高空作业车臂架系统快速设计及其运动规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高空作业车对于高层基础建筑的作业、灭火和救援,保障人民生命财产安全,具有重大的工程意义和设计需求紧迫性。随着城市化进程加快,高空作业车特别是大高度高空作业车的应用和需求越来越广泛。目前我国高空作业车产品技术水平与欧美日等发达国家和地区的产品相比差距甚为明显。这种落后体现在:基础性研究工作较少,尤其缺少高空的微动性、可操控性及其动态规划的综合控制方面的专门研究,没有及时引入新的设计理论和先进的计算方法,更谈不上对产品设计的“精雕细琢”。本文拟从高空作业车臂架系统的设计理论及平台多自由度协同运动规划两个方面进行研究,以注重工程的开发应用及其理论研究的探索作为研究目的,拟解决以下几个方面问题:
     开展几何非线性计算与相似性设计理论相结合的臂架系统快速设计。通过对比分析现有国外高空作业车系列产品结构形式及工作特点,寻找到影响产品性能的主要参数及其设计规律,得出进行相似性设计的基础可行性解;同时基于小变形的线性分析及大变形的非线性分析进行了臂架截面的相似性设计推导和过程分析,依此分别开展了设计模型与设计原型全几何相似的相似性设计、设计模型与设计原型应力相等的相似性设计、设计模型危险截面应力相同的相似性设计,并讨论了危险截面处的受力、应力以及臂端位移等方面的差异。在全几何相似设计时,非线性计算的设计模型受力、变形、应力、稳定性相似比比线性的大,因此基于线性计算的相似性设计结果偏危险。非线性全几何相似性设计模型的应力值比原型的应力值大很多,应力结果不相似,.设计结果不合理。鉴于以上情况,对其改进方法是通过分别调整各节臂截面的大小,获得各节臂危险截面应力相似比为1或应力值趋近于某个常数值,以便完成合理设计,最终建立非线性引导作为驱动源的相似性设计理论,实现复杂工况大变形问题的变截面设计问题。
     研究上车飞臂平台期望轨迹的分级运动规划策略,实现由工作平台期望的运动作业空间到臂架系统关节空间的冗余自由度运动规划计算。根据高空作业车的动作方式,首先建立起了高空作业车的运动学模型,推导了相对于全局坐标系的雅可比矩阵;其次将实际关节的运动位姿限制及速度极限限制作为约束条件加到齐次加速度解算子的范围上,以速度矢量的欧拉范数最小作为目标,并利用分离空间法对逆运动学问题进行了求解;最后利用约束稳定性方法完成了基于闭环反馈控制的平台运动规划,有效的避免了运动误差累积。为进行臂架系统关节空间到液压缸直线驱动空间的规划提供了基础。
     考虑到运动控制的分层转化,继而对液压系统的分级控制特性与作用机制作了进—步的研究。进行了高空作业车的关节空间到液压缸驱动空间的非线性变换关系推导。主要是利用解析法对含有移动副与转动副混合式折叠伸缩臂高空作业车,推导了具有多层同步伸缩特性的伸缩副移动量与伸缩液压缸直线驱动而造成的转角在空间的变换关系。详细推导了一号臂变幅与伸缩运动,二号臂变幅与伸缩运动,飞臂变幅运动涉及到的臂架关节运动与液压缸直线伸缩运动的关系,为进行合理分配控制驱动系统参数提供依据。
     开发研究了一套高空作业车专用的设计与分析仿真系统(Aerial Work Platform Design and Analysis System),通过不同的算例分析,逐一验证臂架非线性驱动的相似性设计理论、飞臂平台轨迹规划及分级实现运动仿真、空间八字形变幅系统安装误差分析等。分析系统从臂架截面设计到臂架受力变形应力分析,再到平台轨迹规划及分级运动控制,直到运动误差分析的设计过程,可为高空作业车的方案设计及结构设计提供快速分析工具。
     综上所述,本课题探讨了基于相似理论的超高度高空作业车臂架系统快速设计方法研究,尤其侧重考虑长细构件非线性的影响,实现通过对相似常数的调整来生成新的臂架方案,不仅保证了高空作业车特定的臂架截面高强度及刚度要求,同时对其高空操作平台稳定而高效的臂架展开过程关系及其运动规划的控制理论特性进行了展开研究。其设计方案与控制系统的研究结果可为国内高空作业车的臂架截面快速设计及系统控制计算和运动仿真提供理论依据与生产实践参考。
With the rapid urbanization, the Aerial Work Platform (AWP) especially with long booms and superelevation increasingly plays an important role in this process. Over one hundred meters AWPs attach greater significance to construction, fire fighting and protecting person's lives and belongings, etc. But there still exists a far more distances from the technic level of Chinese AWPs to European, Japanese or other developed countries'. The reasons lie in multiple aspects as the inadequate basic researches, outdated design theories and inefficent computing methods. All of these lead to details of the products being less considered. To better solve these queations, the boom section design, platform motion planning and hydranlic control strategy are mainly investigated in this paper.
     With considering the design cycle and the current design resource being exploit efficient, the second chapter investigates the boom section design of AWP based on similar theory and geometrical nonlinear analysis. Firstly, a possibility of similar section design could be drawn by searching main performance parameters and design rules of the form of structures and working specifications of the modern series aerial work products. Secondly, the derivation and analysis of similar boom section design are presented by linear small deformation and nonlinear large deformation analysis method. An example is taken which requires the designed model being smaller than the original one. Full geometry similar design, similar design of equal stress between design model and protype model, similarity design of same stress in design model are respectively carried out and the forces, stress, and deformation of dangerous section of which are discussed. In the full geometry similar design, forces, stress, and deformation of the nonlinear similar design are slightly bigger than those of the linear design which intends to be unsafe. The stress of the model of nonlinear geometry similar design is greater than the original model, which means the design result is irrationable. By adjusting the section parameters of each boom, a final design can be obtained in which the stress similarity ratio is1or the stress could tend to be a constant.
     The following chapter presents how AWP finishes the desired movement through a different-level motion control strategy. The first control level of platform motion from work space to joint space is focused on the redundant degree of freedom planning. A simplified AWP model is built and its Jacobian matrix relative to the base frame is deduced. With obtaining the minimum Euler norm as the object, the inverse kinematics problem of redundant degree of freedom is solved based on the dividing Jacobian matrix method, in which the limit positions and velocities of telescopic and luffing motion are taken into consideration. As a result, the analysis algorithm is programmed. The motion planning in this level lays the foundation for the further hydraulic cylinder driving space control strategy.
     The fourth chapter gives the hydraulic control driven for the motion planning strategy which is a strong nonlinear mapping relationship from the joint design space to the control space. An analytical method is introduced to deduce mapping relationship between joint space and cylinder driven space which contains the characteristic of multi-layer synchronous telescoping for prismatic joints and the cylinder driving characteristic for revolute joints. The concrete operation parameters for hydraulic control system could be achieved accordingly.
     Due to requirements of the system design and motion analysis, the fifth chapter introduces the professional design platform as AWP Design and Analysis System. With the help of the typical design prototypes, the software integrates the process from the boom section design to the boom deformation and stress analysis, then to the hierarchical control of for trajectory planning of the work platform, finally gets to the hydraulic cylinder motion error analysis. It provides a rapid and efficient computing tool for AWPs from the overall scheme design to detail structure design. The principle design process as boom section similar design, platform trajectory planning and assembling tolerance of hydraulic cylinders analysis are discussed individually.
     In this way, this paper presents the similar design of long boom section based on geometrical nonlinear and the trial of one-key operation for telescopic booms expanding motion of AWP. These methods can provide reliable reference for the overall scheme design and system control for the new product development.
引文
[1]章崇任.高空作业车的历史和现状,工程机械文摘[J],1996(04):47-48.
    [2]黄桂芬,陈铭年.我国高空作业车研究进展综述[J].机电技术,2012(1):2-5.
    [3]夏秀峰.浅谈我国高空作业车发展[J].建筑机械化,2010(9):33-35.
    [4]张华,霍玉兰.我国高空作业车行业发展与展望[J].建筑机械,2009(23):38-43.
    [5]丁中立.21世纪高空作业车展望[J].建设机械技术与管理[J],1996(5):38-39.
    [6]Pan, C. S, Hoskin, A., McCann, M., Lin, M. L., Fearn, K., Keane, P. Aeria lift fall injuries:A surveillance and evaluation approach for targeting prevention activities[J]. Journal of Safety Research,2007(38):617-625.
    [7]Smith, T. R. An evaluation of fatigue cracking in an aerial platform yoke from a fire-fighting vehicle[J]. Engineering Failure Analysis,2002(9):303-312.
    [8]Krasucki, J., Rostkowski, A., Gozdek, L., Bartys, M. Control strategy of the hybrid drive for vehicle mounted aerial work platform[J]. Automation in Construction, 2009 (18):130-138.
    [9]Giguere, D., Marchand, D. Perceived safety and biomechanical stress to the lower limbs when stepping down from fire fighting vehicles[J]. Applied Ergonomics, 2005(36):107-119.
    [10]江浩,荣学文,樊炳辉.一种智能高空作业车的设计[J].煤矿机械,2003(3):1-3.
    [11]杜祥宁.直臂式高空作业车方案设计软件研究与开发[D].大连:大连理工大学,2011.
    [12]蒋红旗,刘玉.高空作业车转台有限元结构分析[J].现代机械,2008(3)49-50+58.
    [13]蒋红旗.高空作业车作业臂有限元结构分析[J].机械研究与应用,2004(6):68-69.
    [14]冯家炳.高空作业车载人作业平台臂架系统优化设计[J].湖南农机,2011(7):47-48.
    [15]高崇金.高空作业车臂架有限元分析及其调平系统设计[D].湖南:中南林业科技大学,2009.
    [16]刘文武.特殊环境用高空作业车的研制[D].黑龙江:哈尔滨工业大学,2011.
    [17]王欣,刘东,陈礼,等.大型高空作业车臂架大变形分析[J].建筑机械,2011(13):92-97+19.
    [18]邵海,冯谦,羊玢,等.采用不同建模方法的高空作业车伸缩臂有限元分析[J].工程机械,2008(9):26-30+6-7.
    [19]李淮,师会超,代宇.高空作业车折臂动力学仿真与有限元分析[J].建筑机械化,2010(2):41-43.
    [20]周贤明.高空作业车调平装置的系统误差及优化设计[J].福建质量管理,2004(1):21-23.
    [21]刘金刚.登高平台消防车变幅机构仿真及分析[D].长春:吉林大学,2011.
    [22]王鑫,滕儒民,高顺德,等.68m登高平台消防车折叠臂变幅机构优化设计[J].起重运输机械,2008(7):55-57.
    [23]何清华,王石林,贺继林.伸缩臂式义装车调平机构铰点位置优化[J].郑州大学学报(工学版),2011(4):38-41.
    [24]车仁炜.套缸式高空作业车摆臂机构机构综合分析[J].哈尔滨工业大学学报,2012(1):94-97.
    [25]郑文广.高空作业车工作斗限重控制系统设计与应用[J].衡器,2007(5):23-25.
    [26]陈维忠,景军,田广军.高空作业车力矩限制器的设计[J].自动化与仪表,1997(6):44-47+62-63.
    [27]中华人民共和国国家标准.GB/T3811-2008起重机设计规范[S]//中华人民共和国国家质量监督检验检疫总局.中国国家标准化管理委员会.2008.
    [28]张璐.基于安全的高空作业车的设计优化及可靠性研究[D].河北:燕山大学,2009.
    [29]舒兴祖.基于状态监测的27米自行直臂式高空作业车故障诊断系统研究与设计[D].陕西:长安大学,2011.
    [30]王欣,宋晓光,滕儒民,等.基于MATLAB高空作业车电液比例调平系统仿真研究[J].机床与液压,2008(4):162-164.
    [31]孙元,虞慧岚,蒋燕,等.高空作业车工业设计研究[J].包装工程,2008(8):179-181+213.
    [32]王硕,李恩,赵晓光,等.伸缩臂高空作业车轨迹跟踪控制方法研究[J].华中科技大学学报(自然科学版),2011(S2):216-219.
    [33]陈华波,周志雄,黄向明,宋铁军.高空作业平台臂架运动仿真分析[J].机械设计与研究,2011(1):22-25+30.
    [34]滕儒民.高空作业车的动力学分析[D].辽宁:大连理工大学,2002.
    [35]王富亮.折叠式高空作业车动力学分析及残留振荡抑制方法研究[D].四川:电子科技大学,2011.
    [36]杜羽寅.高空作业车虚拟样机研究[D].陕西:长安大学,2009.
    [37]殷时蓉,贾永清,尹信贤.基于ADAMS的高空作业车举升臂动力学研究[J].重庆交通大学学报(自然科学版),2011(5):1031-1034+1058.
    [38]谷德君.高空作业车调平装置动力学仿真[D].辽宁:大连理工大学,2008.
    [39]郭大猛,赵丽娟,戴丽,刘杰.混凝土泵车臂架逆运动学模糊求解及仿真[C].第四届中国CAE工程分析技术年会暨2008全国计算机辅助工程(CAE)技术与应用高级研讨会,西安:2008.
    [40]陈景斌,李琦英.重视高空作业车登高平台消防车的稳定性[J].建设机械技术与管理,1997(3):24-26.
    [41]王富亮,熊静琪,刘亚超,等.折叠式高空作业车的稳定性分析[J].工程机械,2011(3):23-28+7.
    [42]刘东.考虑大变形因素的高空作业车倾覆稳定性研究[D].辽宁:大连理工大学,2011.
    [43]吴光荣,江传尚,全剑敏,等.高空作业车工作平台速度处理方法研究[J].机电工程,2010(1):79-81.
    [44]姚志明.高空作业车作业范围和支点反力计算[J].起重运输机械,1984(9):22-27.
    [45]张桓奇.高空作业车工作台空间位置的确定[J].筑路机械与施工机械化,1985(3):10-16+25.
    [46]谢友柏.现代设计理论和方法的研究[J].机械工程学报,2004(4):1-9.
    [47]G. Sohlenius. Concurrent engineering. Annals of the CIRP,1992(41):645-655.
    [48]陈子辰,唐任仲.21世纪制造业面临的挑战和对策[J].机电工程,1998(1):25-30.
    [49]方昀.机械产品快速设计技术[J].计算机辅助设计与制造,1999(5):5-6.
    [50]王志,张进生,于丰业.基于模块化的机械产品快速设计[J].机械设计,2004(21):1-3.
    [51]滕启,王科社,孙江宏.试论快速设计技术与方法[J].北京机械工业学院学报,2000,15(2):15-17.
    [52]陆长明,蒋建东.小型农业作业机产品快速设计方法研究综述[J].农机化研究,2010(10):233-236.
    [53]路甬祥.工程设计的发展趋势和未来[J].中国机械工程,1997(1):1-8.
    [54]顾佩华.设计理论与方法学研究方面的最新进展[J].机械与电子,1998(5):15-19.
    [55]Joseph, B. Mass customization the new frontier in business competition[M]. Boston: Harvard Business School Press,1993.
    [56]王云霞,汤文成.面向大规模定制的产品族设计方法研究综述[J].机械设计,2004(6):1-4.
    [57]周美立.相似学[M].北京:中国科学技术出版社,1993.
    [58]齐元胜.基于设计知识重用的集成产品快速开发技术的理论与实践[D].武汉:武汉理工大学,2003.
    [59]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [60]朱彤.结构动力模型相似问题及结构动力试验技术研究[D].辽宁:大连理工大学,2004.
    [61]林皋.研究拱壩震动的模型相似律[J].水利学报,1958(1):79-104.
    [62]周美立.相似系统论[M].北京:科学技术文献出版社,1994.
    [63]周美立.相似工程学[M].北京:机械工业出版,1998.
    [64]徐挺.相似理论与模型试验.北京:中国农业机械出版社,1982.
    [65]徐挺.相似方法及其应用[M].北京:机械工业出版社,1995.
    [66]左东启.模型试验的理论和方法.北京:水利电力出版社,1984
    [67]邱绪光.实用相似理论[M].北京:北京航空学院出版社,1988.
    [68]袁文忠.相似理论与静力学模型实验[M].成都:西南交通大学出版社,1998.
    [69]彭小智,马凌,周美立.随机系统的相似性及其度量[J].四川理工学院学报,2011(24):261-263.
    [70]朱洪涛,李东阳.基于相似性理论的弹药相似性分析[J].科学技术与工程,2007(7):381-383.
    [71]郑长允,赵鹏远.水下爆炸冲击波载荷中相似理论的重要应用价值[J].价值工程,2012(25):295-296.
    [72]孙大鹏,程素秋,王雪松.基于相似理论的舰船结构模型爆炸试验[J].爆破,2012(29):91-94.
    [73]赵康,罗嗣海,石亮.强夯模型试验及其研究进展[J].人民黄河,2012(34):131-134.
    [74]李云,李君.溃坝模型试验研究综述[J].水科学进展,2009(20):304-310.
    [75]王路飞,谷波,于婷.基于相似理论的风机性能快速计算模型[J].流体机械,2012(40):24-28.
    [76]吴春平,刘连生,窦金龙,张光权.爆破飞石预测公式的量纲分析法[J].工程爆破,2012(18):26-28.
    [77]袁杰,谷任国,房营光,冯伟喜.核电站常规岛地下挡士墙土压力模型试验研究[J].岩石力学与工程学报,2012(31):3371-3376.
    [78]赖江丰.复杂机械产品系统自相似性分析方法及其应用[D].安徽:合肥工业大学,2007.
    [79]胡冬奎,王平.相似理论及其在机械工程中的应用[J].现代制造工程,2009(11):9-12.
    [80]沈敏德,林瑞兴.模块化设计技术及相似性理论在大麦分级筛设计中的应用[J].机械设计,1995(9):44-45.
    [81]张氢,卢耀祖,石来德.起重机模型试验的相似性分析[J].起重运输机械,2000(12):27-29.
    [82]孙靖民.现代设计方法[M].黑龙江:哈尔滨工业大学出版社,2003.
    [83]杨正宇.基于相似单元置换的机械产品系统集成设计方法研究[D].安徽:合肥工业大学,2003.
    [84]梁福军,宁汝新.可重构制造系统中基于相似性理论的虚拟制造单元生成方法[J].计算机集成制造系统,2004(11):1370-1376.
    [85]周小青.基于机械资源库的零部件相似性的研究[D].江苏:江苏大学,2005.
    [86]徐志山.面向机械产品系统相似度量的特征值获取方法及其应用[D].安徽:合肥工业大学,2008.
    [87]陈传魁.机械产品相似性度量方法及其软件实现研究[D].安徽:合肥工业大学,2008.
    [88]王金诺,于兰峰.起重运输机金属结构[M].北京:中国铁道出版社,2002.
    [89]蒋和洋,唐立民.非线性有限元的若干基本问题[J].力学进展,1988(1):12-26.
    [90]龚晓南,王德荣.非线性有限元[J].力学进展,1980(21):27-55.
    [91]Stricklin, J. A., von Riesemann, W. A., Tillerson, J. R. and Haisler, W. E. Advances in Computational Methods in Structural Mechanics and Design, UAH Press,1972: 301-324.
    [92]Feilippa, C. A. and Sharifi, P. Numerical Solution of Nonlinear Structural Problems,1973:31-50.
    [93]Shaw, F. S. Relaxation Methods, Dover Pubs, New York,1953.
    [94]Turner, J.L., Clough, R. W., Martin, H. C. and Topp, L. J. Stiffness and Deflection Analysis of Complex Structures[J]. Journal of the Aeronautical Sciences,1956(23):805-825.
    [95]Marcal, P. V., Finite Element Analysis of Combined Problems of Nonlinear Material and Geometrical Behavior, Brown Univ., Providence, Rhode Island.
    [96]Turner, M. J., Dill, E. H., Martin, H. C. and Melosh, r. J. (1960), J. A. S.,27, 2:97-106.
    [97]Argyris, J. H., Kelsey, S. and Kamel, Matrix Methods of Structural Analysis, AGARD ograph, H. (1964), no.72:105-120.
    [98]Kapur, K. K., Hartz, J. Eng. Mech. Div., ASCE, B. J. (1966),92, EM2:177-195.
    [99]Gallagher, R. H., Gellatly, R. A, Padlog, J. and Mallett, R. H. (1967), AIAA J.,5, 1:138-144.
    [100]Bathe KJ. Finite Element Procedures. Englewood Cliffs Prentice Hall,1996.
    [101]丁皓江,何福保,谢贻权,等.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1989.
    [102]何峰,董松林.我国消防车的现状及发展方向[J].消防技术与产品信息,2003(11):70:72.
    [103]朱苛娄.高空作业车运动学仿真与控制[D].大连:大连理工大学,2011.
    [104]郭彤颖,曲道奎.一种基于遗传算法的机器人加工路径规划方法[J].华中科技大学报,2004(32):123-125.
    [105]Lianfang Tian, Curtis Collins. An effective robot trajectory Planning method using a genetic algorithm[J]. Mechatronics,2004(14):455-470.
    [106]靳保,付宜利,王树国.未知环境下机器人实时模糊路径规划方法[J].哈尔滨工业大学学报,2005(10):1315-1399.
    [107]杨国军,崔平远.机械手时间最优轨迹规划方法研究[J].中国机械工程,2002(20):1715-1717.
    [108]Simon X.Yang, Max Meng. An efficient neural network method for real-time motion planning with safety consideration[J]. Robotics and Autonomous System,2000(32):115-128.
    [109]邹继刚,曾昭龙,张锐.机械手时间一能量综合最优轨迹规划[J].应用科学学报,2002(4):346-349.
    [110]A. Gasparetto, V Zanotto. A new method for smooth trajectory planning of robot manipulators[J]. Mechanism and Machine Theory,2007(42):455-71.
    [111]A. PIAZZI, A. VISIOLI. Global minimum jerk trajectory planning of robot manipulators[J].IEEE Transaction on Industrial Electronics,2000,47(1):140-149.
    [112]TAN Guanzheng, Wang Yuechao. Theoretical and experimental research on time-optimal trajectory Planning and control of industrial robots[J]. Chinese Journal of Control Theory & Applications,2003(2):185-192.
    [113]倪受东,袁祖强,文巨峰.冗余度机器人机构学研究现状[J].南京工业大学学,2002(24):107-110.
    [114]Whitney D E. Resolved motion rate control of manipulator and human prostheses[J]. IEEE Trans. Man-machine systems,1969(10):47-53.
    [115]Liegeois A. Automatic supervisory control of the configuration and behavior of multibody mechanisms [J]. IEEE Transactions on Systems, Man and Cybernetics. 1977(12):868-871.
    [116]Avoiding obstacles and resolving kinematic redundancy[C]. Proc. Of IEEE Inter. Conf. on Robotics and Automation,1986:1684-1704.
    [117]HUANG Lei-guang, LI Yaotong. Repeatable kinematic control of redundant manipulators:Implementation is-sues[C]//International Conference on Advanced Robotics, Proceedings, [S.L.]:ICAR,1997:147-152
    [118]Dubey R V, Euler J A, Babcock S M. An efficient gradient optimization scheme for a seven-degree-of-freedom redundant robot with spherical wrist[C].
    [119]吉爱国,冯汝鹏等.用分离空间法进行冗余度机器人的最优轨迹规划[J].哈尔滨工业大学学报,1996(5):86-90.
    [120]Zghal H, Dubey R V, Euler J A. Efficient Gradient Projesction Optimization for Manipulators with Multiple Degrees of Redundancy[C]. Proc. Of IEEE Inter. Conf. on Robotics and Automation,1989:277-282.
    [121]祖迪,吴镇炜,谈大龙.一种冗余机器人逆运动学求解的有效方法[J].机械工程学报.2005,41(6):71-75.
    [122]Nakamura Y, Hanafusa H. Optimal redundancy control of robots manipulators[J]. Inter. Jnl. Of Robotics Research,1987,6(1):32-41.
    [123]Burdick J W. On the inverse kinematic of redundant manipulators:Characterization of the self-motion manifolds[C]. Proc. Of IEEE Inter. Conf. on Robotics and Automation,1989:264-270.
    [124]Agrawal O P, XU Y. On the global optimum path planning for redundant manipulators [J]. IEEE Trans. On Systems, Man and Cybernetics,1994(9):1306-1316.
    [125]谈庆明.量纲分析[M].合肥:中国科学技术大学出版社,2005.
    [126]李光之.相似与模化[M].北京:国防工业出版社,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700