole production line. Its performance will directly affect the quality of steel shear and production efficiency of all lines. Usually, the cutting method of the steel tube has many problems, so the processing quality and the cost were increased.
     This paper analyzes the shear quality factors of flying shear machine (steel tube high-speed cutting institutions), and the reasonable technical parameters were got through analysis the simulated results. At the same time, the structural principle and the moment principle of the flying shear machine were studied and the optimization solution was proposed. The structures of the flying shear machine more reasonable and the exercise more smoothly.
     In steel shear process, shearing mode, the depth of horizontal broaching blade, the edge contour of vertical blade, blanking clearance and vertical blade’s shape are the main factors of influence the shear quality. Though theoretical analysis the curve of vertical blade, the closer the distance to the peak of the tool is, the smaller the slop change and the thinner and longer the tool nose are, which leads to the bad rigidity and short life of the blade. So the shearing mode of double-cut was applied. In addition, the reasonable angle of vertical blade nose was designed, and the reasonable contour of vertical blade was got. The cutting depth of horizontal broaching blade effects on the force of vertical blade’s puncturing the tube wall and the quality of vertical cutting were theoretically analyzed, and the reasonable depth was got. Shearing velocity and blanking clearance affecting on the shearing quality were theoretically analyzed, and the reasonable shearing velocity and blanking clearance were got. Along with the rapid development of computing technology, CAE technology can also be fast developed. Applying the computer in finite element simulation research has many advantages, such as: good systemic, good succession and good continuity. Besides, the research is not limited by time and space. The finite element software of metal plastic forming was applied to dynamic finite element simulation of the steel tube shearing process, and the numerical simulation was compared with the theories to test the theoretical correctness.
     The flying shear machine was entity measurement, and the 3D model was built using SolidWorks 3D software according to the measurement and revised data. The structural principle and each part of the principle of movement were observed. Cosmos Motion program in the SolidWorks software was applied to analysis of motion simulation, and the displacement curve, speed curve and acceleration curves of major sports parts were output and analyzed. The movement sequence chart of flying shear machine was output to the further understanding of the holistic movement of situation of the flying shear machine. The unreasonable structures were optimized, which exercise more smoothly and enhance shear quality and production efficiency, reduce noise, improve safety coefficient.
     The application of the flying shear machine can make the steel tube be produced much more quickly, continuously, automatically and high machining quality. Not only achieved to raise processing quality while improve machining efficiency, but also widely applied to shear a variety of materials and wall thickness of tubes.
引文
1.温彤.管材的冲切加工[J].金属成形工艺,1998,16(2):33-35
    2. Alec Banish, Contributing Writer.Selectingatubecuttingprocess[J].2004, 9: 35-39
    3.朱超甫.起动工作制滚筒式飞剪的综合分析[J].北京科技大学学报,1991,13: 89-93
    4.夏建芳,周新衡.IHI摆式飞剪剪切机构优化设计[J].机械设计与研究,2003,19(3):69-70
    5.刘海昌,汪建春,刘抗强.飞剪机的发展与思考[J].机械设计与制造,2007,6:208-209
    6.杨伟.滚筒式飞剪力能参数计算及优化[D].重庆大学硕士学位论文,2003
    7.王贵明,刘成.切头飞剪[J].一重技术,1996,5:90-101
    8.孔令铭.2006年上半年我国钢管行业发展基本情况及下半年生产预测[J].焊管,2006,29(5):5-8
    9.彭在美.整合优势跨越发展争雄国内跻身世界[J].焊管,2004,27(1):1-6
    10.孙永喜.我国油气输送用焊管工业发展的前沿问题[J].焊管,2005,28(5):1-5
    11.张家梁,邵新如,王革.管材切断技术综述[J].华东冶金学院学报,1994,11(4):4
    12.何大钧,李祯华,黄鸣.冲压剪切管料及型材的刀片设计[J].锻压机械,1997,5:17-19
    13.肖景容,姜奎华.冲压工艺学[M].北京:机械工业出版社,1999
    14. GillematL, Czoboly E.Genetalized theory of fracture.Proc Symp[J].On FractureMarianske′la′zne.1970, 34: 235-238
    15. Freudenthal AM.The inelastic behavior of engineering materials and structures[J].Wiley.NewYork.1950, 43: 156-162
    16. Cockcroft M G,Latham D J.Ductility and the workability of metals[J].Journal of the Institute of Metals,1968,96: 33-39
    17. McClintock F A.A criterion for ductile fracture by the growth of hole[J].J.Appl.Mech,1986,35: 363-371
    18. Schulz,T.Morimaki.High Speed Machining[J].Ann.1992,41(2): 53-57
    19. R.C.Dewes,D.K.Aspinwall.A review of ultra high speed milling of hardened steel[J].Journal of Materials Processing Technology,1997,69: 1-17
    20. P.Fallbohmer,C.A.Rodriguez,T.Ozel,etal.High-speed machining of cast iron and ally steels for die and mold manufacturing[J].Journal of Materials Processing Technology,2000,1: 104-115
    21. S.Ashley.High-speed machining goes mainstream[J].Mechanical Engineering,1995,5: 56-61
    22. Zienkiewicz O C.Analysis of mechanism of orthogonal machining by the finite element method[J].Japan Soc.Prec.Eng,1971,37(7): 503-508
    23. Shirakashi T,Usui E.Simulation analysis of orthog onal metal cutting process[J].Japan Soc.Prec.Eng,1976,42(5): 340-345
    24. Iwata K, Osakada K, Terasaka Y.Process modeling of orthogonal cutting by the rigid plastic finite element method[J].Trans ASME.Eng.Mat.Tech, 1984, 106: 132-138
    25. Srenkowski I S, Carrol III I T.A finite element model of orthogonal metal cutting[J].Trans ASME.Eng.Ind, 1985, 107: 349-354
    26. Maekawa K, Ohhata H, K itagawa T.Simulation analnsis of cutting performance of a three rdimensional cut away tool[J].In: Usui E.ed.Advancement of Intelligent Production.Tokyo, Elsevier, 1994: 378-383
    27. Sasahara H, Obikawa T, Shirakashi T.FEM analysis on three dimensional cutting analysis on large deformation problem of tool entry. Int[J].Japan Soc.Prec.Eng, 1994, 28(2): 123-128
    28. Obikawa T, Sasahara H, Shirakashi T, Usui E.Application of computational machining method to discontinuous chip formation[J].Trans ASMEJ.Manu featuring Sci.Eng, 1997, 119: 667-674
    29. Ueda K, Manabe K, Nozaki S.Rigid plastic FEM of three dimensional cutting mechanism(2nd report) -simulation of plain milling process[J].Japan S oc.Prec.Eng, 1996, 62(4): 526-531
    30. Tugrul Ozela, Taylan Altan.Process simulation using finite element method-prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling[J].In: International Journal of Machine Tools&Manufacture, 2000, 40: 713-738
    31.成群林,柯映林,懂辉跃.航空铝合金高速铣削加工的有限元模拟[J].浙江大学学报(工业版),2006(1):3-7
    32. Brokken D, Brekelmans W A M, Baaljens F P T.J Mater Proc Tech[J]. Japan Soc.Prec.Eng, 1998, 152: 60-65
    33. Jeong S H, Kang J J, Oh S I.Advanced Technology of Plasticity 1996-Proceedings of theFifth International Conference on Technology of Plasticity, Columbus[M].Ohio State UniversityPress, 1996, 89: 186-191
    34. Taupin E, Breitling J, Wu W, Altan T.J Mater Proc Tech[J]. Japan Soc.Prec.Eng, 1996, 53: 59-68
    35. Yu E L, Liu F.The Study of the Quality of Tube Section in Roll-Cutting[J]. Ohio State UniversityPress, 1999, 62: 56-62
    36.李传民,王向丽,闫华军.金属成形有限元分析[M].机械工业出版社,2007:78-82
    37.肖景容,姜奎华.冲压工艺学[M].机械工业出版社,2000:5-9
    38. Jeff Pierson.High Speed Shearing of Stainless Steel Tube[J].Tube & Pipe, 2003, 1: 94-95
    39.聂春,李晓峰,兆文忠.高速转向架轴箱转臂结构拓扑优化设计[J].机械设计,2007,24(6):58-59
    40.谭立新.五轴联动旋风铣削机床切削运动仿真及误差补偿研究[D].中南大学,2009,10
    41. CAD教育网.浅析机构运动仿真分析在机构设计软件中的作用
    42. http://lib.3ddl.net/news_pws/focus/134516.htm, 2010, 10
    43.刘国良,刘洛琪.SolidWorks 2006完全学习手册—图解COSMOS Motion[M].北京:电子工业出版社,2007:56-62
    44.机构运动、动力学分析工具[M].北京:机械工业出版社,2006:63-65
    45.何亚银,耶晓东,吴立信.基于仿真的机构动平衡实验台振动研究[J].机械设计,2007,24(2):48-49
    46.丁旭升.基于机构运动平稳的可靠性研究与结构优化设计[J].机电工程技术,2009,38(6):87-90
    47.刘善林,胡鹏浩,王会生.基于SolidWorks二次开发的凸轮廓线精确设计及运动仿真[J].机械传动,2008,32(5):46-48
    48.李立顺,孟祥德,詹隽青等.基于SolidWorks的整体自装卸车虚拟设计与运动仿真[J].起重运输机械,2007(3):21-23
    49.贺俊林,佟金,陈志.指形拨禾轮分禾机构的虚拟设计与运动仿真[J].农业机械学报,2007,38(6):53-56
    50.付永忠.基于SolidWorks的自顶向下装配体设计及运动仿真[M].机床与液压,2006(7):224-225
    51.孙贵斌,孙召瑞,吴修彬等.基于COSMOS Motion的弹齿滚筒捡拾器运动仿真[J].农业装备与车辆工程,2010(8):37-39
    52.杨达毅,陈丽敏.基于SolidWorks的六自由度液压平台运动仿真[J].机床与液压,2008,36(9):127-129
    53.江洪,陆利峰,魏峥.SolidWorks动画演示与运动分析实例解析[M].2006
    54.王莺,叶菁.基于SolidWorks的齿轮减速器三维设计及运动仿真[J].煤矿机械,2009,30(9):234-236
    55.蔡慧林,戴建强,席晨飞.基于SolidWorks的应力分析和运动仿真的研究[J].机械设计与制造,2008(1):92-94
    56.郗向儒,韩锐,阮静.基于SolidWorks的运动仿真研究[J].机械设计,2004,21(5):50-52
    57.汤先云.基于Solidworks机用虎钳的三维建模与运动仿真[J].吉首大学学报(自然科学版),2009,30(5):67-69
    58.张晋西,郭学琴,张甲瑞.基于SolidWorks与COSMOS Motion的汽车转向及行驶运动仿真[J].重庆理工大学学报(自然科学),2010,24(4):13-16
    59.王春升,胡彦军.减速器零件建模及装配运动仿真[J].化工机械,2010,37(4):425-460
    60.汪永明,余晓流,汪丽芳等.一种新型的仿生步行机构及其运动仿真[J].机械传动,2010,34(2):8-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700