连续与间歇过程的质量交换网络综合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质量交换网络,包括吸收、解吸,萃取与离子交换等生产过程,是过程系统工程中一个重要的研究分支。典型的质量交换网络,即对于含有可回收或者有害组分的富流股,通过与能够接受这些组分的过程贫流股或者外加质量分离剂进行逆流操作实现质量传递。质量交换网络的综合课题的研究,不仅可以提高产品纯度和物料利用率从而来增加企业的经济效益,而且还可以减少污染物的排放来达到良好的环保效益。
     本研究旨在构建起一套系统化的研究方法来同时优化连续过程以及间歇过程中的质量交换网络的操作费用和设备投资费用。总体而言,本研究基于状态空间超级结构拓扑出系统所有可行的结构,然后在该超级结构基础之上以年度化总费用为目标函数建立起质量交换网络的混合整数非线性规划模型。此外,针对所建立的非凸的混合整数非线性规划模型还提出了随机型算法与确定型算法相结合的求解策略,同时增强了求解质量和效率。研究主要内容为:
     (1)首先从热力学角度分析了连续质量交换网络综合的特点及研究难点,并利用状态空间超级结构的基本框架深入探讨了流股在整个浓度区间的非等浓度混合以及非同源流股的混合分配机制。然后依托该结构建立起质量交换网络的混合整数非线性规划模型,来对系统网络的年度化总费用(TAC)进行优化求解,统筹权衡了操作费用和设备投资费用。
     (2)为了更好地挖掘过程流股循环回用的可能性,从而达到提高物料利用率并减少废物排放量的目的,本论文还对质量交换的初级网络与再生网络进行了同时优化。并且通过引入能量分离剂ESAs,本研究进一步研究了传统质量交换网络与利用ESAs的精馏系统的同时优化问题。通过与文献的比较,本论文所提出的优化策略均可有效地降低网络费用,同时减少新鲜物料的使用和废物的排放。
     (3)近年来,间歇过程由于特别适宜小批量、高附加值的精细化工产品的生产而受到越来越多的重视。间歇生产会产生一系列随着时间推进而不断变化的贫、富流股,它们之间可以通过物质回收来减少污染排放。间歇过程的质量交换网络的设计问题具有很大的挑战,比如贫、富流股的匹配不仅要受到流股的流量和浓度要求,并且还要遵循一定的时间序列的约束;而出现在不同时段的流股若要回用则需引入存储单元来实现物质的均衡。本论文所构建的状态空间超级结构不仅拓扑出系统完备的连接结构,还保证了在时间和浓度两维上同时优化存储单元所处位置。研究中,同时考虑了有/无存储单元的案例,对储罐在间歇网络综合中的作用进行了分析探讨。
Mass exchange network (MEN), a system including absorption, stripping, adsorption, extraction, leaching and ion exchange, is of great significance as an important branch in Process Systems Engineering. In a typical problem of mass exchange network design, the valuable or undesirable components in rich process streams can be reduced in countercurrent direct-contacted mass exchange units by contacting with lean process streams or external mass separating agents (MSAs). Techniques of mass exchange network design can be used to improve the materials'purity and the utilization of valuable resources to satisfy the economic benefits, and also reduce the poisonous emissions for the purpose of pollution prevention.
     This paper is aimed at developing a systemic methodology for minimizing the operating costs and capital costs of the mass exchange networks for both batch and continuous processes in a simultaneous manner. Generally speaking, the State Space Superstructure is adopted to capture all possible network configurations, based on which better total annualized cost (TAC) can be easily generated with the corresponding mixed-integer nonlinear programming (MINLP) model. In addition, a hybrid optimization strategy incorporating both deterministic and stochastic components is developed for the resulting MINLP model to guarantee the solution quality and efficiency. The main contents addressed in this paper can be stated as follows:
     (1) The characteristics and difficulties of the study in mass exchange network design for continuous processes are first investigated from the views of thermodynamics. By introducing the State Space Superstructure, this paper investigates the mixing/splitting strategies of the streams with different compositions and sources. Furthermore, the mixed-integer nonlinear programming (MINLP) model is formulated based on the State Space Superstructure to optimize the total annual cost (TAC) of the MENs, so that a trade-off between operating cost and capital cost can be achieved.
     (2) In order to utilizing the materials more sufficiently and thus reducing the harmful emissions, simultaneous optimization of the preliminary network and regeneration networks in the mass exchange systems is investigated in this paper. Moreover, by introducing the Energy Separating Agents (ESAs), this paper further analyses the combined optimization problem of traditional mass exchange network and distillation system, which is corresponding to the use of ESAs. According to a serious of case studies, the proposed model formulation and solution strategy can not only decrease the total cost associated the MENs, but also reduce the consumption of fresh materials and the emission of wastes.
     (3) Batch productions have aroused ever-increasing awareness for the past decades, due to their incomparable advantages in producing small-amount and high-value-added products. These processes would generate many time-dependent rich or lean process streams with great potential of mass recovery and environmental protection. However, there are several challenges in batch MEN design, such as matches between process streams from different time sequences and the storage strategies, that make the optimization problem as a relatively rare-discussed topic compared with the continuous one. In this work, the State Space superstructure has been improved to capture all the potential structures, including stream splitting and mixing, matches between rich and lean streams, and also allows storage tanks to locate at any possible composition point and any time interval. Furthermore, synthesis problems of the batch mass exchange network with/without storage tanks are both taken into consideration, in order to analysis of the roles of storage strategies in network design for the batch processes.
引文
[1]姚平经.过程系统分析与综合[M].大连:大连理工大学出版社,2004.
    [2]姚平经.化工过程系统工程[M].大连:大连理工大学出版社,1992.
    [3]焦巍,刘迁,项曙光.化工过程反应路径综合方法的研究进展[J].化工学报,2010,12:3044.
    [4]Buxton A, Livingston A G, Pistikopoulos E N. Reaction Path Synthesis for Environmental Impact Minimization [J]. Comput. Chem. Eng.,1997,21:959.
    [5]Nishida N, Stephanopoulos G, Westerberg A W. A Review of Process Synthesis [J]. AIChE Journal,1981,27(3):321.
    [6]Rotstein E, Resasco D, Stephanopoulos G. Studies on the synthesis of chemical reaction paths (Ⅰ): Reaction Characteristics in the (△G, T) Space and a Primitive Synthesis Procedure [J]. Chem. Eng. Sci.,1982,37(9):1337.
    [7]Fornari T, Stephanopoulos G. Synthesis of Chemical Reaction Paths:the Scope of Group Contribution Methods [J]. Chem. Eng. Comm.,1994,129:135.
    [8]Fornari T, Stephanopoulos G. Synthesis of Chemical Reaction Paths:Economic and Specification Constraints [J]. Chem. Eng. Comm.,1994,129:159.
    [9]Octave Levenspiel. Reaction Engineering,3rd ed [M]. New York:John Wiley & Sons,1999.
    [10]Chitra S P, Govind R. Synthesis of Optimal Serial Reactor Structures for Homogeneous Reactions, Part I:Isothermal Reactors [J]. AIChE J,1985,31(2):177.
    [11]Schweiger C A, Floudas C A. Optimization Framework for the Synthesis of Chemical Reactor Networks [J]. Industrial Engineering Chemical Research,1999,38(3):744.
    [12]Glasser D, Hildebrandt D, Crowe C. A Geometric Approach to Steady Flow Reactors:the Attainable Region and Optimization in Concentration Space [J]. Industrial Engineering Chemical Research,1987,26(9):1801.
    [13]Balakrishna S, Biegler L T. Constructive Targeting Approaches for the Synthesis of Chemical Reactor Networks [J]. Industrial Engineering Chemical Research,1992,31 (1):300.
    [14]花开玲,李有润,胡山鹰,沈静珠.反应器网络综合方法研究[J].计算机与应用化学,2002,19(2):177.
    [15]Iakshmanan A, Biegler L T. Synthesis of Optimal Chemical Reactor Networks [J]. Industrial Engineering Chemical Research,1996,35(4):1344.
    [16]Hohmann E C. Optimum Networks for Heat Exchanger [D]. Los Angeles:University of Southern California,1971.
    [17]Umeda T, Itoh J, Shiroko K. Heat Exchanger System Synthesis [J]. Chemical Engineering Progressing,1978,74(6):70-76.
    [18]Linnhoff B and Hindmarsh E. The pinch design method for heat exchanger networks [J].Chemical Engineering Science. 1983,389(5):745-763.
    [19]Floudas C A, Ciric A R, Grossmann I E. Automatic Synthesis of Optimum Heat Exchanger Network Configurations [J]. AIChE Journal,1986,32:276.
    [20]Yee T F, Grossmann I E. Simultaneous Optimization Models for Heat Integration I:Area and Energy Targeting and Modeling of Multi-Stream Exchangers [J]. Computers and Chemical Engineering,1990,4:1151.
    [21]Yee T F, Grossmann I E. Simultaneous Optimization Models for Heat Integration Ⅱ:Heat Exchanger Network Synthesis [J]. Computers and Chemical Engineering,1990,14:1165.
    [22]Bagajewicz M, Manousiouthakis V. Mass/Heat-Exchange Network Representation of Distillation Networks [J]. AIChE Journal.1992,38:1769.
    [23]Dong Hongguang, Lin Chihyao, Chang Chueitin. Simultaneous Optimization Strategy for Synthesizing Heat Exchanger Networks with Multi-Stream Mixers [J]. Chemical Engineering Research and Design,2008,86(3):299.
    [24]Thompson R W, C J King. Synthesis of Separation Schemes [R]. Lawrance Berkeley Laboratory, 1972.
    [24]Stephenpoulos G, Westerbery A W. Studies in Process Synthesis [J]. Chemical Engineering Science,1976,31:196.
    [25]Hendry J E, Hughes R R. Generating Separation Process Flow-Sheets [J]. Chem. Eng. Progr., 1972,68:71.
    [26]Westerberg A W, Stephenpoulos G. Studies in Process Synthesis I [J]. Chemical Engineering Science,1975,30:963
    [27]Rodrigo B F R, Seader J D. Synthesis of Separation Sequence by Ordered Branch Search [J]. AIChE J.,1975,21:885.
    [28]Gomez M A, Seader J D. Separation Sequence Synthesis by a Predictor Based Ordered Search [J]. AIChE J,1976,22:970.
    [29]Seader J D, A W Westeiberg. A Combined Heuristic and Evolutionary Strategy for Synthesis of Simple Separation Sequence [J]. AIChE J.,1977,23(6):951.
    [30]Papoulias S A, Grossmann I E. A structural Optimization Approach in Process Synthesis I [J]. Computers & Chemical Engineering,1983,7:695.
    [31]Petracci N, Eliceche A M, Bandoni A. Optimal Operation of an Ethylene Plant Utility System [J]. Comput. Chem. Engng.,1993,Supplement:147.
    [32]Maia, Oassim. Synthesis of utility systems by simulated annealing [J]. Comput. Chem. Engng.,1995,19(4):481.
    [33]赵亮.公用工程系统能量综合与优化设计方法研究[D].大连:大连理工大学,2004.
    [34]方康玲.过程控制系统[M].武汉:武汉理工大学出版社,2007.
    [35]Papoulias S A, Grossmann I E. A structural Optimization Approach in Process Synthesis Ⅱ [J]. Computers & Chemical Engineering,1983,7:722.
    [36]Savulescu L E, Smith R. Simultaneous Energy and Water Minimization [C]. AIChE Annual Meeting, Miami,1998.
    [37]Savulescu L, Sorin M, Smith, R. Direct and Indirect Heat Transfer In Water Network Systems [J]. Appl. Therm. Eng,2002,22(8):981.
    [38]Savulescu L, Jin-Kuk Kim, Smith R. Studies on Simultaneous Energy and Water Minimization—Part Ⅱ:Systems with Maximum Reuse of Water [J]. Chemical Engineering Science,2005,60(12):3291.
    [39]Du Jian, Meng Xiaoqiong, Du Hongbin. Optimal Design of Water Utilization Network with Energy Integration in Process Industries [J]. Chinese J. Chem. Eng.,2004,12(2):247.
    [40]Feng X, Bai J, Zheng X S. On the Use of Graphical Method to Determine the Targets of Single-Contaminant Regeneration Recycling Water Systems [J]. Chemical Engineering Science, 2007,62(8):2127.
    [41]Dong H G, Lin C Y, Chang C T. Simultaneous Optimization Approach for Integrated Water-Allocation and Heat-Exchange Networks [J]. Chem. Eng. Sci.,2008,63(14):3664.
    [42]El-Halwagi M M, Manousiouthakis V. Synthesis of Mass Exchange Networks [J]. AIChE Journal, 1989,35:1233.
    [43]El-Halwagi MM, Manousiouthakis V. Automatic Synthesis of Mass Exchange Networks with Single Component Targets [J]. Chemical Engineering Science,1990,45:2813.
    [44]El-Halwagi MM, Manousiouthakis V. Simultaneous Synthesis of Mass Exchange and Regeneration Networks [J]. AIChE Journal,1990,36:1209.
    [45]Hallale N, Fraser D M. Supertargeting for Mass Exchange Networks Part Ⅰ:Targeting and Design Techniques [J]. Trans. IChemE (Part A),2000,78:202-207.
    [46]Hallale N, Fraser D M. Supertargeting for Mass Exchange Networks Part Ⅱ:Applications [J]. Trans IChemE,2000,78:202.
    [47]Hallale N, Fraser D M. Capital and Total Cost Targets for Mass Exchange Networks Part 1: Simple Capital Cost Models [J].Computers and Chemical Engineering,2000,23:1661.
    [48]Hallale N, Fraser D M. Capital and Total Cost Targets for Mass Exchange Networks Part 2: Detailed Capital Cost Models [J]. Computers and Chemical Engineering,2000,23:1681.
    [49]大连理工大学.化工原理下册[M].北京:高等教育出版社,2002.
    [50]Papalexandri K P, Pistikopoulos E N, Floudas A. Mass Exchange Networks for Waste Minimization:A Simultaneous Approach. Trans IChemE (Part A),1994,72:279.
    [51]薛东峰.废物最小化为目标的质量集成方法研究[D].大连:大连理工大学,2001.
    [52]李绍军,阳永荣.利用改进的遗传算法进行质量交换网络的最优综合[J].化工学报,2002,53(1):60.
    [53]Cheng-Liang Chen, Ping-Sung Hung. Retrofit of Mass-Exchange Networks with Superstructure-Based MINLP Formulation [J]. Ind. Eng. Chem. Res.,2005,44:7189.
    [54]Cheng-Liang Chen, Ping-sung Hung. Simultaneous synthesis of mass exchange networks for waste minimization [J]. Computers and Chemical Engineering,2005,29:1561.
    [56]Isafiade A J, Fraser D M. Interval-based MINLP Superstructure Synthesis of Mass Exchange Networks [J]. Chemical Engineering Research and Design,2008,86:909.
    [55]高志辉.费用最小的质量交换网络综合研究[D].大连:大连理工大学,2007.
    [56]Parthasarathy G, El-Halwagi M M. Optimum Mass Integration Strategies for Condensation And Allocation of Mufti-Component Vocs [J]. Chemical Engineering Science,2000,55:881.
    [57]Shelley M D, El-Halwagi M M. Component-Less Design of Recovery and Allocation Systems:A Functionality-Based Clustering Approach [J]. Computers and Chemical Engineering, 2000,24(9-10):2081.
    [58]Dunn R F, El-Halwagi M M. Optimal Design of Multicomponent VOC Condensation Systems [J]. J. Haz. Mat.,1994,38:187.
    [59]Wilson S, Manousiouthakis V. Minimum Utility Cost For A Mufti-Component Mass Exchange Operation [J]. Chemical Engineering Science,1998,53(22):3887.
    [60]王江峰,沈静珠,李有润,胡山鹰.不相容多组分质量交换网络综合[J].化工学报,2004,55(2):297.
    [61]陈理.基于传质浓度差同步优化多组分质量交换网络[D].大连:大连理工大学,2008.
    [62]都健,高志辉,陈理,姚平经.采用浓度差同步优化的质量交换网络设计[J].化工学报,2007,7:1768.
    [63]裴宏斌,陈理,都健,孙力,高志辉.进出口流量变化的多组分质量交换网络综合方法研究[J].大连理工大学学报,2008,6:793.
    [64]Edgar T F, Huang Y L. An artificial Intelligence Approach to the Design of a Process for Waste Minimization [C]. ACS Special Symposium on Emerging Technologies for Hazardous Waste Management, Book of Extended Abstracts, Atlama,21.
    [65]E1-Halwagi M M. A Process Synthesis Approach to the Dilemma of Simultaneous Heat Recovery, Waste Reduction and Cost Effectiveness [C]. Proceedings of the Cairo Third International Conference on Renewable Energy Sources,1992,2:579.
    [66]Edgar T F, Huang Y L. Simultaneous Recovery of Waste Chemicals and Energy in an Oil Refinery [C]. ACS Special Symposium on Emerging Technologies for Hazardous Waste Management, Atlanta:Book of Extended Abstracts,1993,27.
    [67]Srinivas B K, El-Halwagi M M. Synthesis of Combined Heat and Reactive Mass Exchange Networks [J]. Chemical Engineering Science,1994,49(13):2059.
    [68]Isafiade A J, Fraser D M. Interval based MINLP Superstructure Synthesis of Combined Heat and Mass Exchanger Networks [J].Chemical Engineering Research and Design,2009,87:1536.
    [69]李秀峰.分级超结构法综合热集成的质量交换网络[D].大连:大连理工大学,2010.
    [70]Wang Y P, Smith R. Time Pinch Analysis [J]. Chem. Eng. Des. Res.,1994,73:905.
    [71]Wang Y P, Smith R. Design of Distributed Effluent Treatment Systems [J]. Chem. Eng. Sci., 1995,49(18):3127.
    [72]Foo C Y, Manan Z A, Yin Ling Tan. Synthesis of Maximum Water Recovery Network for Batch Process Systems [J], Journal of Cleaner Production,2005,13(15):1381.
    [73]Almat M, Espuna A, Puigjaner L. Optimization of Water Use in Batch Process Industries [J]. Comput. Chem. Eng.,1999,23:1427.
    [74]Kim J K, Smith R. The Automated Design of Discontinuous Water Systems [J]. Process Saf. Environ. Prot.,2004,82:238.
    [75]Majozi T. Wastewater Minimization Using Central Reusable Water Storage in Batch Plants. Comput. Chem. Eng.,2005,29:1631.
    [76]Foo C Y, Manan Z A, Yunus R, Aziz R A. Synthesis of Mass Exchange Network for Batch Processes, part Ⅰ:Utility Targeting [J]. Chem. Eng. Sci.,2004,59:1009.
    [77]Foo C Y, Manan Z A, Yunus R, Aziz R A. Synthesis of Mass Exchange Network for Batch Processes, Part Ⅱ:Minimum Units Target and Batch Network Design [J]. Chem. Eng. Sci., 2005,60:1349.
    [78]Chen C L, Ciou Y J. Superstructure-Based MINLP Formulation for Synthesis of Semicontinuous Mass Exchanger Networks. Ind. Eng. Chem. Res.,2006,45:6728.
    [79]Chen C L, Ciou Y J. Synthesis of a Continuously Operated Mass-Exchanger Network for a Semicontinuous Process [J]. Ind. Eng. Chem. Res.,2007,46:7136.
    [80]Chen J. Letter to the Editor:Comments on Improvement on a Replacement for the Logarithmic Mean [J]. Chemical Engineering Science,1987,42:2488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700