新型2D阀用电—机械转换器及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,利用液压伺服螺旋机构原理工作的2D阀因具有结构简单、响应速度快、精度高和抗污染能力强等优点,而在金属材料试验机、地震模拟震动台以及相关航空航天领域得到了广泛应用。现有2D阀用电-机械转换器为商用混合式步进电机,其本身是作为电机伺服控制系统中的控制兼驱动电机而诞生,并非专门面向阀用的电-机械转换器,因而具有结构较为固定单一、转动惯量大、动态响应受限制、不具备湿式耐高压能力等缺点,严重妨碍了2D阀的应用扩展和结构创新。电-机械转换器作为2D阀的核心部件,是连接电信号与机械动作之间的桥梁,其性能对2D阀的整体性能起着决定性的影响作用。研制高性能的新型电-机械转换器以提升2D阀的性能并拓宽应用场合,是其能否进一步得到发展的关键所在。本文对2D阀用电-机械转换器的新结构及其应用展开研究,具有重要的理论意义和工程实用背景。本文的主要研究内容和成果如下:
     1.对现有2D阀用电-机械转换器商用混合式步进电机作了深入分析,指出其具有部分输出力矩损失、功率重量比低、转动惯量大、本体结构和驱动电路较为复杂以及不具备湿式耐高压能力等缺陷。
     2.提出了低惯量旋转电磁铁和耐高压旋转电磁铁两种2D阀用电-机械转换器的新结构,结合电磁场有限元模拟分析了其工作原理,验证了方案的正确性;对以定子轴向分相来构成电-机械转换器的方式作了深入研究,从耐高压旋转电磁铁引申出了单相旋转电磁铁、双相直动电磁铁和单相直动电磁铁的新方案。
     3.制作了50齿和18齿两种不同转子齿数的低惯量旋转电磁铁样机,采用磁路解析、有限元模拟和实验研究的手段对其性能进行了研究。50齿和18齿样机的矩角特性均呈正弦波形,在3.5A电流下的最大静力矩分别达到约0.09N-m和0.082N·m,在-3dB下的幅频宽分别约为220Hz和125Hz,在-90。时的相频宽分别约为220Hz和130Hz,阶跃响应上升时间分别约为5.6ms和5.5ms,实验结果和仿真结果基本一致,表明该类型电磁铁具有优异的静动态特性,适用于对动态特性要求较高的应用场合。对比两种样机的实验结果也可以看出,定转子双凸齿类型的电磁铁各项静动态特性随着定转子齿数增加而提升,通过调节齿数,可以得到分别适用于电液伺服阀和比例阀等不同应用场合的电-机械转换元件。
     4.制作了转子15齿的耐高压旋转电磁铁样机,采用磁路解析、有限元模拟和实验研究的手段对其性能进行了研究。实验结果表明电磁铁的矩角特性呈正弦波形,3.5A电流下的最大静力矩达到约0.19N·m,-3dB下的幅频宽约为113Hz,-90°时的相频宽约为65Hz,阶跃响应的上升时间约为18ms,除齿槽力矩稍有误差外,其余实验结果和仿真结果基本一致,表明电磁铁具有较好的静动态特性,适合作为具有湿式耐高压要求的电-机械转换器。
     5.针对原有液压伺服螺旋机构不能同时兼顾零位泄漏和动态响应的缺陷,提出了一种新型“槽对槽”先导级的液压伺服螺旋机构方案,建立了数学模型并推导了传递函数,对动态特性进行了模拟,其仿真幅频宽达到了约280Hz/-3dB,阶跃响应的上升时间约为4.4ms,表明即使在先导级零遮盖的情况下,该新型液压伺服螺旋机构依然具有非常好的动态特性。
     6.作为耐高压旋转电磁铁的应用实施例,提出了非直驱式2D阀的结构方案,阀体部分采用“槽对槽”型液压伺服螺旋机构,设计并加工了非直驱式2D阀的实验样机,搭建了实验台架并实测了样阀的主要静动态特性,在系统压力20MPa下样阀的零位泄漏约为5.4L/min,额定流量约为100L/min,-3dB下的幅频宽约为17Hz,-90°时的相频宽约为10Hz,阶跃响应的上升时间约为46ms,稳态误差基本为零。
In recent years2D valve based the principle of hydraulic servo screw mechanism has been widely used in the metal material tester, earthquake simulator and areas of aeronautics and astronautics since it has advantages of simple structure, fast dynamic response, high accuracy and excellent anti-pollution capability. The electro-mechanical converter for2D valve is commercial hybrid stepping motor, which was not specially developed for valve electro-mechanical converter but for control and driving motor of electro-mechanical servo system. Therefore it has shortcomings of inflexible structure, large rotating inertia, limited dynamic response and deficiency of high pressure resistance, which heavily influence the application extension and structure innovation of2D valve. As a crucial component of2D valve, electro-mechanical converter functions as the bridge between electrical signal and mechanical movement, and it has a decisive influence on the overall performance of2D valve. The aim of developing novel electro-mechanical converter is to improve performance of2D valve and extend its application area, which also acts as the key of whether2D valve can be further developed or not. The research to novel electro-mechanical converter structure has both theoretical significance and engineering practical background. The main research content and achievements in this dissertation are listed as follows:
     1. The disadvantages of commercial hybrid stepping motor are deeply analyzed and main defects such as output torque loss, low power weight ratio, large rotating inertia, complicated structure and driving circuit and deficiency of high pressure resistance are pointed out.
     2. Two novel structures of electro-mechanical converter for2D valve, i.e. rotary electromagnet with low inertia and rotary electromagnet with high pressure resistance are proposed. The working principles are analyzed and correctness of schemes are validated both by finite element analysis. The method of constituting electro-mechanical converter based on approach of stator axial phase separation is deeply researched and another three new structures, i.e., rotary electromagnet with single phase, direct-acting electromagnet with single phase and direct-acting electromagnet with double phases are deduced from the scheme of rotary electromagnet with high pressure resistance.
     3. Two prototypes of rotary electromagnet with low inertia with different rotor tooth numbers are manufactured. The performance of electromagnets are studied by using approaches of magnetic circuit analytical method, finite element simulation and experimental study. Experimental results illustrate that torque-angle characteristics of electromagnets with rotor teeth number of50and18are both sinusoidal waveform, whose maximum static torque under current of3.5A reach about0.09N·m and0.082N·m, respectively. And the amplitude frequency widths with-3dB are about220Hz and125Hz, respectively. The phase frequency widths with-90°are about220Hz and130Hz, respectively. The rise times of step response are about5.6ms and5.5ms, respectively. The experimental results are in good accordance with simulated results. It can be concluded that the electromagnets have both excellent static and dynamic characteristics, which is suitable for applications where high dynamic response is perferred. Besides, from comparison of two prototypes with different rotor tooth number it can be found that the main static and dynamic characteristics of electromagnet with double salient structure on both stator and rotor can be further improved by increasing tooth number. Therefore different electromagnets can be obtained by adjusting tooth number which is suitable for different applications such as electrohydraulic servo valve, proportional valve and etc., respectively.
     4. The prototype of rotary electromagnet with high pressure resistance is manufactured. The performance of electromagnet is studied by using approaches of magnetic circuit analytical method, finite element simulation and experimental study. Experimental results illustrate that torque-angle characteristic of electromagnet with rotor teeth number of15is sinusoidal waveform, whose maximum static torque under current of3.5A reaches about0.19N·m. The amplitude frequency width with-3dB and phase frequency widths with-90°are about113Hz and65Hz, respectively. The rise time of step response is about18ms. The experimental results are in good accordance with simulated results except for slight deviation of cogging torque. It can be concluded that the electromagnet has both good static and dynamic characteristics, which can be used as electro-mechanical converter where high pressure resistance is preferred.
     5. In order to solve the problem that traditional hydraulic servo screw mechanism can not have both low leakage of pilot stage and fast dynamic response, a novel hydraulic servo screw mechanism that has "groove to groove" pilot stage is proposed in this paper. The mathematical model is established and transfer function is derived. Its dynamic characteristics are simulated and results show that the simulated amplitude frequency width reaches about280Hz/-3dB and rise time for step response is about4.4ms, which demonstrates that the novel hydraulic servo screw mechanism has excellent dynamic response even with zero lap of pilot stage.
     6. In order to act as an application example of rotary electromagnet with high pressure resistance, structures of non-direct driving2D valve is put forward, which are based on hydraulic servo screw mechanism that has "groove to groove" pilot stage. The prototype is designed and manufactured. The test rig is built and main static and dynamic characteristics are measured. Results show that with system pressure of20MPa the zero position leakage and rated flow of prototype are about5.4L/min and100L/min, respectively; the amplitude frequency width with-3dB and phase frequency widths with-90°are about17Hz and10Hz, respectively. The rise time of step response is about46ms with almost zero steady error.
引文
[1]Maskrey R H, Thayer W J. A brief history of electrohydraulic servomechanism [J]. ASME Journal of Dynamic Systems Measurement and Control,1978(6):1-7.
    [2]田源道.电液伺服阀技术[M].北京:航空工业出版社,2008.
    [3]Blackburn J F, Reethof G, Shearer J L. Fluid Power Control [M]. New York:Technology Press of MIT and John Wiley&sons,1960.
    [4]Merritt H E(美国),陈燕庆译.液压控制系统[M].北京:科学出版社,1976.
    [5]李洪人.液压控制系统[M].北京:国防工业出版社,1981.
    [6]Moog R C. Electrohydraulic servo valve [P]. US Patent:US2767689,1956-10-23.
    [7]Tinsley, Two stage valve [P]. English Patent:620688,1946-05.
    [8]卢长耿,李金良.液压控制系统的分析与设计[M].北京:煤炭工业出版社,1991.
    [9]Viersma T J. Analysis, Synthesis and Design of Hydraulic Servosystems and Pipelines [M]. Amsterdam:Elservier Scientific Publishing Company,1980.
    [10]朱盘生MOOG(穆格)DDV伺服阀[J].液压与气动,1996(5):20-21.
    [11]尚增温,孙虹.高频电液伺服系统的发展趋势与新的应用领域[J].液压与气动.2001(6):4-5.
    [12]阮健,李胜,杨继隆.液压及气动阀直接数字控制的新途径[J].中国机械工程,2000,11(3):317-320.
    [13]Murrenhoff H. Trends in valve development [J]. Olhydraulik und Pneumatik,2003(46):1-36.
    [14]陈彬,易孟林.电液伺服阀的研究现状和发展趋势[J].液压与气动,2005(6):5-8.
    [15]方群,黄增.电液伺服阀的发展历史、研究现状及发展趋势[J].机床与液压,2007(11):162-164.
    [16]雷天觉.新编液压工程手册[M].北京:北京理工大学出版社,1998.
    [17]成大先.机械设计手册单行本:液压控制[M],第五版.北京:化学工业出版社,2010.
    [18]黄增,候保国,方群等.射流管式与喷嘴挡板式电液伺服阀之比较[J].流体传动与控制,2007(7):43-45.
    [19]顾瑞龙,张慧慧.改善高频电液伺服阀力矩马达的试验研究[J].液压与气动,1984(3):5-8.
    [20]李松晶,鲍文.磁流体对伺服阀力矩马达动态特性的影响[J].机械工程学报,2008,44(12):137-142.
    [21]赵斌.基于MATLAB的力矩马达的非线性数学建模[J].煤矿机械,2010,31(7):45-46.
    [22]周淼磊,杨志刚,田彦涛等.压电型喷嘴挡板阀及其控制方法研究[J].光学精密工程,2007,3(15):372-377.
    [23]王传礼,丁凡,方平.基于超磁致伸缩转换器喷嘴挡板阀的控制压力特性[J].机械工程学报,2005,41(5):127-131.
    [24]Wang C L, Ding F, Zhang Y S, et al. Giant magnetostrictive actuator in servo valve and micro pipe robot [J]. Chinese Journal of Mechanical Engineering,2005,18(1):10-13.
    [25]上海七0四研究所衡拓实业发展有限公司伺服阀部,射流管电液伺服阀专题讲座[J].液压与气动,2009(10):91-92.
    [26]Atchley R D, ATCHLEY [P]. US Patent:US2884907,1959-05-05.
    [27]阎耀保.射流管伺服阀欧美专利分析[J].液压气动与密封,2012,32(2):68-73.
    [28]Moog R C. Moving coil electrohydraulic valve [P]. US Patent:US3410308,1968-11-12.
    [29]Nascutiu L. Voice coil actuator for hydraulic servo valves with high transient performances [A]. Proceedings of IEEE international conference on automation, quality and testing, robotics [C]. Cluj-Napoca IEEE,2006,185-190.
    [30]Morgan J M, Milligan W W. A 1kHz servohydraulic fatigue testing system [A]. Proceedings of the conference on high cycle fatigue of structural materials[C]. Warrendale PA:The Minerals, Metals & Materials Society,1997,305-312.
    [31]Ichiryu K, Watanabe H, Yamaguchi T, Direct acting servo valve [P]. US Patent:US4544129, 1985-10-01.
    [32]黄增,金瑶兰,李博.伺服比例阀的发展[J].液压与气动,2009(1):76-79
    [33]Marco D A. Linear-force motors enhance proportional valves [J]. Hydraulic and Pneumatics, 1998(6):14-15.
    [34]中国运载火箭技术研究院第十八研究所产品手册[Z].
    [35]姚建庚.直动式电液伺服阀的开发和应用[J].液压气动与密封,2004(2):6-10.
    [36]路甬祥,胡大纮.电液比例控制技术[M].北京:机械工业出版社,1988.
    [37]Burrows C R. Some challenges facing fluid power technology, opportunities for international collaboration and progress to date [A]. Proceedings of the 5th JFPS international symposium on fluid power[C]. Tokyo:The Japan Fluid Power System Society,2002,107-112.
    [38]Lu Y X, Entwicklung vorgestenerter proportional ventile mit 2-weg—einbauventile als stellglied und mit gerateinterner rnuokfuhrnng[D]. Aachen:Aachen TH,1981.
    [39]Knutson D. Electrohydraulic proportional valve [P]. US Patent:US4290447,1981-09-22.
    [40]Donald A S, Alden N Y. Proportional valve [P]. US Patent:US3599675,1971-08-07.
    [41]Gerald C A, Oconsmowoc, Kenneth F F, et al. Three-way proportional valve [P]. US Patent: US4569273,1986-02-11.
    [42]吴根茂,邱敏秀,王庆丰等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [43]黎啟柏.电液比例控制与数字控制系统[M].北京:机械工业出版社,1997.
    [44]张弓,于兰英,吴文海等.电液比例阀的研究综述及发展趋势[J].流体机械,2008(8):32-37.
    [45]广州机床研究所液压室.国外电液比例阀的概况[J].机床与液压,1975(2):64-76.
    [46]路甬祥,胡大纮,郁凯元.新原理比例溢流阀基型阀的开发[J].浙江大学学报,1985,19(1):32-43.
    [47]胡燕平,谌铎文,毛征宇.π桥电液比例溢流阀负载特性[J].机械工程学报,2007,43(11):206-211.
    [48]Cristofori D, Vacca A. The modeling of electrohydraulic proportional valves [J]. Journal of Dynamic Systems, Measurement, and Control,2012,134(2):1-13.
    [49]Elmer K F, Gentle C R. A parsimonious model for the proportional control valve [J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2001, 215(11):1357-1363.
    [50]Eryilmaz B, Wilson B H. Unified modeling and analysis of a proportional valve [J]. Journal of the Franklin Institute,2006,343(1):46-48.
    [51]Amirante R, Moscatelli P G, Catalano L A. Evaluation of the flow forces on a direct (single stage) proportional valve by means of a computational fluid dynamic analysis [J]. Energy Conversion and Management,2007,48(3):942-953.
    [52]李壮云,贺小峰,万会雄等.液压元件与系统[M],第三版.北京:机械工业出版社,2011.
    [53]郭宏广,冯开林.工程机械电液比例阀的特点及其应用研究[J].工程机械,2003,(5):40-42.
    [54]姚新.船用力反馈两级电液比例阀的设计研究[J].机床与液压,2004,(9):104-105.
    [55]Lu Y X. Betriebeverhalter vorgesteuerter 2-wege — stromregeventile under schiedlicher Bauform[J]. International Journal of Fluid Power.1981,125(9):703-708.
    [56]Wu G M, Research on static and dynamic performance of 2 way proportional throttle valve with displacement force feedback [A].1st International Conference on Fluid Power Transmission and Control[C]. Hangzhou:Zhejiang University,1985,273-290.
    [57]Andersson B. On the valvistor a proportionally controlled seat valve [D]. Linkoping:Linkoping University,1984.
    [58]Quan L, Xu X Q, Yan Z, et al. A new kind of pilot controlled proportional direction valve with internal flow feedback [J]. Chinese Journal of Mechanical Engineering,2010,23(1):60-65.
    [59]阮健.电液直接数字控制[M].杭州:浙江大学出版社,2000.
    [60]田中裕久(日本)著,阳正锡等译.液压与气动的数字控制及应用[M].重庆:重庆大学出版社,1992.
    [61]Hesse H, Moller H. Pulsdauermodulierte Steuerung von Magnetventilen [J]. Olhydraulik und Pneumatik,1972(11):231-237.
    [62]Robert B V, Gary M B. Accurate position control of a pneumatic actuator using on/off solenoid valves [J]. IEEE/ASME Transactions on Mechatronics.1997,2(3):195-204.
    [63]Arm K, Yokota S. Intelligent switching control of pneumatic actuator using on/off solenoid valves [J]. Mechatronics,2005,15(6):683-702.
    [64]郭宗仪(美国)著,王宗培等译.步进电动机及其控制系统[M].哈尔滨:哈尔滨工业大学出版社,1984.
    [65]王东,周棣,首天成.数字液压阀的发展与研究[J].流体传动与控制,2008(2):18-21.
    [66]张秀英,王晓华.数字阀的开发与应用[J].液压与气动,2001(3):32-33.
    [67]陈惠民,黄新华,刘天民.直接式数字阀的开发研究[J].机床与液压,1987(2):1-5.
    [68]Ruan J.Burton R,Ukrainetz P, et al. Two-dimensional pressure control valve[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2001, 215(9):1031-1039.
    [69]Ruan J, Li S, Pei X.2D digital simplified flow valve[J]. Chinese Journal of Mechenical Engineering,2004,17(2):311-314.
    [70]赵晓燕,张胜昌,许仰曾.数字阀的优化设计研究[J].机床与液压,2004(10):66-67.
    [71]郜立焕,赵成,赵才.步进式液压数字阀用永磁式步进电动机的非线性控制[J],兰州理工大学学报,2004,30(2):63-66.
    [72]徐霖,于今,宴涛等.数字阀控变量变压叶片泵的研究[J].机床与液压,1996(1):3-8.
    [73]贾鹏光,柯坚,胡捷.压力补偿位移式数字阀及其系统的实验研究[J].机床与液压,1990(1):80-83.
    [74]柯坚,刘利东.位移式数字阀在双缸同步系统中的误差分析[J].液压气动与密封,1990(2):8-10.
    [75]贾鹏光,柯坚,胡捷.数字阀用于材料试验机进行恒速控制的实验研究[J].机械,1990(1):17-19.
    [76]骆涵秀.机电控制[M].杭州:浙江大学出版社,1994.
    [77]阮健,裴翔,李胜.2D数字换向阀[J].机械工程学报,2000,36(3):65-68.
    [78]Ruan J, Burton R, Ukrainetz P. An investigation into the characteristic of a two dimensional 2D flow control valve [J]. Journal of Dynamic Systems Measurement and Control,2002,124(1): 214-220.
    [79]Burton R, Ruan J, Ukrainetz P. Analysis of electromagnetic nonlinearities in stage control of a stepper motor and spool valve [J]. Journal of Dynamic Systems Measurement and Control,2003, 125(3):405-412.
    [80]阮健,李胜,裴翔等.数字阀的分级控制及非线性[J].机械工程学报,2005,41(11):91-97.
    [81]李其朋.直动式电液伺服阀关键技术的研究[D].杭州:浙江大学,2005.
    [82]崔剑.回转直动式电液伺服阀关键技术研究[D].杭州:浙江大学,2008.
    [83]李勇.低功耗比例电-机械转换器关键技术研究[D].杭州:浙江大学,2009.
    [84]满军.耐高压高速开关电-机械转换器关键技术研究[D].杭州:浙江大学,2011.
    [85]江竹,于兰英,柯坚.超高速比例阀用电磁铁的研究与开发[J].机械设计与制造,2005(5):1-3.
    [86]孙瑞辉,刘劲军,赵飞新等.新型比例电磁铁轴向力特性研究[J].流体传动与控制,2010(5):6-9.
    [87]张弓,于兰英,柯坚.高频动圈式电-机械转换器[J].电机与控制学报,2007,11(3):298-302.
    [88]李勇,丁凡,满军等.线性力马达低功耗设计方案研究[J].兵工学报,2009,30(6):803-807.
    [89]Fang P, Ding F, Li Q P. Novel hi-response electromagnetic actuator for electronic engraving system [J]. IEEE Transactions on Magnetics,2005,42(3):460-464.
    [90]Shinichi Y, Kazuhiro Y, Kenichi B, et al. A small-size proportional valve using a shape-memory-alloy array actuator[J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B.1996,62 (593):224-229.
    [91]Bang Y B, Lee K I, Joo C S, et al. Two-stage electrohydraulic servovalve using stack-type piezoelectric elements[J]. Proceedings of the Institution of Mechanical Engineers:Part C. Journal of Mechanical Engineering Science,2004,218(1):53-65.
    [92]沈传亮,程光明,杨志刚等.新型直动式压电伺服阀[J].机械工程学报,2004,40(9):125-128.
    [93]陆豪,朱成林,曾思等.新型PZT元件驱动的电液高速开关阀及其大功率快速驱动技术的研究[J].机械工程学报,2002,38(8):118-121.
    [95]Goodfriend M, Sewell J, Jones C. Application of a magnetostrictive alloy, Terfenol-D to direct control of hydraulic valves [A]. International Off-Highway & Powerplant Congress & Exposition[C]. Milwaukee:Society of Automotive Engineers,1990:10-13.
    [96]Takahiro U, Takahiro S. Development of a direct-drive servo valve using a giant mgnetostrictive material [J]. Transactions of the Japan Society of Mechanical Engineers, Part C,1993,59(563): 146-149.
    [97]夏春林.超磁致伸缩电-机械转换器及其在流体伺服元件中的应用基础研究[D].杭州:浙江大学,1998.
    [98]朱玉川,李跃松.超磁致伸缩执行器驱动的新型射流伺服阀[J].压电与声光,2010,32(4):574-577.
    [99]张冠生,陆俭国主编.电磁铁与自动电磁元件[M].北京:机械工业出版社,1982.
    [100]Brauer R J. Magnetic Actuators and Sensors [M]. New Jersey:Wiley-IEEE Press,2006.
    [101]费鸿俊,张冠生.电磁机构动态分析与设计[M].北京:机械工业出版社,1993.
    [102]Takashi K, Akira S. Stepping Motors and Their Microprocessor Controls [M],2nd edition. New York:Oxford University Press,1994.
    [103]Acarnely P. Stepping Motors:A Guide to Theory and Practice [M],4th edition. London:Institution of Electrical Engineers,2002.
    [104]哈工大,成都电机厂.步进电动机[M].北京:科学出版社,1979.
    [105]坂本正文(日本)著,王自强译.步进电动机应用技术[M].北京:科学出版社,2010.
    [106]陈理壁.步进电动机及其应用[M].上海:上海科学技术出版社,1985.
    [107]李忠杰,宁守信.步进电动机应用技术[M].北京:机械工业出版社,1988.
    [108]陈愈,沈关耿,黄人豪等.液压阀[M].北京:中国铁道工业出版社,1982.
    [109]陈世元.电机学[M].北京:中国电力出版社,2008.
    [110]程明.微特电机及系统[M].北京:中国电力出版社,2008.
    [111]王宝龄.电磁电器设计基础[M].北京:国防工业出版社,1989.
    [112]孙玉魁.金属软磁材料及其应用[M].北京:冶金工业出版社,1986.
    [113]陈国钧,李茂昌,周元龙.金属软磁材料及其热处理[M].北京:机械工业出版社,1986.
    [114]张子忠,王铁成.微电机结构工艺学[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [115]严密,彭晓领.磁学基础与磁性材料[M].杭州:浙江大学出版社,2001.
    [116]Campbell P. Permanent Magnet Materials and Their Application [M]. reprint edition. Cambridge: Cambridge University Press,1996.
    [117]田民波.磁性材料[M].北京:清华大学出版社,2001.
    [118]严加根,刘闯,姚国飞等.开关磁阻电机矩角特性的研究与应用[J].电工技术学报,2005,20(9):29-33.
    [119]邹继斌,李巍,李勇.爪极式单向永磁步进电机特性的数值计算与分析[J].电工技术学报,2007,22(10):1-5.
    [120]Ishikawa T, Takakusagi R. Static torque characteristics of permanent magnet type stepping motor with claw poles [J]. IEEE Transactions on Magnetics,2000,36(4):1854-1857.
    [121]Lim K-C, Hong J-P, Kim G-T, et al. Characteristic analysis of 5-phase hybrid stepping motor considering the saturation effect [J]. IEEE Transactions on Magnetics,2001,37(5):3518-3521.
    [122]刘宝延,程树康.步进电动机及其驱动控制系统[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [123]符果行.电磁场与电磁波基础教程[M].北京:电子工业出版社,2009.
    [124]倪光正,杨仕友,钱秀英等.工程电磁场数值计算[M].北京:机械工业出版社,2006.
    [125]盛剑霓.工程电磁场数值分析[M].西安:西安交通大学出版社,1991.
    [126]赵韩,田杰.磁力机械学[M].北京:高等教育出版社,2009.
    [127]赵博,张洪亮Ansoft 12在工程电磁场中的应用[M].北京:中国水利水电出版社,2010.
    [128]唐任远.现代永磁电机:理论与设计[M].北京:机械工业出版社,1997.
    [129]王宗培,姚宏.步进电动机计算和设计方法的研究[M].南京:东南大学出版社,1994.
    [130]姚宏.步进电机优化设计的研究[D].哈尔滨:哈尔滨工业大学,1990.
    [131]董怀.混合式步进电机齿层比磁导动态分析理论的研究[D].哈尔滨:哈尔滨工业大学,1994.
    [132]Jung D-S, Lim S-B, Kim K-C, et al. Optimization for improving static torque characteristic in permanent magnet stepping motor with claw poles [J]. IEEE Transactions on Magnetics,2007, 43(4):1577-1580.
    [133]周尊成,余世杰.饱和时步进电机电磁力矩的计算[J].合肥工业大学学报,1982(2):19-39.
    [134]Rajagopal K R, Singh B, Singh B P. Optimal tooth-geometry for specific performance requirements of a hybrid stepper motor [J]. IEEE Transactions on Magnetics,2003,39(5): 3010-3012.
    [135]李兴根,王宗培.步进电动机的齿层比转矩和齿形优化[J].电工技术学报,1991(2):26-31.
    [136]李文生.气隙大小对混合式步进电机转矩的影响[J].通信电源技术,2006,23(4):36-37,43.
    [137]周尊成,余世杰.齿形对反应式步进电动机矩角特性的影响[J].微电机,1982(2):20-24.
    [138]Lim S-B, Jung D-S, Kim K-C, et al. Characteristic analysis of permanent-magnet-type stepping motor with claw poles by using 3 dimensional finite element method [J]. IEEE Transactions on Magnetics,2007,43(6):2519-2521.
    [139]侯胜伟,王淑红,何冲等.基于Maxwell 3D二相混合式步进电机静态性能研究[J].微电机,2012(9):53-56.
    [140]Kawase Y, Suwa K.3-D dynamic transient analysis stepping motor for wristwatch by finite element method [J]. IEEE Transactions on Magnetics,1998,34(5):3130-3133.
    [141]Jang K-B, Lim S-Y, Lim T-B, et al.2-D FE analysis of hybrid stepping motor using virtual magnetic barrier [J]. EEE Transactions on Magnetics,2003,39(5):3268-3270.
    [142]李胜.2D伺服阀数字控制的关键技术的研究[M].杭州:浙江工业大学,2011.
    [143]阮健,李胜.步进电机电-机械转换器的闭环连续跟踪控制方法[P].中国:ZL201010158857.8,2010-04-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700