数字通信信号调制识别算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间传播的通信信号采用了不同的调制方式。在许多应用中,需要监视通信信号的活动情况,区分信号的性质,甚至截获其传输的信息内容。例如,政府有关职能部门要监视民用通信信号,以实现干扰识别和电磁频谱管理。特别是在军事应用中,通信情报系统作为通信电子战(或信息战)的电子支援措施之一,用宋监视战场的电磁频谱活动,进行威胁识别,帮助选择电子干扰策略,直至截获敌方的有用军事情报。
     调制方式是区分不同性质通信信号的一个重要特征,而要截获通信信号的信息内容,必须知道信号的调制方式和调制参数。给定一段接收的通信信号,调制识别的目的就是在未知调制信息内容的前提下,判断出通信信号的调制方式,并估计出相应的调制参数。
     本文在前人工作的基础上,通过对信号累量域不变量特征的分析,深入研究了MPSK、MASK和MQAM数字通信信号的调制识别问题,主要工作可概括如下:
     1.从通信信号截获的工程实用角度出发,提出了“大信噪比”条件下的次优似然比分类算法。新方法结合了平均似然比分类性能好和标准的广义似然比分类计算量小的优点。同时解决了信号码元集合存在包含关系时,标准的广义似然比分类算法的失效问题。通过理论分析“大信噪比”近似成立的条件,把调制分类性能与信号解调的误码串联系在一起。据我们所知,本文是第一次定量地分析调制识别所需的信号环境与正常解调所需的信号环境之间的关系。对新分类方法的渐进性能分析和计算机仿真表明,在满足“大信噪比”条件下,当观测数据足够长时,正确分类概率趋于100%。
     2.针对MPSK信号似然比分类中的参数估计问题,提出了在未知调制类型的前提下,基于累量分析的(对调制类型)盲的信噪比和参考相位估计算法,并理论分析了累量函数估计值的渐进统计分布特性。把基于累量分析的信号参数估计算法用于已知调制类型的MASK、MQAM信号,通过大量的计算机仿真,初步考察了算法的性能。
     3.提出了在高斯噪声和理想信道环境下,基于高阶累量不变量特征的MPSK、MASK和MQAM信号调制分类算法,新特征对信噪比和未知的参考相位参数是盲的。针对MPSK信号分类问题,讨论了分类算法的理论渐进性能,并通过大量的计算机仿真实验证实了分类算法的有效性。最后针对不同调制子类信号的特点,我们分别给出了递归降阶调制识别方法,从而在满足一定信噪比条件下,当观测数据长度足够长时,本文算法理论上可分类任意调制阶数的数字通信信号。
     4.把高斯理想信道条件下基于累量不变量特征的调制分类算法,推广到高斯多径信道环境中。在已知多径参数的条件下,我们提出了基于多径累量不变量特征的信号分类算法。与盲均衡加理想信道累量不变量分类算法相比,多径累量不变量分类方法仅需要知道多径信道FIR模型的阶数。当信道模型的阶数也未知时,我们提出了把
    
    11 数字通信信号调制识别算法研究
    高斯理想信道中的累量不变量特征用于多径信道时,基于累量近似不变量分类特征的
    调制识别算法。理论分析和计算机仿真实验表明,本文方法在未知信道参数时,具有
    很好的工程实用性。
     5.研究了非高斯噪声、多信号和多径信道环境下,MPSK信号的调制识别问题。
    利用复基带通信信号的循环平稳特性,提出了基于循环累量不变量分类特征的\IPSK
    信号分类算法,从而把基于平稳时间序列模型的累量不变量分类方法推广到循环平稳
    域。
     6.研究了hSK、MQAM和MPSK信号调制子类间的分类识别问题。考察2;。’4/SPSK
    信号与 MASK、MQAM和 MPSK信号调制子类间的关系表明,可利用 2/4/SPSK信号分类
    算法实现不同调制子类间的识别。对更高调制阶数MPSK、MQAM和AISK信号分类的计
    算机仿真试验,证实了子类分类算法的有效性。同时还初步讨论了采用判决树和神经
    网络分类器时,本文提出的不变量分类特征的分类性能。
Communication signals travel in space with different modulation formats. In many applications, it is required to monitor the activities of these signals, identify their characteristics, even to intercept the signal information content. For instance, Civilian authorities may wish to monitor their transmissions in order to implement signal confirmation, interference identification and spectrum management. Especially in military applications, communication intelligence system, as one of the Electronic Support Measures (ESM) in Electronic Warfare (EW), is used to monitor electromagnetic spectra activities, implement threat detection and warning, and help to select jamming strategy and to intercept useful military intelligence.
    Modulation format is one of the most important characteristics used to distinguish communication signals. Knowing the modulation format and modulation parameters of a communication signal is the first step of correct demodulation. Given a received communication signal, the objective of modulation recognition is to decide the modulation format and estimate the modulation parameters of the communication signal without any priori knowledge about the signal information content.
    Based on the analysis of invariant features in cumulant domain of communication signals, the classification of communication signals with MPSK, MASK and MQAM modulation formats is investigated this dissertation. The main works can be summarized as follows:
    1. A new sub-optimum likelihood ratio classification algorithm is proposed at the assumption that the communication signals be received in "Higher Signal to Noise Ratio (HSNR)" environment with engineering practice significance. The new algorithm integrates the benefit of the average likelihood ratio algorithm with higher correct classification probability and that of the standard general likelihood ratio algorithm with low computation complexity, meanwhile, overcomes the invalidation problem of standard general likelihood ratio algorithm, when there are including relations between constellation sets of communication signals to be recognized. Through theoretically analyzing the HSNR condition for our algorithm to be applied, we relate the correct classification probability and bit error ratio of demodulation. To the best of our knowledge, this is the first time that modulation classification algorithm considers quantificationally the relations between signal environment of modulation classification and that of signal demodulation. The theoretical analysis and computer simulations reveal that, with HSNR conditions
    
    
    
    satisfied and enough data received, the correct classification probability of our sub-optimum algorithm can achieve about 100%.
    2. A new cumulant based algorithm of estimating Signal to Noise Ratio (SNR) and reference phase is proposed for likelihood ratio classification of MPSK signals, which is blind to unknown phase order of MPSK signals. The asymptotic statistic distribution characteristics of cumulant function estimation of MPSK signals are given. The performance of our parameter estimation algorithm applied to MASK and MQAM signals with known level order are preliminarily investigated through computer simulation.
    3. The new algorithms for classification of MPSK, MASK and MQAM signals using cumulant invariants are proposed in Gaussian noise and ideal communication channel environment. The new classification features are blind to unknown SNR and reference phase. The asymptotic performances of our algorithms are verified through theoretical analysis and/or computer simulations. According to the respective properties of different signal sub-set, we give recursive order-reducing classification algorithm. So that, beyond certain SNR and with enough received data, theoretically, our classification algorithms can recognize digital communication signals with any modulation order.
    4. Extending cumulant invariants based signal classification algorithms to Gaussian multipath channel environment, we proposed recognition algorithm
引文
[1]Bard, J.D.; Bryan, TJ.; Colvin, T.C., "Zwbra-multi-channel digital modular radio: architecture and performance," MILCOM'97, Monterey, CA, pp. 1221-1225, 1997
    [2]Gudaitis, C.M.S.; Hinman, R.D., "Tactical software radio concept,"MILCOM'97, Monterey, CA, pp.1207-1211, 1997
    [3]Hinman, R.D.; Gudaitis, C.M., "Programmable radio benefits for the military," MILCOM'97, Monterey, CA, pp. 1197-1201, 1997
    [4]Hoffmeyer, J.A.; Bonser, W., "Standard requirements and recommendations development for multiband, multimode radio systems," MILCOM'97, Monterey, CA, pp. 1184-1191, 1997
    [5]Newman, E.; Climek, D.M., "Multiband multimode radio (MBMMR) technology applications in the military, civil, and commercial sectors," MILCOM'97, Monterey, CA, pp. 1192-1196, 1997
    [6]Prill, R.S., "Programmable digital radio," MILCOM'97, Monterey, CA, pp. 1202-1206, 1997
    [7]Vidano, R.; Arizona, S., "SPEAKeasy II-An IPT approach to software programmable radio development," MILCOM'97, Monterey, CA, pp. 1212-1215, 1997
    [8]Blount, R.; Dankberg, M.; Nolan, P.; Thornton, R., "A compact simulator for CNI RF environments," MILCOM'91, McLean, VA, Vol. 1, pp. 278-82, 1991
    [9]Martin, A., "A signal analysis and classification strategy for implementation in an EW communications receiver," Fifth International Conference on Radio Receivers and Associated Systems, pp.222-226, 1990
    [10]苗建苏,付丰林,“RBF网络在通信信号自动识别中的应用,”西安电子科技大学学报,Vol.23,No.1,pp.112-120,1996
    [11]陆明泉,肖先赐,李乐民,“从GAR模型参数提取特征的数字调制识别新方法,”电子科学学刊,Vol.21,No.2,pp.145-151,March 1999
    [12]韩国栋,蔡斌,邬江兴,“调制分析与识别的谱相关方法,”系统工程与电子技术,Vol.23,No.3,pp.34-36,2001
    [13]吕铁军,郭双冰,肖先赐,“基于模糊积分的通信信号调制识别方法研究,” 电子学报,Vol.29,No.6,pp.808-810,June,2001
    [14]Azzouz, E.E.; Nandi, A.K., "Automatic identification of digital modulation types," Signal Processing, Vol.47, No. 1, pp.55-59, Nov. 1995
    [15]Azzouz, E.E.; Nandi, A.K., Automatic Modulation Recognition of Communication Signals, Kluwer Academic Publishes, Netherlands, 1996
    [16]Chan, Y.T; Gadbois, L.G., "Identification of the modulation type of a signal," Signal Processing, Vol. 16, No.2, pp.149-154, Feb. 1989
    [17]Fabrizi, P.M.; Lopes, L.B.; Lockhart, G.B., "Receiver recognition of analogue modulation
    
    types." IERE Conference on Radio Receiver and Associated Systems, pp. 135-140, 1986
    [18] Hill. P.C.J.; Orzeszko, G.R., "Performance comparison of neural network and statistical discriminant processing techniques for automatic modulation recognition." SPIE, Vol.1469, pt.1. pp.329-340, 1991
    [19] Lamontagne, R.. "Envelope and Instantaneous Frequency Estimation of Narrowband Modulated Signals," NTIS No: N94-14033/2/HDM, Defence Research Establishment, Ottawa, Ontario, Dec. 1991
    [20] Louis, C.; Sehier, P.. "Automatic modulation recognition with a hierarchical neural network." MILCOM'94, Long Branch, NJ, Vol.3, pp.713-717, 1994
    [21] Mammone. R.H.; Rothaker, R.J.; Podilchuk. C.I.. "Estimation of carrier frequency, modulation type and bit rate of an unknown modulated signal," ICC'87, Seattle, WA, Vol.2, pp.1006-1012, June 1987
    [22] Assaleh. K..; Farrell. K..; Mammone, R.J.. "A new method of modulation classification for digitally modulated signals." MILCOM '92. San Diego, CA, Vol.2, pp. 712-16, 1992
    [23] Farrell. K.R.; Mammone. R.J., "Modulation classification using a neural tree network." MILCOM'93, Boston, MA, Vol.3, pp.1028-1032, 1993
    [24] Hong, Liang; Ho, K.C.. "Identification of digital modulation types using the wavelet transform." MILCOM'99, Atlantic City, NJ, pp.427-431, 1999
    [25] Lin. Yu-Chuan; Kuo. C.C.J.. "A practical PSK modulation classificater using wavelets." SPIE. Vol.2491, pp.492-503. 1995
    [26] Dragosevic, M.V.; Jovanovic. S.D.. "RLS type amplitude and phase estimator in modulation mode recognition applications." EUSIPCO '90, Barcelona, Spain, Vol.3, pp. 1927-30, 1990
    [27] Ketterer. H.; Jondral, F; Costa, A.H.. "Classification of modulation modes using time-frequency methods." ICASSP '99. Phoenix, AZ, pp.2471-2474, 1999
    [28] Chan. Y.T., "Symbol rate estimation by the wavelet transform," MILCOM'97. Monterey, CA. pp. 177-180, 1997
    [29] Ho. K.C.: Scheidl. A.E.; Inkol, R.J., "Signal identification based on orthogonal transform." Special Sessions ICASSP '95, Detroit. MI, Vol.5, pp.3599-3602, 1995
    [30] Ho. K.C.: Prokopiw. W.: Chan, Y.T.. "Modulation identification by the wavelet transform," MILCOM '95, San Diego, CA, Vol.2, pp. 886-890, 1995
    [31] Ho, K.C.; Prokopiw, W.; Chan. Y.T., "Modulation identification of digital signals by the wavelet transform." IEE Proceeding-Radar. Sonar. Navigation. Vol.147. No.4. pp.169-176, Aug. 2000
    [32] Gini, F; Giannakis. G.B., "Frequency offset and symbol timing recovery in flat-fading channels: a cyclostationary approach." IEEE Transactions on Communications, Vol.46. No. 3, pp. 400-410. March 1998
    
    
    [33] Mazet, L.; Loubaton, Ph.. "Cyclic correlation based symbol rate estimation," The 33td Asilomar Conference on Signals, Systems & Computers, pp.1008-1012, 1999
    [34] Liedtke, F.F. "Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters," Signal Processing. Vol.6, No.4, pp.311-323, Aug. 1984
    [35] Jondral, K. "Foundations of automatic modulation classification," Journal of ITG-Fachberichte, West Germany, Vol.107, pp.201-6 1989
    [36] Portillo-Garcia. J.I.; Sancho-Marco, J.P.; Vergara-Dominguez, L.; Paez-Borrallo, J.M.; Ruiz-Mezcua, B., "A microcomputer-based general architecture for radiocommunication signal classification and digital demodulation," EUSIPCO'90, Barcelona, Spain, Vol.3, pp. 1919-22, 1990
    [37] Hsue, S.Z.; Soliman, S.S., "Automatic modulation classification using zero crossing," IEE Proceedings F, Radar and Signal Processing, Vol.137, No.6, pp.459-64, Dec. 1990
    [38] Einicke. G.A., "A flexible architecture for real-time modulation recognition," Australian ASSPA'89,pp.133-137, 1989
    [39] Hipp, J.E., "Modulation classification based on statistical moment," MILCOM'86, Monterey, CA,pp.20. 2. 1-20. 2. 6, 1986,
    [40] Whelchel, J.E.; McNeill, D.L.; Hughes, R.D.; Loos, M.M., "Signal understanding: an artificial intelligence approach to modulation classification," IEEE International Workshop on Tools for Artificial Intelligence, Architectures, Languages and Algorithms, pp. 231-236,1998
    [41] Swami, A.; Sadler, B.M., "Modulation classification via hierarchical agglomerative cluster analysis," IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, SPAWC'97,pp.141-144, 1997
    [42] Swami, A.; Sadler, B.M., "Hierarchical digital modulation classification using cumulants," IEEE Transactions on Communications, Vol.48, No.3, pp.416-429, March 2000
    [43] Le Martret, C.J.; Boiteau, D.M., "Modulation classification by means of different orders statistical moments,"MILCOM'97, Monterey, CA, Vol.3, pp.1387-1391, 1997
    [44] Hero III, A.O.; Hadinejad-Mahram. H., "Digital modulation classification using power moment matrices "ICASSP'98, Seattle, WA, pp.3285-3288,1998
    [45] Akmouche, W., "Detection of multicarrier modulations using 4th-order cumulants," MILCOM'99, Atlantic City, NJ, pp. 432-436, 1999
    [46] Aisbett, J., "Automatic modulation recognition using time domain parameter," Signal Processing, Vol.13,No.3,pp323-328, 1987
    [47] Weaver, C.S.; Cole, C.A.; Krumland, R.B.; Miller, M.L., "The automatic classification of modulation types by pattern recognition," AD691069, April, 1969
    
    
    [48] Zhu, Q.; Kam. M.; Yeager. R... "Non-parametric identification of QAM constellations in noise." ICASSP '93, Minneapolis, MN, Vol.4, pp. 184-187, 1993
    [49] Sapiano, PC.; Martin, J.D.. "Maximum likelihood PSK classification using the DFT of phase histogram," GLOBECOM'95, Singapore, pp. 1029-1033, Nov. 1995
    [50] Sapiano, PC.; Martin, J.D.; Holbeche, R.J., " Classification of PSK Signals using the DFT of phase histogram," ICASSP '95, Detroit, MI, pp.1868-1871, 1995
    [51] Marinovic, N.M.; Nelson, D.; Cohen, L.; Umesh. S.. "Classification of digital modulation types," SPIE, Vol.2563, pp. 125-143, 1995
    [52] Benvenuto, N.; Daumer, W.R., "Classification of voiceband data signals," IEEE International Conference on Communications. ICC '90, Atlanta, GA, Vol.3 , pp. 1010-13 ,1990
    [53] Wood, S.L.; Ready. M.J.; Treichler, J.R., "Constellation identification using the Radon transform," ICASSP '88, New York, City, Vol.3, pp.1878-1881, 1988
    [54] Wood, S.L.; Ready, M.J.; Treichler, J.R., "Performance of the Radon transform method for Constellation identification," Proceeding of the Twenty-second Asilomar Conference on Circuits. Systems and Computers, pp.119-122, Oct.1988
    [55] Wood, S.L.: Larimore. M.G.: Treichler. J.R., "Modem constellation identification: a performance comparison of two methods," ICASSP '90, Albuquerque, MI, Vol.3, pp. 1651-1654, 1990
    [56] Wood. S.L.; Treichler, J.R., "Computational and performance analysis of radon transform based constellation identification." ICASSP '94, Adelaide. Australia. Vol.3. pp.241-244; 1994
    [57] Ta. Nhi P.. "Wavelet packet approach to radio signal modulation classification." ICCS'94, Singapore, Vol.1, pp.210-214, 1994
    [58] Mobasseri, B.G, "Digital modulation classification using constellation shape." Signal Processing, Vol.80. No.2. pp.251-277. 2000
    [59] Gardner, W.A., "The spectral correlation theory of cyclostationary time-series," Signal Processing, Vol.11, No.1, pp. 13-36, July 1986
    [60] Gardner. W.A., "Common pitfalls in the application of stationary process theory to time-sampled and modulated signals." IEEE Transactions on Communications, Vol.COM-35. No. 5. pp.529-534, May 1987,
    [61] Gardner. W.A., "Spectral correlation of modulated signals: pan I-Analogue modulation," IEEE Transactions on Communications, Vol.35, No.6, pp.584-594, June 1987
    [62] Gardner. W.A.; Brown. W.A.: Chen. C.K., "Spectral correlation of modulated signals: part II-digital modulation." IEEE Transactions on Communications. Vol.35. No.6, pp. 595-601, June 1987
    [63] Gardner. W.A., Statistical Spectral Analysis: A non-probabilistic theory, Prentice-Hall. Englewood Cliffs, NJ, 1987
    
    
    [64] Gardner, W.A.; Spooner, C.M., "Cyclic spectral analysis for signal detection and modulation recognition," MLCOM'88, San Diego, CA, Vol.2, pp.419-424, 1988
    [65] Kim. Y.K.; Weber, C.L.. "Generalized single cycle classifier with applications to SQPSK vs. 2kPSK,"MILCOM'89, Boston, MA, Vol.3, pp.754-758, 1989
    [66] Reichert, J.. "Automatic classification of communication signals using higher order statistics," ICASSP '92, San Francisco, Vol.5, pp.221-4, 1992
    [67] Marchand, P.; Le Martret, C.; Lacoume, J.-L., "Classification of linear modulation by a combination of different orders cyclic cumulants," Proceedings of IEEE Signal Processing Workshop on Higher-Order Statistics, pp.47-51, 1997
    [68] Lamontagne, R., "Modulation Recognition: An Overview," NTIS No: N92-20159/9/HDM, Defence Research Establishment, Ottawa, Ontario, March 1991
    [69] Jondral, E, "Automatic classification of high frequency signals," Signal Processing, Vol.9, No.3, pp. 177-190, Oct. 1985
    [70] Donoho. D.L.; Huo Xiaoming, "Large-sample modulation classification using Hellinger representation," IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, SPAWC'97,pp.l33-136, 1997
    [71] Huo, Xiaoming; Donoho, D., "A simple and robust modulation classification method via counting," ICASSP '98, Seattle, WA, pp.3289-3292, 1998
    [72] Stolpman, V.J.; Paranjpe, S.; Orsak, G.C., "A blind information theoretic approach to automatic signal classification," MILCOM'99, Atlantic City, NJ, pp.447-451, 1999
    [73] Nandi, A.K.; Azzouz, E.E., "Automatic analogue modulation recognition," Signal Processing, Vol.46, No.2, pp.211-222, Oct. 1995
    [74] Nandi, A.K.; Azzouz, E.E., "Algorithms for automatic modulation recognition of communication signals," IEEE Transactions on Communications, Vol.46, No.4, pp.431-43 6, April 1998
    [75] Ghani, N.; Lamontagne, R., "Neural networks applied to the classification of spectral features for automatic modulation recognition," MILCOM '93, Boston, MA, Vol.1, pp.111-15, 1993
    [76] Nandi, A.K.; Azzouz, E.E., "Modulation recognition using artificial neural networks," Signal Processing, Vol.56, No.2, pp.165-175, Jan. 1997
    [77] Huang, C.Y.; Polydoros, A., "Likelihood methods for MPSK modulation classification," IEEE Transactions on Communications, Vol.43, No.2-4, pt.3, pp. 1493-1504, Feb.-April 1995,
    [78] Kim, K.; Polydoros, A., "Digital modulation classification: the BPSK versus QPSK case," MILCOM'88, San Diego, CA, Vol.2, pp.431-436, 1988
    [79] Han, Young Yearl; Lee, Weon Cheol; Yoon, Dong Weon, "On the error rate evaluation and modulation classification for coherent and noncoherent PSK signals using the transformation of
    
    random variable," ICC '93, Geneva, Switzerland, pp. 1508-1514, 1993
    [80] Yang, Yawpo; Soliman, S.S., "Optimum classifier for M-ARY PSK signals," ICC'91, Denver, CO, Vol.3, pp.1693-1697, 1991
    [81] Yang. Yawpo; Soliman, S.S., "Statistical moments based classifier for MPSK signals," GLOBECOM'91, Phoenix, AZ, Vol.1, pp.72-76, 1991
    [82] Yang, Yawpo; Soliman, S.S., "An improved moment-based algorithm for signal classification." Signal Processing, Vol.43, No.3, pp.231-244, 1995
    [83] Yang, Yawpo; Soliman. S.S., "Suboptimal algorithm for modulation classification." IEEE Transactions on Aerospace and Electronic Systems, Vol.33,No.1,pp.38-45. Jan. 1997
    [84] Soliman, S.S.; Hsue. Shue-Zen, "Signal classification using statistical moments," IEEE Transactions on Communications. Vol.40, No.5, pp.908-916, May 1992
    [85] Wei, Wen: Mendel, J.M.. ''Maximum-likelihood classification for digital amplitude-phase modulations," IEEE Transactions on Communications, Vol.48, No.2, pp.189-193, Feb. 2000
    [86] Yang, Yawpo; Liu Ching-Hwa; Soong Ta-Wei, "A log-likelihood function-based algorithm for QAM signal classification," Signal Processing, Vol.70, No.1, pp.61-71, 1998
    [87] Long. C.S.; Chugg, K.M.; Polydoros, A.. "Further results in likelihood classification of QAM signals," MILCOM'94, Long Branch, NJ, Vol.1, pp.57-61, 1994
    [88] Schreyoegg, C.; Reichert, J., "Modulation classification of QAM schemes using the DFT of phase histogram combined with modulus information."' MILCOM'97. Monterey, CA, Vol.3. pp.1372-1376. 1997
    [89] Sills, J.A.. "Maximum-likelihood modulation classification for PSK/QAM."' MILCOM'99, Atlantic, City. NJ, pp.217-220. 1999
    [90] Lin. Yu-Chuan; Kuo, C.C.J.. "Sequential modulation classification of dependent samples," ICASSP '96, Atlanta. GA. Vol.5, pp.2690-2693, 1996
    [91] Lin. Yu-Chuan; Kuo, C.C.J., "Classification of quadrature amplitude modulated (QAM) signals via sequential probability ratio test (SPRT)." Signal Processing. Vol.60, No.3, pp.263-280 Aug. 1997
    [92] Beidas. B.F,; Weber, C.L.. "Higher-order correlation-based approach to modulation classification of digitally frequency-modulated signals." IEEE Journal on Selected Areas in Communications, Vol.13, No.l pt.2, pp.89-101, Jan.1995
    [93] Beidas. B.F.; Weber, C.L.. "Asynchronous classification of MFSK signals using the higher order correlation domain." IEEE Transactions on Communications. Vol.46, No. 4. pp.480-493, April 1998
    [94] Boiteau, D.; Le Martret. C., "A general maximum likelihood framework for modulation classification," ICASSP'98, Seattle, WA, pp.2165-2168, 1998
    
    
    [95] Vergara-Dominguez, L.; Paez-Borrallo, J.M.; Portillo-Garcia, J.; Ruiz-Mezcua, B., "A general approach to the automatic classification of radio communication signals," Signal Processing, Vol.22, No.3, pp.239-250, March 1991
    [96] Paris, B.-P.; Orsak, G.C.; Chen, Hongda; Warke, N.. "Modulation classification in unknown dispersive environments;'ICASSP'97, Munich, Ger, Vol.5, pp.3853-3856, 1997
    [97] Lay. N.E.; Polydoros, A., "Per-survivor processing for channel acquisition, Data detection and modulation classification," The Asilomar Conference on Signals, Systems & Computers, Vol.2, pp.1169-1173, 1994
    [98] Lay, N.E.; Polydoros, A., "Modulation classification of signals in unknown ISI environments," MILCOM'95, San Diego, CA; Vol.1, pp.170-174,1995
    [99] Hwang, C.Y.;. Polydoros, A., "Advanced methods for digital quadrature and offset modulation classification," MILCOM'91, McLean, VA, Vol.2, pp.841-845, 1991
    [100] Van Trees, H.L., Detection, Estimation, and Modulation Theory, Port I, John Wiley & Sons, Inc. New York, 1968
    [101] Franks. L.E.. "Carrier and bit synchronization in data communication-A tutorial review," IEEE Transactions on Communications, Vol.COM-28, No.8, pp. 1107-1121, Aug. 1980
    [102] Meyr, H.; Moeneclaey, M.; Fechtel, S.A., Digital Communication Receivers, John Wiley&Sons, Inc, New York, NY, 1998
    [103] Polydoros, A; Kim, K, "On the detection and classification of quadrature digital modulations in broad-band niose." IEEE Transactions on Communications, Vol.38, No.8, pp. 1199-1211, August 1990
    [104] Proakis, J.G., Digital Communications, Third Edition, (影印版), 电子工业出版社, 1999
    [105] Wilson, S.G., Digital Modulation and Coding, (影印版),电子工业出版社, 1998
    [106] Gardner, W.A., "A unifying view of second-order measures of qualify for signal classification," IEEE Transactions on Communications, Vol.COM-28, Vol.6, No.6, pp.807-816, June 1980
    [107] Nikias, C.L.; Petropulu, A.P., Higher-order spectra analysis: A nonlinear signal processing framework, New Jersey: prentice-Hall, 1993
    [108] Nikias, C.L.: Mendel, J.M., "Signal processing with higher-order spectra," IEEE Signal Processing Magazine, Vol.10, No.7, pp. 10-3 7, July 1993
    [109] 张贤达,时间序列分析-高阶统计量方法,清华大学出版社,1996
    [110] Mendel, J.M., "Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications," Proceeding of the IEEE, Vol.79, No.3, pp.278-305, March 1991
    [111] Andersin, M.; Mandayam, N.B.; Yates, R.D., "Subspace based estimation of the signal to interference ratio for TDAM cellular systems," IEEE Vehicular Technology Conference, Atlanta,
    
    GA. pp. 1155-1159. April 1996
    [112] Turkboylari, M.; Stuber, G.L.. ''An efficient algorithm for estimating the signal-to-interference ratio in TDMA cellular systems." IEEE Transactions on Communications. Vol.46, No.6, pp.728-731, June 1998
    [113] Pauluzzi, D.R.; Beaulieu. N.C.. "A comparison of SNR estimation techniques for the AWGN channel." IEEE Transactions on Communications. Vol.48. No. 10. pp. 1681-1691. Oct. 2000
    [114] Li. Y., "Reforming the theory of invariant moments for pattern recognition," Pattern Recognition. Vol.25, No.7, pp.723-730, 1992
    [115] Fukunaga, K., Introduction to statistical pattern recognition. Academic Press. 1972
    [116] ABU-Mostafa. Y.S.; Psaltis. D., "Recognitive aspects of moment invariants," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.6, No.6. pp.698-706. Nov. 1984
    [117] Reddi. S.S., "Radial and angular moment invariants for image identification. " IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol.3. No. 2, pp. 240-242. March 1984
    [118] Belkasim, S.O.; Shridhar, M.: Ahmadi, M., "Pattern recognition with moment invariants: A comparative study and new results." Pattern Recognition. Vol.24, No.12. pp.1117-1138, 1991
    [119] Chandran. V; Elgar. S.. "Shape discrimination using invariants defined from higher-order spectra." ICASSP '91. Toronto. Can.. Vol.5, pp.3105-3 108. 1991
    [120] Chandran. V; Elgar, S.L.. "Pattern recognition using invariants defined from higher order spectra-one-dimensional inputs," IEEE Transactions on Signal Processing. Vol.41, No.l. pp.205-212. Jan. 1993
    [121] Duda. R.O.; Hart. P.E.. Pattern recognition and scene analysis. Wiley. New York. 1973
    [122] 沈清.汤霖.模式识别导论,国防科技大学出版社,1997
    [123] Flusser. J.; Suk. T.. "Classification of degraded signal by the method of invariants." Signal Pressing, Vol.60, No.2. pp.243-249; 1997
    [124] Bessios. A.G.: Nikias. C.L.. "POTEA: the power cepstrum and tricoherence equalization algorithm." IEEE Transactions on Communications, Vol.43. No.11. pp. 2667-2671. Nov. 1995
    [125] Ding. Z.; Li. Y. "Channel identification using second order cyclic statistics." The Twenty-Sixth Asilomar Conference on Signals. Systems and Computers. Vol. 1, pp. 334-8. 1992
    [126] Godard, D.N., "Self-recovering equalization and carrier tracking in tow-dimensional data communication systems," IEEE Transactions on Communications. Vol.COM-28, No. 11. pp. 1867-1874, 1992
    [127] Haykin. S., Adaptive Filter Theory. Third Edition, (影印版),电子工业出版社, 1998
    [128] Jelonnek, B.; Kammeyer. K..-D. "Improved methods for the blind system identification using higher order statistics." IEEE Transactions on Signal Processing. Vol.40, No.12. pp.2947-2960.
    
    Dec. 1992
    [129] Tong, L.. "Blind identification and equalization based on second order statistics: A time domain approach." IEEE Transactions on Information Theory. Vol.40, No.2, pp.340-349, 1994
    [130] Tsatsanis, M.K., "Blind equalization," ICASSP '93, Minneapolis, MM, Vol.4, pp.85-88, 1993
    [131] Zervas, E.; Proskis, J.; Vyuboglu, V, "Effect of constellation shaping on blind equalization," in Simon Haykin, Editor, Adaptive Signal Processing, SPIE, Vol.1565, pp.178-187, 1991
    [132] 郭梯云,杨家玮,李建东,数字移动通信(通信工程丛书),第一版,人民邮电出版社, 1995
    [133] Gardner. W.A.; Spooner, C.M., "The cumulant theory of cyclostationary time-series. Part I : Foundation," IEEE Transactions on Signal Processing, Vol.42, No.12, pp.3387-3408, Dec. 1994
    [134] Gardner, W.A.; Spooner, CM., "The cumulant theory of cyclostationary time-series, Part II: Development and applications," IEEE Transactions on Signal Processing, Vol.42, No.12, pp.3409-3429, Dec. 1994
    [135] Gardner, W.A., "Signal interception: a unifying theoretical framework for feature detection," IEEE Transactions on Communications, Vol.36, No.8, pp.897-906, Aug. 1988
    [136] Gardner, W.A., "Exploitation of spectral in cyclostationary signals," IEEE Signal Processing Magazine, Vol.8, No.2, pp. 14-36, 1991
    [137] Gardner, W.A., "Signal interception: performance advantages of cyclic-feature detectors," IEEE Transactions on Communications, Vol.40, No. 1, pp. 149-159, 1992
    [138] Gardner, W.A.; Chen Chih-Kang. "Signal-selective time-difference-of-arrival estimation for passive location of man-made signal sources in highly corruptive environments, Part I : Theory and method," IEEE Transactions on Signal Processing, Vol.40, No. 5, pp. 1168-1184, May 1992
    [139] Gardner, W.A.; Chen Chih-Kang, "Signal-selective time-difference-of-arrival estimation for passive location of man-made signal sources in highly corruptive environments, Part II: Algorithms and performance," IEEE Transactions on Signal Processing, Vol.40, No.5, pp.1185-1197, May 1992
    [140] Gardner, W.A.; Spooner, C.M., "Detection and source location of weak cyclostationary Signal: simplifications of the maximum-likelihood receiver." IEEE Transactions on Communications, Vol.41, No.6, pp.905-916, June 1993
    [141] Huang. S.C.; Huang, Y.F., " Bounds on the number of hidden neurons in multilayer perceptron," IEEE Transactions on Neural Networks, Vol.2, No.1, pp.47-55, Jan.1991
    [142] Ruck, D.W.; Rogers, S.K.; Kabrisky, M.; Oxley, M.E.; Suter, B.W., "The multilayer perceptron as an approximation to a Bayes optimal discriminant function," IEEE Transactions on Neural Networks, Vol.1, No.4, pp.296-298, Dec. 1990
    [143] Wan, E.A.. "Neural network classification: A Bayesian interpretation," IEEE Transactions on
    
    Neural Networks, Vol. 1, No.4, pp.303-305, Dec. 1990
    [144]www. halcomm.com, Clover-2000 waveform & protocol, E2007, Rev. C, May 07, 1999
    [145]Dandawate, A.V.; Giannakis, G.B., "Statistical tests for presence of cyclostationarity," IEEE Transactions on Signal Processing, Vol.42, No.9, pp.2355-2369, Sep. 1994
    [146]Schneider, R.F.; Chu, D.C., "Modulation recognition of spread spectrum signals using modulation domain measurements," MILCOM'91, McLean, VA, Vol.2, pp.819-826, 1991
    [147]Bennett, W.R., "Methods of solving noise problems," Proceeding of IRE, Vol.44, No.5, pp.609-638, May 1956
    [148]Blachman, N.M., "Gaussian noise-part Ⅱ: Distribution of phase change of narrow-band noise plus sinusoid," IEEE Transactions on Information Theory, Vol.34, No.6, pp. 1401-1405, Nov. 1988
    [149]Leib, H.; Pasupathy, S., "The phase of a vector perturbed by Gaussian noise and differentially coherent receivers," IEEE Transactions on Information Theory, Vol.34, No.6, pp. 1491-1501, Nov. 1988
    [150]Rice, S.O., "Statistical properties of a sine wave plus random noise," Bell Systems Technology Journal, Vol.27, pp. 109-157, Jan. 1948
    [151]朱华,黄辉宁,李永庆,梅文博,随机信号分析,北京理工大学出版社,1995
    [152]章潜五,随机信号分析,西安电子科技大学出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700