循环流化床热电气多联产试验及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤碳作为我国的主要能源,往往通过单一方式加以利用,为了取得较高的转化效率,导致技术复杂,设备庞大,投资及生产成本高。煤的多联产技术是把以煤为资源的多个生产工艺作为一个系统来考虑,从整体利用效率的角度来提高煤炭资源利用率,则可以更好地解决所面临的资源与环境问题。
     本文比较全面地综述了国内外多联产技术的研究现状,对其主要方向:以煤热解为基础的热电气多联产技术;以煤部分气化为基础的热电气多联产技术;以煤完全气化为基础的热电气多联产技术进行了评述。
     为了了解煤的热解、气化、燃烧不同阶段的反应特点,分析反应速率与各项物理因素(如浓度、温度、压力、催化剂、升温速率等)之间的定量关系,本文进行了煤热解、气化、燃烧的热重试验研究。获得了煤在这三种转化过程中的反应特性及其影响因素,从而用于指导试验和工业设计及运行。
     为了进行煤的多联产方案试验研究,建立了1MW多联产循环流化床热电气多联产试验装置,并进行大量的试验。其中试验主要包括空气部分气化半焦燃烧和再循环煤气热解半焦燃烧两种试验方案。试验数据都是在比较长时间稳定运行条件下获得的。试验结果表明,空气部分气化半焦燃烧方案得到的煤气热值较低,为4-5MJ/Nm~3,气化炉床层温度对碳转化率影响较大,随着反应温度升高碳转化率提高。再循环煤气煤热解半焦燃烧方案产生的是12-14MJ/Nm~3中热值煤气,但气化炉内碳转化率较低。
     焦油在煤气的安全生产、设备运输等过程中都存在较大危害,为了研究焦油的裂解脱除特性,使多联产系统稳定运行、提高产气率,我们在1MW热电气多联产试验台上进行了空气部分气化和循环煤气热解两种工艺的焦油析出、脱除试验,考虑了添加石灰石/不添加石灰石对反应工况的影响。结果表明,石灰石的加入除具有脱硫效果外,还对焦油的分解有一定的促进作用。
     除了通过调整运行条件、添加催化剂,我们还设计了焦油的氧化热裂解装置,希望焦油在高温条件下降低含量甚至彻底消除。试验结果表明随裂解温度升高煤气中焦油含量显著降低。
     在前人建立的循环流化床锅炉、流化床气化炉模型的基础上,结合在1MW循环流化床多联产试验装置上取得的试验研究结果,建立了流化床煤热解气化、循环流化床半焦燃烧多联产方案的数学模型。本模型主要考虑了流化床流体动力特性模型、煤热解气化模型、污染物及焦油脱除炉内模型、分离器模型、煤焦的磨损扬析模型、焦油热裂解装置模型、循环流化床换热模型以及气化炉、锅炉的物质能量平衡关系。
     运用循环流化床多联产整体数学模型对在1MW多联产试验装置上进行的试验工况
Coal is the primary energy source of China. Most of the coal consumed is usually used through a single way that often brings on high cost and complex technology to gain the high carbon conversion efficiency. The cogeneration technology combines multi-different processes based on coal as one system, and enhances the coal utilization efficiency on the whole. Then the problem of environment and resource faced at present will be better solved.
    The investigation status about the cogeneration technology that mainly has three types based on pyrolysis, partial gasification and gasification respectively is summarized and commented in the paper.
    To know the reaction features of coal in different conversion stage which include pyrolysis、gasification and combustion and analyze the relation of the reaction rate with the physical factors, for example concentration, temperature, pressure and catalyzer etc, the experiment was carried out on coal pyrolysis, gasification, combustion and char combustion with TGA. The reaction character of coal in the different conversion stage achieved will help to the next step experiment, industry design and operation.
    For making the experimental investigation, a 1MW pilot plant test facility that consists of a fluidized bed gasifier, a CFB combustor, flue gas and fuel gas clean and cool system, data acquisition and control system has been erected. Experiments on coal partial gasification with air, and recycle gas have been made on the 1 MW pilot plant test facility. The results achieved at long time steady operation status of the facility show that, with air as gasification agent, the system can produce 4-5MJ/Nm3 low heating value gas and the carbon conversion efficiency increases with the bed temperature in the gasifier.
    The system can produce 12-14MJ/Nm3 middle heating value gas by using high temperature circulation solid as heat carrier and recycle gas or steam as gasification media, but the fuel conversion efficiency is lower in the gasifier and most of fuel energy is converted in the combustor.
    The tar does much harm to gas produce and traffic processes. Experiments on tar produce and CaCO_3 effecting on tar cracking have been made on the 1 MW pilot plant test facility. The results show that CaCO_3 has an obvious effect on tar cracking and H_2S removal. And the tar oxidation thermal cracking experimental facility was designed to decrease the amount of tar in the gas from the gasifier. The tar oxidation thermal cracking experiment was made. The results show that amount of tar in the gas reduces obviously with the tar oxidation thermal cracking temperature increasing.
    Combining with the experimental results on the 1 MW pilot plant test facility, an overall mathematical model of CFB gas/heat/power cogeneration system is developed on the basis of the previous research work. The model includes hydrodynamic, coal pyrolysis gasification, H2S and NH3 removal, tar cracking, cyclone, particle attrition and being carried out, heat transfer in CFB, mass balance and energy balance about CFB and gasifier.
    The overall mathematical model was applied to the simulation of 1 MW pilot plant
引文
[1] Key World Energy Statistics, Sept. 2003, http://www.iea.org/statist/key/2003.pdf.
    [2] BP Statistical Review of World Energy, Jun. 2003, http://www.bp.com/centres/energy.
    [3] 中国能源战略研究,中国能源战略研究课题组,中国电力出版社,1996.
    [4] Ruth L. A., Version 21: Fossil Fuel Use in the 21st century. In: B. A. Sakkestad ed. The proceedings of the 26th international technical conference on coal utilization & fuel systems. Clearwater, USA, 2001:335-346
    [5] The Role of Coal as an energy source, 2003, http://wci.rmid.co.uk/uploads/RoleofCoai.pdf
    [6] 陈君球,朱大钧.煤炭气化是实现中国煤炭洁净利用得重要途径.动力工程,1997,17(5):21-26
    [7] 王乃计.大型气化联产热、冷、电、燃料及化工产品.工厂动力,2002,1:36-39
    [8] 雍永祜.展望2000年我国煤化工技术.煤化工.1996,77(4):3-18
    [9] Eric D. Larson, Ren Tingjin.Synthetic fuels production by indirect coal liquefaction. Proceedings of the workshop on coal gasification for clean and secure energy for China, Beijing:2003,Aug. 25-26:177-206
    [10] 郭树才.煤化工工艺学.北京:化学工业出版社,1992.5
    [11] 徐振刚.多联产是煤化工的发展方面.洁净煤技术.2002,8(2):5-7
    [12] 倪维斗,郑洪驶,李政,江宁.多联产能源系统.浙江节能.2004(2).18-21
    [13] 周怀祖,刘红艳等.煤基洁净高效多产品联合生产系统.中美清洁能源技术论坛.北京:2001,8
    [14] 刘红艳,周怀祖等.煤基洁净高效多产品联合生产系统.中国煤炭.2002,28(1)
    [15] 金红光,高林等.煤基化工与动力多联产系统开拓研究.工程热热物理学报.2001,22(4):397-400
    [16] 方梦祥,骆仲泱,王勒辉,李绚天,施正伦,程乐鸣,陈冠益,倪明江,岑可法.循环流化床热电气三联产装置的开发和应用前景分析.动力工程.1997,17(4):48~53
    [17] 怀涛,陈文七.对我国热、电、煤气“三联产”技术研究开发状况的分析及建议.中国能源.1998(12):20—22
    [18] 徐秀清,沈幼庭,李定凯,马润田.循环流化床煤气—蒸汽联产炉,锅炉技术,1994,25(8):11—15
    [19] 王勤辉,骆中泱,方梦祥等.12兆瓦热电气多联产装置的开发.燃料化学学 报,2002,30(4):141-146
    [20] A.Robertson. Development of Foster Wheeler's Vision 21 Partial Gasification Module. The Vision 21 Program Review Meeting, Morgantown, West Virginia, November 6-7, 2001.
    [21] Robertson, R. Froehlich, Z. Fan, C. Lu. Partial gasification tests with Pittsburgh No 8 coal. In: B. A. Sakkestad ed. The 28th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, USA, March 10-13 2003.
    [22] A. Robertson, Foster Wheeler Development Corporation, USA. Vision 21 Partial Gasification Module Pilot Plant Tests. In: B. A. Sakkestad ed. The 27th International Technical Conference on Coal Utilization & Fuel Systems, Sheraton Sand Key, Clearwater, Florida, USA, March 2002.
    [23] 陈鹏.中国煤炭性质、分类和利用.北京:化学工业出版社,北京,2001:248
    [24] 《中华人民共和国节约能源法》.北京:法律出版社,1997
    [25] M. A. Nowak, R. P. Noceti and Ram Srivistava. Coal as a unique source of value-added products and electricity. In: B. A. Sakkestad ed. The proceedings of the 26th international technical conference on coal utilization & fuel systems. Clearwater, USA, 2001:115-121
    [26] 中国能源现状分析.http://www.spis.com.cn/spis/nyhbkj/nyhbkj-49.htm
    [27] 《中国统计年鉴—2003》,中国统计出版社,2003
    [28] 黄盛初,孙欣,张文波,张斌川,胡予红.中国煤炭开发与利用的环境影响研究.煤炭信息研究院洁净能源与环境中心,2003.8
    [29] 中国矿产资源.http://www.chinamining.com.cn/default.asp?V_DOC_ID=1347
    [30] 岑可法,骆中泱,方梦祥等.新颖的热电燃气三联产装置.能源工程,1995,(1):17~19
    [31] 岑可法,方梦祥,骆仲泱等.循环流化床热电气三联产装置研究.工程热物理学报.1995,11(6):499~502
    [32] 方梦祥,骆仲泱等.循环流化床三联产装置的开发和应用前景分析.动力工程.1997.8(17):21~27
    [33] 王勤辉,骆中泱,方梦祥等.12兆瓦热电气多联产装置的开发.燃料化学学报,2002,(4):141~146
    [34] 王勤辉,方梦祥,骆仲泱等.汽气共生热电气联产技术的研究.浙江大学学报,1997,31(2):253~259
    [35] Fang M, Luo Z, Li X, et al. A multi-product cogeneration system using combined coal gasfication and combustion[J].Energy,1998, 23 (3): 203~212
    [36] 吕小兰.煤部分气化燃烧集成系统的研究,浙江大学硕士论文.2002,2:29~30
    [37] 李定凯,沈幼庭等.循环流化床煤气-热-电联产技术及其应用前景.煤气与热力.1994,9(5):41-45
    [38] 徐秀清,沈幼庭等.循环流化床煤气—蒸汽联产炉.锅炉技术.1994,8:11~15
    [39] 徐向东等.载热气化燃煤联合循环性能研究.热能动力工程.1996,11(6):337~342
    [40] 栗志等.双室内循环流化床煤气炉的热平衡实验.燃烧科学与技术,1996,2(1):15~22
    [41] 栗志,杜益庆等.并列流化床煤燃烧/煤气化炉系统的试验研究.动力工程.1996,3(24):82~85
    [42] 栗志等.双室内循环流化床煤气化系统的冷态实验研究.热能动力工程.1996,11(2):70~74
    [43] 王新雷,一种新的联合能源生产系统——热、电、煤气“三联产”,电站系统工程,1998,5(14):3~6
    [44] 王新雷.大力发展热电联产是保护环境的重要途径.区域供热.1998,5:6~9
    [45] 王新雷.热、电、煤气“三联产”工艺制气系统能量转换效率分析.能源研究与利用.1998,4:21~23
    [46] 周颖,郭树才等.褐煤固体热载体干馏新技术—固体热载体循环系统设计.煤化工.1998,5(2):13~16
    [47] 郭树才.褐煤干馏新法.煤化工.2000,8(3):6~8
    [48] 陈沅,罗长齐.褐煤转化与DG新技术及其应用的几个问题.煤化工.1996,5(2):38~42
    [49] 郭树才.年轻褐煤固体热载体低温干馏.煤炭转化.1998,7:23~26
    [50] 张秋民.DG 技术及其用于钢铁企业能源平衡的可行性分析.冶金能源.1998,3(17):23~27
    [51] Yong Jeon Kim等.一带有进风管的内循环流化床煤气化反应炉中的模型.洁净煤燃烧与发电技术.2000,6(2):53~55
    [52] Yong Jeon Kim等.一带有进风管的内循环流化床煤气化反应炉中的模型(续).洁净煤燃烧与发电技术.2000,9(3):46~55
    [53] Jodd M R. Ind Int. Coal &Gas conversion conference,Preloria,1987.23
    [54] Jeon S K, Lee W J and Kim S D. Preprint & th Int. Conf. on fluridization, Tours, Frand, 14-19 May,1995:879
    [55] Kim Y J,Lee J M and Kim S D. Fuel,1997,76:107
    [56] Lee J M,Kim Y J and Kim S D. Applied Thermal Engineering ,1998,18:103
    [57] Berggren J C, Bjerle I,Eklund H, Karlsson H and Svenssion O. Chen. Eng. Sei.1980, 35:446
    [58] Riley R K and Judd M R. Chem.Eng.comm.,1987 : 62 : 151
    [59] J.O.Jaber etc. Modelling oil shale integrated tri-generator behaviour predicted performance and financial assessment Applied Energy. 1998 (59) :73-95
    [60] J.O.Jaber. Modelling oil shale integrated tri-generator behaviour predicted performance and financial assessment Applied Energy. 1998 (59)
    [61] J.O.Jaber.Environmental-impact assessment for the proposed oil-shale
    [62] Ingel, G., Levy, M. and Gordon, J., Oil-shale gasification by concentrated sun-light: an open-loop solar chemical heat pipe. Energy, 1992, 17(12), 1189-1197.
    [63] Ingel, G. and Levy, M., Computer modelling of solar gasification of oil shale:comparison with experiments. Energy, 1993, 18 (8) :827-842.
    [64] Cameron Engineers Inc, Shale oil tops 50,000 barrels in USA. Synthetic Fuels Quarterly Report, Denver, CO, USA, 1978, 15: 2-17.
    [65] Sullivan, R., Stangeland, B., Rudy, C., Green, D. and Frumkin, H., Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Report to US Department of Energy under contract EF-76-C-01-2315, Chevron Research Company, Richmond, CA, USA, 1978.
    [66] 郭树才.煤化工工艺学.化学工业出版社,1992.5
    [67] Lurgi Gesellschaften ,"Lurgi Handbuch",1970
    [68] 韩安沛,龙潮,部分气化空气预热燃煤联合循环发电系统,中国电力,2001,34(3):11-15.
    [69] Anpei Han, Chao Long, Jinhui Wu, et al. A high efficiency clean coal power system fitting Chinese circumstance—an introduction to partial gasification air preheated combined cycle power system. In: Sakkestad Barbara A. ed. The Proceedings of 26th International Technical Conference on Coal Utilization & Fuel System, Sheraton Sand Key Clearwater, Florida: March 2001: 31-40.
    [70] Huang Feng, Yang Yongjun, Han Anpei. PGACC high efficiency and clean coal power ganeration system. Asia-Pacific Symposium on Gas Turbine Power Generation Application & Gaseous Fuel Technology, Shenzhen, CHINA, October 25-27, 2001: 337-344.
    [71] 蔡宁生,章明耀.PFBC-CC发电技术的进展及创新发展.东南大学学报(自然科学版),2002,32(3):437-442.
    [72] Cai N, Xiao J, Welford G. Thermal performance study for the coal-fired combined cycle with partial gasification and fluidized bed combustion [J]. Power and Energy, 2001, 215 (A4): 421-427.
    
    Sasatsu H, Tazawa K, Goto H, et al. CTF development at Wakamatsu 71MW PFBC combined cycle power plant [A]. In: Geiling D W ed. Proc. of the 16~(th) International Conference on Fluidized Bed Combustion [C]. New York: ASME Technical Publishing Department, 2001. FBC01-0072.
    
    [73] T. L. Buchanan, M. R. Delallo, H. N. Goldstein, G W. Grubbs, M. D. Rutkowski, J. S. White, H. Weisenfeld. Clean Coal Technology Evaluation Guide (Volume I ). Prepared for: The United States Department of Energy Office of Clean Coal Technology, Contract No. DE-AC01-94FE62747, Task 30, December 1999.
    [74] R. R. McKinsey, A. I. McCone, J. M. Wheeldon, G S. Booras. An assessment of advanced pressurized fluidized-bed combustion power plants. In: Heinschel K. J. ed. Proc. of 13th Inter. Conf. on FBC(Volume 1), Orlando Florida: 653-661
    [75] Archie Robertson, Dave Kulcsar, James Van Hook, Chongqing Lu, Frank Burkhard, et al. Pilot plant becomes demonstration plant desigh. DOE/MC/21023-96/C0501, Advanced Coal-Fired Power Systems '95 Review Meeting, Morgantown, West Virginia, June 27-29, 1995: 32-46
    
    [76] Archie Robertson, Dave Kulcsar, James Van Hook, Chongqing Lu, Frank Burkhard, et al. Pilot plant becomes demonstration plant desigh. DOE/MC/21023-96/C0501, Advanced Coal-Fired Power Systems '95 Review Meeting, Morgantown, West Virginia, June 27-29, 1995: 32-46
    
    [77] A. Robertson, W. Domerachi, D. Horazak, R. Newby, A. Rehmat. Increased efficiency of Topping Cycle PCFB power plants. DOE/MC/21023-96/C0687, American Power Conference, Chicago, Illinois, April 9-11, 1996: 1-6.
    
    [78] A. Robertson, H. Goldstein, D. Horazak, et al. Second-generation PFB plant performance with W501G gas turbine. In: D. W. Geiling ed. Proceedings of 16~(th) International Conference on Fluidized Bed Combustion, Reno, Nevada May 13-16, 2001,FBC01-0010.
    
    [79] S. J. Provol, S. Ambrose. The Midwest power DMEC-2 advanced PCFB demonstration project AHLSTROM PYROFLOW advanced pressurized circulating fluidized bed technology. In: Rubow Lynn N. ed. Proceedings of The 1993 International Conference on Fluidized Bed Combustion. San Diego, Califirnia: 1993: 937-948
    [80] Richard E. Weinstein, Nelson F. Rekos, Mark D. Freier. Repowering with advanced green coal combustion systems makes sense. In: B. A. Sakkestad ed. The Proceedings of the 26~(th) International Technical Conferene on Coal Utilization & Fuel Systems, Sheraton Sand Key Clearwater, Florida, USA, March 5-8, 2001: 1-10.
    [81] Nelson F. Rekos, Richard E. Weinstein. APFBC repowering makes sense for existing coal-fired units. In: In: D. W. Geiling ed. Proceedings of 16~(th) International Conference on Fluidized Bed Combustion, Reno, Nevada May 13-16, 2001, FBC01-0054.
    [82] Richard E. Wweinstein, Douglas J. Roll, Robert W. Travers. Would APFBC repowering of AES Greenidge Unit 4 make sense. In: D. W. Geiling ed. Proceedings of 16~(th) International Conference on Fluidized Bed Combustion, Reno, Nevada May 13-16, 2001, FBC01-0055.
    [83] Bruce A. Salisbury, Richard E. Weinstein, Mark D. Freler, et al. APFBC repowering for Four Corners Station uses a unique approach. In: D. W. Geiling ed. Proceedings of 16~(th) International Conference on Fluidized Bed Combustion, Reno, Nevada May 13-16, 2001, FBC01-0053.
    [84] John C. Wolfmeyer, Cal Jowers, Richard E. Weinstein, et al. Advanced circulating pressurized fluidized bed combustion (APFBC) repowering concept assessment at Duke Energy's Dand River Station. http://www.netl.doe.gov/coalpower/combustion/pdf/00011 .pdf.
    [85] Engineering development of coal-fired high-performance power systems. DE-AC22-95PC95143, Progress report, April 1-June 30 1996.
    [86] R. Conn, J. Van Hook, A. Robertson, D. Bonk. Performance of a second-generation PFB pilot plant combustor. In: Heinschel K. J. ed. Proc. of 13th Inter. Conf. on FBC, Orlando Florida: 1995: 75-89
    [87] James McClung, Michael Quandt, John Hemmings, Darrell Moore. Design and operation considerations for and advanced PFBC plant at Wilsonville. In: Heinschel K. J. ed. Proc. of 13th Inter. Conf. on FBC, Orlando Florida: 1995: 107-115
    [88] Brandon M. Davis, Peter V. Smith, James Longanbach, et al. Operation of the PSDF transport gasifier. KBR Paper #1728, http://www.netl.doe.gov/coalpower/gasification/proiects/adv-gas/docs/ 19%20Pitts%20CC%20KBR%201728.pdf.
    [89] Roxann Leonard, Peter V. Smith, James Longanbach, et al. Development status of the transport gasifier at the PSDF. http://www.netl.doe.gov/coalpower/jgasification/proiects/adv-aas/docs/DEVELOPMENT %20STATUS%20OF%20THE%20TRANSPORT%20GASIFIER%20AT%20THE%20PSDF.pdf. Gasification Technologies 2001, San Francisco, California, October 7-10, 2001.
    [90] J. M. Wheeldon, A. K. Bonsu, J. P. Foote, F. C. Morton, D. E. Romans, F. D. Zoldak. Commissioning of the Circulating PFBC in the Foster Wheeler Advanced PFBC train at the PSDF. In: D. W. Geiling ed. Proceeding of the 16th International Conference on FBC, Reno. Nevad. May, 2001: 13~16.
    [91] P66.007 Power Systems Development Facility (PSDF) Annual Report-2003 (052507). http://www.epri.com/destinations/dynamic/dilbert.asp?product id=3332&year=2003.
    [92] E. P. Holley (Air Products and Chemicals, Inc.), J. J. Lewnard, et al. (Four Rivers Energy Partners, L.P.). Four Rivers Second Generation Pressurized Circulating Fluidized-Bed Combustion Project. In: Heinschel K. J, ed. Proceedings of the 13~(th) International Conference on Fluidized-Bed Combustion. Orlando Florida: 1995: 919-924
    [93] Fred L. Robson, John D. ruby, Mohammad Nawaz, Daniel J. Seery. HIPPS today— Modular coal-based high performance power systems (HIPPS). In: B. A. Sakkestad ed. The Proceedings of the 26~(th) International Technical Conference on Coal Utilzation & Fuel Systems, Sheraton Sand Key Clearwater, Florida, USA, March 5-8, 2001: 47-59.
    [94] Arun C. Bose, Daniel J. seery, Greg F. Weber, et al. High performance power system: a viable step to vision 21. In: B. A. Sakkestad ed. The Proceedings of the 26~(th) International Technical Conference on Coal Utilzation & Fuel Systems, Sheraton Sand Key Clearwater, Florida, USA, March 5-8, 2001: 41-46.
    [95] Mark R. Torpey, Jan Friedrich, Richard J. Graham, et al. Design and development of a pulverized char combustor for the high performance power system. http://www.netl.doe.gov/publications/proceedings/98/98ps/psl-8.pdf.
    [96] Developing a clean, high-performance power system-the Foster Wheeler project. http://www.netl.doe.gov/publications/proceedings/98/98ps/ps017.pdf,Advanced power systems, Project facts, Department of Energy Office of Fossil Energy.
    [97] Mark R. Torpey, Jan Friedrich, Richard J. Graham, et al. Design and development of a pulverized char combustor for the high performance power system. http://www.netl.doe.gov/publications/proceedings/98/98ps/ps1-8.pdf.
    [98] FWDC Project 9-41-3492, development of a high-performance coal-fired power generating system with pyrolysis and char-fired high temperature furnace (HITAF). DE-AC22-91PC91154, Final report, Volume 1, February 1996.
    [99] Engineering development of coal-fired high-performance power generating systems. DE-AC22-96PC96143, Technical progress report 5, July through September 1996, November 1996.
    
    [100] Engineering development of coal-fired high-performance power systems. DE-AC22-95PC95143, Technical progress report 1, July through September 1995, December 1995.
    
    [101] Engineering development of coal-fired high-performance power systems. DE-AC22-95PC95143, Technical progress report 2, October through December 1995, February 1996.
    
    [102] Engineering development of coal-fired high-performance power systems. DE-AC22-95PC95143, Technical progress report 3, January through March 1996, June 1996.
    
    [103] Sasatsu H, Tazawa K, Goto H, et al. CTF development at Wakamatsu 71MW PFBC combined cycle power plant [A]. In: Geiling D W ed. Proc. of the 16~(th) International Conference on Fluidized Bed Combustion [C]. New York: ASME Technical Publishing Department, 2001. FBC01-0072.
    
    [104] Shuichi Nagato, Norihisa Miyoshi, Seiichiro Toyoda, et al. Development of Pressurized Internally Circulating Fluidized Bed Combustion Technology. In: Heinschel K. J. ed. Proc. of 13th Inter. Conf. on FBC(Volume 1), Orlando Florida: 1995:64-652.
    
    [105] Seiichiro Toyoda, Katsuyuki Aoki, Shugo Hosoda, et al. Development of Pressurized Internally Circulating Fluidized Bed Gasification Technology (PICFG). In: Geiling D W ed. Proceedings of 16th International Conference on Fluidized Bed Combustion, Reno, Nevada May 13-16, 2001, FBC01-0105.
    
    [106] S. Toyoda, K. Aoki, S. Hosada, et al. Development of Pressurized Internally Circulating Fluidized Bed Gasification Technology (PICFG). Advanced Clean Coal Technology Int'l Symposium 2001, September 5-6, 2001.
    
    [107] Shugo Hosoda, Nobutaka Kashima, Shinji Sekikawa, et al. Status of pressurized internally circulating fluidized-bed gasifier (PICFG) development project. In: R. B. Reuther ed. Proceedings of the 15th International Conference on Fluidized Bed Combustion. Savannah, Georgia, May 16-19, 1999, FBC99-0031.
    [108] Summary of advanced PFBC technology. http://www.ccui.or.ip/seika/kokusai2002/prgm2-3.PDF, Advanced Clean Coal Technology International Symposium 2002, September 4 2002.
    [109] Center for Coal Utilization, Japan (CCUJ). Country report on coal rsearch and development in Japan. In: B. A. Sakkestad ed. The 27th Meeting of International Committee for Coal Research, Brisbane, Australia, September 24-25, 2002. http://www.ccuj.or.ip/img/ICCR%20Country%20Report%202002 CCUJ.pdf.
    [110] Center for Coal Utilization, Japan. Country Report on Coal Research and Eevelopment in Japan. The 26th Meeting of International Committee for Coal Research, Strasbourg, France, October, 2001. http://www.ccuj.or.jp/news/img/harada-e.pdf.
    [111] R & D of advanced pressurized fluizized bed combustion technology (APFBC). http://www.ccuj.or.jp/gijutsu/pdf/ml-le.PDF, Ministry of Economy, Trade and Industry (METI).
    [112] Kiyota Muramatsu. Current situation and prospect of high efficiency coal utilization technology in Japan. Proceeding of 2nd International High Temperature Air Combustion (HTAC) Symposium, Kaohsiung, Taiwan, January 20-22, 1999, A3(1-13).
    [113] 金红光,高林,等.煤基化工与动力多联产系统开拓研究[J].工程热热物理学报.2001,22(4):397~400
    [114] 邓世敏,林汝谋,等.IGCC多联产总能系统[J].燃气轮机技术.2002,15(3):10~16
    [115] 金红光,王宝群,刘泽龙,郑丹星.化工与动力广义总能系统的前景.化工学报,2001,52(7):567-570-66
    [116] 倪维斗,李政.煤的超清洁利用--多联产系统.节能与环保.2001,5:16-21
    [117] 倪维斗,郑洪弢,李政,江宁.多联产系统:综合解决我国能源领域五大问题的重要途径.动力工程,2003,23(2):2245-2251
    [118] 倪维斗,李政,薛元.以煤气化为核心的多联产能源系统—资源能源环境整体优化与可持续发展[J].中国工程科学,2000,2(8):59 68.
    [119] 王勤辉 沈洵 骆仲泱 岑可法.新型近零排放煤燃烧气化利用系统.动力工程,2003,23(5):2711—2715
    [120] Vision 21 program plan clean energy plants for the 21st century.www.netl.doe.gov/publications/others/vision21/v21.pdf
    [121] Eric D. Larson, Ren Tingjin. Synthetic fuels production by indirect coal liquefaction. Proceedings of the workshop on coal gasification for clean and secure energy for China, Beijing:2003,Aug. 25-26:177-206
    [122] 李彦旭,李春虎,郭汉贤.国内外高温煤气脱硫技术探讨[J].煤化工,1998,(3):20-24
    [123] 曹晏,张建民,王洋,等.高温煤气脱硫技术研究进展[J].煤炭转化,1998, 21(1):30-35
    [124] (美)P.Nowacki.煤炭气化工艺.赵振本等译.山西:山西科学教育出版社,1987.
    [125] 李余增.热分析.北京:清华大学出版社,1987.
    [126] 陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985.
    [127] 蔡正千.热分析.北京:高等教育出版社,1993.
    [128] 崔洪,徐秀峰等.煤焦CO_2气化的热重分析研究(Ⅰ)等温热重研究[J].煤炭转vol19,No2,Apr.1996.
    [129] 崔洪,徐秀峰等.煤焦CO_2气化的热重分析研究(Ⅱ)等温热重研究[J].煤炭转化vol19,No3,Jul.1996.
    [130] 苏桂秋,崔畅林.实验条件对煤热解特性影响的分析.能源技术,Vol.25,No.1,Feb,2004.
    [131] 姚昭章,韩永霞。不同煤化程度煤的热解动力学参数.煤化工,1994年第二期.
    [132] 向银花.煤焦部分气化燃烧集成热重分析研究[J].燃料化学学报,vol.28,No5.2000.
    [133] Irfan Ar, Gulsen Dogu, Calcination kinetics of high purity limestones, Chem. Eng. J. 2001.
    [134] 仲兆平,Marnie Telfer,章名耀.Carol ine石灰石煅烧的实验研究.洁净煤燃烧与发电技术.30期:18—23.
    [135] 郑瑛、史学锋、周英彪、郑楚光.石灰石静态煅烧特性的研究.热能动力工程.1998(13):319~321.
    [136] Stantan J E. In: Fluidized Beds: Combustion and Applications. Ed. Howard J R. London: Applied Science, 1985.
    [137] 邹纲明,李海滨.煤液化过程热解动力学特性的研究.茂名学院学报 VOl.13.No.1.
    [138] Mengxiang Fang, Zhongyang Luo. A Multi-product Cogeneration System Using Combined Coal Gasification and Combustion, Engergy, 1998, 23(3)
    [139] 王勤辉,方梦祥等.汽气共生热电气联产技术的研究.浙江大学学报(自然科学版),No2 Vol.31,Mar.1997.
    [140] 岑可法,方梦祥等.循环流化床热电气三联产装置研究.工程热物理学报,Vol.16,No.4 Nov.,1995.
    [141] 吕小兰.煤部分气化联合循环发电技术.浙江大学硕士学位论文,2002年1月.
    [142] 岑可法,倪明江等.循环流化床锅炉理论设计与运行,中国电力出版社,1998.
    [143] 范从振主编.电厂锅炉原理.,北京:水利电力出版社,1984.
    [144] 刘德昌,陈汉平主编.锅炉改造技术.中国电力出版社,2001.
    [145] 冯俊凯,沈幼庭主编.锅炉原理及计算.科学出版社,1979.
    [146] 沈洵.新型近零排放煤气化燃烧利用系统.浙江大学硕士学位论文,2004年2月.
    [147] 王同章.煤炭气化原理与设备.机械工业出版社,2001.
    [148] 吕俊复,岳光溪.氧化钙条件下焦油主要组分的催化裂解.清华大学学报(自然科学版),1997,37(2):6~10.
    [149] 朱廷钰.氧化钙对流化床煤温和气化过程影响的研究:[学位论文],太原:中国科学院山西煤炭化学研究所,1999.
    [150] 朱之培,高晋生 煤化学 上海科学技术出版社 1984,220
    [151] Yu L E, Hildemann L M, Dadamio J et al. Characterization of Coal Tar Organica via Gravity Flow Column Chromatogarphy. Fuel, 1998, 77:437~445
    [152] Narvaez I, Orio A, Aznar M P et al. Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed: Effect of Six Perational Variables on the Quality of the Produced Raw Gas. Ind Eng Chem Res, 1996
    [153] Katheklakis L E, Lu Shilin, Bartle K D et al. Effect of Freeboard Residence time on the molecular mass distribution of fluidized bed pyrolysis tars.Fuel,1990, 69:172-176
    [154] Hesp W R, Waters R L, Thermal cracking of tars and volatile matter from coal carbonization. Ind. Eng. Chem. Prod. Res. Dev. 1970, 9 (2):194-202
    [155] Seshadri K S, Shamsi A. Effects of Temperature, Pressure and carrier gas on the cracking of coal tar over a char-dolomite mixture and calcined dolomite in a fixed-bed reactor. Ind Eng Chem Res,1998, 35: 3830-3837.
    [156] 郭树才 煤化工工艺学 化学工业出版社 1992年5月第一版
    [157] Simell P A, Hepola J O, Krause A O. Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts Fuel,1997,76:1117~1127
    [158] Seshadri K S, Shamsi A. Effects of Temperature, Pressure and carrier gas on the cracking of coal tar over a char-dolomite mixture and calcined dolomite in a fixed-bed reactor. Ind Eng Chem Res,1998, 35:3830-3837.
    [159] Y.G.Pan, X.Roca, E.Velo, L.Puigjaner, Removal of tar by secondary air in fluidized bed gasification of residual biomass and coal, Fuel, 1999, 78: 1703-1709.
    [160] Peder Brandt, Elfinn Larsen, Ulrik Henriksen, High tar reduction in a two-stage gasifier, Energy & Fuels, 2000, 14:816-819.
    [161] Khan M R. Compositional changes in the mild gasification liquids produced in the presence of calcium compounds[J]. Fuel Process Technol, 1991, 27:83-94.
    [162] Khan M R. 1987, Coal devolatization at mild and sever conditions: influence of lime additive of heating rate on products composition, in : Monlijin J A, Nater K A, Chermin N A G(Eds), Proc Int Coal Science, Mastrict, 26-30, Coal Science and Technology Series[M]. Vol, Elsevier, Amsterdam, 647-651
    [163] Ellig D L, Lai C K, Mead D W et al. Pyrolysis of volatile aromatic hydrocarbons and n-heptane over calcium oxide and quartz[J]. Ind Eng Process Des Dev, 24:1080-1087
    [164] Yeb ah Y D, Longwell J P, Howard J B et al. Effect of calcined dolomite on the fluidized bed pyrolysis of coal[J], Ind End Chem Des Dev, 1980, 19:646-653
    [165] 许明,生物质中热值热解制气技术试验与应用研究,浙江大学硕士论文,2002.
    [166] 吕俊复等.焦油主要组分的热裂解[J].公用科技,1996年第4期.
    [167] Yu L E, Hildemarm L M, DuDamio J et al. Characterization of coal tar organics via gravity flow column chromatography. Fuel, 1998.77:437-445.
    [168] 贾永斌等.热解和气化过程中焦油裂解的研究[J].煤炭转化,2000年10月.
    [169] Reed T.B., Miline T.A., et. Development and scaleup of the air-oxygen strafied downdraft gasifier[J], Solar Energy Research Institute, SERI/PR-234-2571.
    [170] Houben,Marja P. Analysis of tar removal in a partial oxidation burner[M]. Eindhoven University Press. 2004.
    [171] Yu L E, Hildemarm L M, DuDamio J et al. Characterization of coal tar organics via gravity flow column chromatography. Fuel, 1998. 77:437-445.
    [172] 张晓东.生物质热解气化及热解焦油催化裂解机理研究.博士学位论文[M].杭州:浙江大学,2003.
    [173] Stiles H N. Kandiyoci R. Secondary reactions of flash pyrolysis tars measured in a fluidized bed pyrolysis reactor with some novel design feature, fuel, 1989, 68:275-282.
    [174] Gururajan V S. Mathematical Modelling of Fluidized Bed Coal Gasifiers. Trans.I.Chem E.1992. Vol. 70:211
    [175] 步学朋.流化床气化炉的数学模型.煤炭转化.1994,Vol.17,No.2:61~66
    [176] Brem,1995, Overall Modelling of Atmospheric Fluidized Bed Combustion and Experimental Verification, 《Atmospheric Fluidized Bed Coal Combustion, Development and Application》 ,Edit by M.Valk. ELSEVIER,Science,B.V. 1995
    [177] Heibockel,I.and F.N.Fett, 1995, A Mathematical Modelling for Pressurized Circulating Fluidized Bed Combustion,Proceeding for the 1995 Int.Conf.On FBC. P1283~1301
    [178] Talukdar J,P.Basu ,1995,A Simplified Model of Nitric Oxide Emission from a CFBC. The Canadian Journal of Chemical Engineering, Vol.73,P635~643
    [179] Agarwal,P.k.,W.E.Genetti and Y.Y.Lee. Model of volatilization of coal particle in fluidized bed. Fuel ,Vol 63.1157-1165,1984
    [180] Ingemar Bjerie,Hans Eklund and Owe Svensson. Gasification of Swedish Black Shale in the Fluidized Bed Reactor in Steam and Carbon Dioxide Atmosphere. Ind. Eng.Chem.Process.Des.Dev. 1980, 19, P345-P351
    [181] Burugupalli,V.R.etal. Process Anaivsis of a Dual Fluidized Bed Biomass Gasification system. Ind. Eng.Chem.Res. 1988, 27, P304-P312
    [182] Cen, K.F., Fang, M.X., Luo, Z.Y., Chen, F., Li, X. T. and Ni, M. J., Proc. of 12th Inter Conf on FBC. eds. Lynn, R.B., ASME, 1993, P193. San Diego, California.
    [183] Cen, K. F., Fang, M.X., Luo, Z.Y., Li, X. T. and Cheng, L. M., Proc. of lst Inter. Conf on Combined Cycle Power Generation. 1994, P1134, Technical Univ. of Nova Scotia, Halifax.
    [184] 骆仲泱 燃煤循环流化床燃烧技术 浙江大学博士学位论文,1990
    [185] Bai.D.R, Jin.Y. and Yu.Z.Q. The two-Channal Model for Fast Fluidization. Fluidization'88 Science and Techonolgy, ed. By M.Kwauk and Kunii D. P155, 1988
    [186] Basu P. and Sett A. A Simplified Model for Combustion of Carbon in A CFB combustor. Proc. Of 9th. Int. Conf. On Fluidized Bed Combustion. P738, 1987
    [187] Zhang R, Chen D. and Yang G. Study on Pressure Drop of Fast Fluidized Bed. Fluidization Science and Technology. Confence Parpers, Second China-Japan Symposium, Science Press, Beijing China, P148-157, 1985
    [188] Asit Das and Bhattacharga S.C. Circulating Fluidized Bed Combustion. Appled Energy,7 (2), 227, 1990
    [189] Makarytchev, S. V., Fang, M. X., Li, X. T., Luo, Z. Y. and Cen, K. F., Energy The International Journal. 1996, 20 (2), 1-1271.
    [190] Wang, Q. H., Z. Y., Luo, X. T., Li, M. X. Fang, M. J. Ni, and K. F. Cen. A mathematical model for a circulating fluidized bed. Energy, 1999, 24, 633-653
    [191] 方梦祥 循环流化床燃气蒸汽联产技术的机理研究,浙江大学博士学位论文 1991
    [192] Merrick D.. Mathematical models of the thermal decomposition of coal 1. The evolution of volatile matter. Fuel, 1983, 62 (5): 534-539.
    [193] Report to the president on federal energy research and development for the challenges of the twenty-first century[R]. President's Committee of Advisors on Science and Technology, Panel on Energy Research and Development, 1997, 4~5.
    [194] David Merrick. Mathematical models of the thermal decomposition of coal[J]. Fuel 62 (1983) 534-539.
    [195] H. M. Yan, Craig Heidenreich, D. K. Zhang. Mathematical modeling of a bubbling fluidized-bed coal gasifier and the significance of 'net flow' [J]. Fuel 77 (1998) 1067-1079.
    [196] Stefan Hamel, Wolfgang Krumm. Mathematical modeling and simulation of bubbling fluidized bed gasifiers[J]. Powder Technology, 120 (2001) 105-112.
    [197] Heinz-Jtirgen Mühlen, Karl Heinrich Van Heek and Harald Jǜntgen. Kinetic studies of steam gasification of char in the presence of H_2, CO_2 and CO[J]. Fuel 64 (1985) 944-949.
    [198] 周山明,金保升.加压喷动流化床煤部分气化数值模型[J].煤炭转化,2000(4),23(2),59-66.
    [199] 王勤辉.循环流化床锅炉总体数学模型及其性能测试.浙江大学博士学位论文,1997.
    [200] A.P. Watkinson, J.P. Lucas, C.J. Lim. A prediction of performance of commercial coal gasifiers[J]. Fuel 70 (1991) 519-527.
    [201] Chun-Hua Luo, Kenichi Aoki, Shigeyuki Uemiya, Toshinori Kojima. Numerical modeling of a jetting fluidized bed gasifier and the comparison with the experimental data[J]. Fuel Processing Technology, 55 (1998), 193-218.
    [202] Jicheng Bi, Chunhua Luo, Ken-ichi Aoki, Shigeyuki Uemiya, Toshinori Kojima. A numerical simulation of a jetting fluidized bed coal gasifier[J]. Fuel 76 (1997) 285-301.
    [203] 李政,王天骄,韩志明,等.Texaco煤气化炉数学模型的研究—建模部分[J].动力工程,2001,21(2),1161~1165.
    [204] Rakesh Govind, Jogen Shah. Modeling and simulation of an entrained flow coal gasifier [J]. AIChE Journal, 1984, 30 (1) 79~92.
    [205] 岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行[M].中国电力出版社,1997.
    [206] X. Li, J.R. Grace, A.P. Watkinson, C.J. Lim, A. Ergtüdenler. Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier[J]. Fuel 2001 (80) 195~207.
    [207] 邓渊.煤炭加压气化[M].中国建筑工业出版社,1981.
    [208] 王同章.煤炭气化原理与设备[M].机械工业出版社,2001.
    [209] 房倚天.循环流化床煤/焦气化的研究.中国科学院山西煤炭化学研究所博士学位论文,1997
    [210] Wen,C.T. and L.H.Chen. Fluidized Bed Phenomena: Entraiment and Elutriation. AICHEJ,Vol 28,No1,P117-P128 (1982)
    [211] 严建华.煤在流化床中燃烧特性的研究.浙江大学博士学位论文.1990
    [212] 金水淼主编,1983,《除尘设备设计》,原子能出版社。
    [213] 居怀明,1990,《载热质物性计算程序及数据手册》,原子能出版社。
    [214] 《层状燃烧及沸腾燃烧工业锅炉热力计算方法》,1981,上海工业锅炉研究所出版。
    [215] 《锅炉机组热力计算方法》,1976,机械工业出版社。
    [216] 《动力工程师手册》,1999,机械工业出版社。
    [217] 《燃气热力工程常用数据手册》,1999,中国建筑工业出版社。
    [218] 《燃气工程技术手册》,1993,同济大学出版社。
    [219] 《小型热电站实用设计手册》,1988,中国电力出版社。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700