无线传感器网络中的覆盖算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络是由大量计算、通信及存储能力有限的传感器节点组成的特殊Ad-hoc网络,在军事和民用领域具有广泛的应用,是目前一个非常活跃的研究领域。覆盖问题是无线传感器网络中的一个核心问题。网络覆盖反映了网络所能提供的感知服务质量,可以使无线传感器网络的空间资源得到优化分配。节点调度和密度控制是减少能量消耗、延长网络生存时间的有效手段。本文针对无线传感器网络的覆盖问题展开了深入地研究,目标是在满足服务质量的前提下,节约节点能量,最大化网络生命周期。主要工作包括以下几个方面:
     (1)针对高密度、大规模的传感器网络,首先讨论了活跃节点的节点分布问题,指出了在局部小区域节点分布过于稠密和过于稀疏对传感器网络性能造成的影响。建立了传感器网络极大相似分布模型,用来量化传感器网络分组之间的节点分布均匀程度。证明了传感器网络极大相似分布问题属于NP-Hard问题,提出了两种近似求解算法,即基于分组的集中式和分布式节点调度覆盖算法,并给出了传感器网络为随机分布时,采用分组调度时平均覆盖率的理论上界值。对于合适范围的分组数,基于分组的节点调度覆盖算法能使各个组内的传感器节点较为均匀地分布在目标区域,得到的平均覆盖率接近理论上界值。
     (2)由于硬件成本、能耗以及误差范围等因素的限制,现有的定位技术难以满足传感器网络中覆盖算法的要求。提出了一种不依赖节点位置信息的节点调度覆盖算法LCSS。建立了参照节点和虚拟坐标的概念,并给出了选择参照节点以及生成节点虚拟坐标的方法。对于不同的传感半径、通信半径以及应用要求,给出了参照节点个数的最小临界值。分析表明当网络中存在一定个数的参照节点时,节点的虚拟坐标能够代替节点的绝对坐标,并指出了它的适用范围。理论分析和仿真实验表明,LCSS算法对节点的时钟异步有很好的鲁棒性。和其它的与节点位置无关、基于分组的覆盖方案相比,不依赖节点位置信息的节点调度覆盖算法有更好的覆盖性能,组内节点分布更加均匀。
     (3)对于传感器网络在军事监测等方面的应用,目标区域内若存在着盲点区域可能导致极其严重的后果,要求任意时刻传感器网络能够完全覆盖目标区域,并保证网络的连通性。在保证完全覆盖和网络连通的前提下,设计了一种基于网格的密度控制算法GDCA。仿真实验表明,和其它连通覆盖集求解算法相比,GDCA算法能够获得更小的连通覆盖集。且这种算法属于分布式算法,具有良好的扩展性,节点的传感区域可为任意凸形区域,更符合实际情况。
     (4)当传感器网络应用于灾难援助等领域,要求传感器网络对空间数据查询消息进行快速的回应,以帮助进行灾难救援。而快速的生成连通覆盖集是传感器网络快速回应空间数据查询消息的前提。从快速回应用户或者其他指令中心发出的空间数据查询的应用需求出发,讨论了如何快速有效的构造查询区域的连通覆盖集问题,并提出了一种基于正方形的连通覆盖集快速实现算法SFAMCCS。通过将查询区域按一定尺寸的正方形剖分,节点利用临近节点的位置及覆盖的格点等信息构造查询区域的连通覆盖集。理论分析和仿真实验表明,SFAMCCS算法通过节点协作的方式,在较短的时间内得到的连通覆盖集大小可与已有集中式算法相当,与类似的其他算法相比,在运行时间和连通覆盖集大小等方面具有更优的性能。
     (5)在节点不能获取准确位置信息的条件下,如何进行节点调度以满足传感器网络长时间充分均匀的覆盖目标区域并确保网络连通,是当前具有挑战性的问题。在覆盖算法LCSS的基础上,本文提出了基于虚拟坐标的节点调度方案SSVC。SSVC方案通过将传感器节点中的某一些节点划分到几个不同的分组,保证了各个分组的连通。算法分析和仿真实验表明,本文提出的方案在覆盖率、维持分组连通时额外加入到分组内的节点个数,以及网络生存时间等性能上均优于与节点位置无关的节点随机调度协议。
Wireless sensor networks have been the targets of active research in the recent past due to their military and civil applications. One of the most fundamental problems in wireless sensor networks is coverage problem, which reflects how well a region is apperceived. The coverage control theories and algorithms can result in network resources’optimial allocation. Recent research has found that node scheduling and density control are able to save significant energy and prolong network lifetime. This dissertation focuses on the coverage problem in wireless sensor networks, aiming at saving network energy and prolonging network lifetime under the condition of meeting service requirements. The main works are as follows:
     (1) For large-scale dense sensor networks, we discuss the active node distribution problem, and analyse the effect of node being sparse in some sub-regions and nodes being dense in other sub-regions on network performance. We set up a maximum similarity distribution model, which quantifies the degree of distribution similarity among subsets, and prove that it is equivalent to an NP-hard problem. We propose two approximation algorithms, the subset-based coverage-preserving centralized scheduling algorithm and the subset-based coverage-preserving distributed scheduling algorithm. In addition, this paper presents the analytical results for the theoretical upper bound of average coverage rate while nodes are randomly distributed over the target region. The experimental simulations demonstrate that the algorithms have the ability that sensor nodes in each subset are rather uniformly distributed over the target area, and available coverage rate approaches the upper bound.
     (2) Due to the constraints of hardware cost, energy consuming, and unavoidable error, existing localization mechanisms are difficult to make low-cost nodes obtain accurate location information. Without accurate location information, we propose a location-indepent coverage-preserving node scheduling scheme (LCSS). We give two new definitions, reference node and virtual coordinate, and introduce how to select reference nodes and construct the virtual coordinates of nodes in a sensor network. Analytical results illustrate that the virtual coordinate of a node could be instead of its physical coordinate of the node when there are a certain number of reference nodes. Besides, we point out the suitable domain for the virtual coordinate, present the analytical results to disclose the relationship between the number of reference nodes, sensing range and communication range of nodes. The theory analysis and simulation demonstrate LCSS outperforms other subset-based location-indepent coverage algorithms with respect to coverage performance, and more uniformly distributed subsets are obtained under LCSS.
     (3) For one sensor network utilized in the scenario of military suiveillance, if there is some blind region over a target region, it will might results in extremely severe consequences. In the scenario, the sensor network is required to completely cover the target region and remain connected at any time. Under the premise of complete coverage and guaranteed connectivity, we propose a grid-based density control algorithm (GDCA). Experimental simulations show that GDCA outperforms other algorithm for minimum connected cover set problem in terms of the size of constructed connected cover set. GDCA is totally distributed. In addition, the algorithm is applicable to scenarios where the sensing area of a sensor does not follow the unit disk model, but have any convex area.
     (4) Recent years has seen that sensor networks must support real-time spatial data query. Representive examples include emergence response and disaster aid. Quickly constructing connected cover set is the premise that sensor networks can respond in time to spatial data query. Considering this kind of application requirements,it deserves further study how to quickly construct the connected cover set of a query region. We propose a square tessellation based fast algorithm for minimum connected cover set problem (SFAMCCS). After making tessellation by a certain size of squares, nodes utililze their local information, including the location of neighboring nodes and their covered grid set, to construct the connected cover set of the query region. Experimental simulations show, compared to other similar algorithms, SFAMCCS has better joint performance in terms of the algorithm runtime and the size of the connected cover set.
     (5) Without accurate location information, it is challenging to schedule sensor nodes to meet both constraints of sufficient uniform sensing coverage, network connectivity and long network lifetime. Based on the LCSS, we propose a node scheduling scheme based on virtual coordinate for sensor networks (SSVC). SSVC is composed of two algorithms: a coverage algorithm LCSS, for maintaining sensing coverage and a connection algorithm for constructing a connected network. By assigning some nodes into several different subsets, the connection algorithm can guarantee network connectivity. Without the location information, this scheduling scheme not only has the ability that makes sensor nodes in subsets more uniformly distributed in the target region than other subset-based schemes, but also guarantees each subset to be connected. The simulation results demonstrate that SSVC outperforms the randomized sensor scheduling scheme with guaranteed connectivity (RSGC) on the coverage quality and network lifetime, as well as the number of external nodes when maintaining subsets to be connective.
引文
[1] Asada G, Pottie G.J, Kaiser W.J, et al. Wireless integrated network sensors. Communications of the ACM, 2000, 43(5): 51–58
    [2] Chong C, Kumar S. Sensor networks: Evolution, opportunities, and challenges. Proceedings of IEEE, 2003, 91(8): 1247-1256
    [3] Akyildiz IF, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks: a survey. IEEE Communications Magazine, 2002, 40(8): 102-114
    [4] http://www.sainc.com/sensit/
    [5] WINS: Wireless Integrated network sensors, http://www.janet.ucla.edu/WINS/
    [6] Pister K, Smart Dust: Autonomous sensing and communication in a cubic millimeter, http://robotics.eecs.berkeley.edu/~pister/SmartDust/
    [7] Project Sun SPOT: Sun small programmable object technology, http://www.sun- spotworld.com/
    [8]μAMPS:μ-Adaptive Multi-domain Power aware Sensors, http://www-mtl.mit.edu /researchgroups/icsystems/uamps/
    [9]任丰原,黄海宁,林闯.无线传感器网络.软件学报, 2003, 14(7): 1282-1291
    [10]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展.软件学报, 2003, 14(10): 1717-1727
    [11]于海斌,曾鹏,王忠锋等.分布式无线传感器网络通信协议研究.通信学报, 2004, 25(10): 102-110
    [12]崔莉,鞠海玲,苗勇等.无线传感器网络研究进展.计算机研究与发展, 2005, 42(1): 163-174
    [13]马华东,陶丹.多媒体传感器网络及其研究进展.软件学报, 2006, 17(9): 2013-2028
    [14]唐勇,周明天,张欣.无线传感器网络路由协议研究进展.软件学报, 2006, 17(3): 410-421
    [15] Cardei M,Wu J. Handbook of Sensor Networks. Boca Raton,Fla,USA: CRC Press,2004
    [16]任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法.软件学报, 2006,17(3): 422-433
    [17] Sohrabi K, Gao J, Ailawadhi V, et al. Protocols for self-organization of a wirelesssensor network. IEEE Personal Communications, 2000, 7(5): 16-27
    [18]孙利民,李建中,陈渝等.无线传感器网络.北京:清华大学出版社, 2005
    [19] Estrin D, Sayeed A, Srivastava M. Wireless sensor networks, Mobicom 2002 Tutorial. http://www.sigmobile.org/mobicom/2002/program/tutorial.html
    [20] Heinzelman W,Chandrakasan A,Balakrishnan H. Energy-efficient communication protocol for wireless sensor networks. In: Proc of the 33rd Hawaii International Conference on System Sciences. Maui,2000,3005~3014
    [21] Krishnamachari B, Estrin D, Wicker S. The impact of data aggregation in wireless sensor networks. In: Proc. of the International Workshop of Distributed Event Based Systems. Los Alamitos, USA, 2002, 1-11
    [22]赵志峰,郑少仁. Ad hoc网络体系结构研究.电信科学,2001,1:14-17
    [23] ALERT Systems Organization. ALERT-2 Protocol Development. http://www. altersystem.org
    [24] Bonnet P, Gehrke J, Seshadri R. Querying the physical world. IEEE personal communication. 2000, 7(5): 10-15
    [25] Noury N, Herve T, Rialle V, et al. Monitoring behavior in home using a smart fall sensor and postion sensors. In: Proc. of the IEEE-EMBS Special Topic conference on microtechonloyies in medicine and biology. Lyon, France, 2000, 607-610
    [26] Meyer S,Rakotonirainy A. A Survey of Research on Context-Aware Homes.In: Proc. of the Australasian information security workshop conference on ACSW frontiers. Adelaied,2003,159-168
    [27] Rentala P,Musunuri R,Gandham S,et al. Survey on sensor networks. In: Proc. of the ACM International Worshop on Wireless Sensor Networks and Applications. 2004,239 - 312
    [28] Parker J. QuakeSim lessons for NASA Earth Science Sensor Webs. http://grids. ucs.indiana.edu/ptliupages/publications/QuakeSimSensorWebWhite.pdf
    [29] Shih E,Cho S,Ickes N,et al. Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In: Proc. of the ACM MobiCom 2001. Rome,272-286
    [30] Crossbow Technology. MICA2: wireless measurement system. http://www. xbow. com/ Products/Product_pdf_files/ Wireless_pdf/6020-0042-04 _A_MICA 2.pdf
    [31] Polastre J,Levis P,Szewczyk R. TinyOS Hardware. http://www.tinyos.net/scoop /special/hardware/,2004
    [32] Cerpa A, Elson J, Hamilton M, et al. Habitat monitoring: application driver for wireless communications technology. In: Proc. of ACM SIGCOMM. Costa Rica,2001, 20-41
    [33] Chandrakasan A, Amirtharajah R, Cho S, et al. Design considerations for distributed microsensor systems. Computer communication review, 31(2): 20-41
    [34] Nam YH, Halm Z, Chee YJ, et al. Development of remote diagnosis system integrating digital telemetry for medicine. In: Proc. of the International Confer- ence IEEE-EMBS. Hong Kong, China, 1998, 1170-1173
    [35] Ogawa M, Taniura T, Togawa T. Fully automated biosignal acquisition in daily routine through 1 month. In: Proc. of the International Conference on IEEE- EMBS. Hong Kong, China, 1998, 1947-1950
    [36] Sibbald B. Use computerized systems to cut adverse drug events: report. CMAJL Canadian Medical association Journal, 2001, 164(13): 1878
    [37] Li M,Liu Y,Chen L. Non-threshold based event detection for 3D environment monitoring in sensor networks. In: Proc. of IEEE ICDCS. Canada, June 2007,9
    [38] Li M,Liu Y. Underground structure monitoring with wireless sensor networks. In: Proc. of ACM/IEEE IPSN. Cambridge,Massachusetts,USA,April 2007,69-78
    [39] Yang Z,Li M,Liu Y. Sea depth measurement with restricted floating sensors. In: Proc. IEEE RTSS. Tucson,Arizona,USA,December 2007, 469-478
    [40] Cardei M,Du DZ. Improving wireless sensor network lifetime through power aware organization. Wireless Networks,2005,11(3):333-340
    [41] Cardei M,Maclallum D,Cheng X,et al. Wireless sensor networks with energy efficient organization. Journal of Interconnection Networks,2002,3(3): 213-229
    [42] Yan T,He T,Stankovic JA. Differentiated surveillance for sensor networks. In: Proc. of the ACM Int’l Conf. on Embedded Networked Sensor Systems (SenSys). New York: ACM Press,2003,51-62
    [43] Xu Y,Heidemann J,Estrin D. Geography-informed energy conservation for ad hoc routing. In: Proc. of the Annual International Conference on Mobile Computing and Networking (MobiCom). New York, USA: ACM Press, 2001, 70- 84
    [44] Ye F,Zhong G,Lu S,et al. Energy efficicent robust sensing coverage in large sensor networks. UCLA,Technical report. 03-01-2002,2002
    [45] Tian D,Georganas N D. A node scheduling scheme for energy conservation in large wireless sensor networks. Wireless Communications and Mobile Computing, 2003,3(2):271-290
    [46] Zhang H,Hou JC. Maintaining sensing coverage and connectivity in large sensor networks. Wireless Ad Hoc and Sensor Networks,2005,1(1):89-123
    [47]毛莺池,刘明,陈力军等.一种高效节能的与节点位置无关的传感器网络覆盖协议.计算机研究与发展,2006,43(2):187-195
    [48] Ye F,Zhong G,Cheng J,et al. PEAS: A robust energy conserving protocol for long-lived sensor networks. In: Proc. of the Int’l Conf on Distributed Computing Systems (ICDCS). Providence,RI,2003,28-37
    [49] Choudhury RR,Kravets R. Location-independent coverage in wireless sensor networks. 2004,http://www.crhc.uiuc.edu/~croy/pubs/
    [50] Zheng R,He G,Liu X. Location-free coverage maintenance in wireless sensor Networks. Technical Report Number UH-CS-05-15,July,2005
    [51] Liu C,Wu K,Yang X,et al. Random Coverage with Guaranteed Connectivity: Joint Scheduling for Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems,2006,17(6): 562-575
    [52] Ma HD,Liu YH. Some problems of directional sensor networks. Int'l Journal of Sensor Networks,2006,11(3): 44-52
    [53] Tian D,Georganas N. A coverage-preserving node scheduling scheme for large wireless sensor networks. In: Proc. of the 1st Int’1 Workshop on Wireless Sensor Networks and Applications (WSNA). Atlanta: ACM Press,2002,32-41
    [54] Huang C F,Tseng Y C. The coverage problem in a wireless sensor network. In: Sivalingam KM, Raghavendra CS, eds. Proc. of the 2nd ACM Int'l Conf. on Wireless Sensor Networks and Applications (WSNA). San Diego,2003,115-121
    [55] Takahara G,Kenan X,Hassanein. How Resilient is Grid-based WSN Coverage to Deployment Errors. In: Proc. Of Wireless Communicatons and Networking Conference (WCNC). Hong Kong,China,2007,2874-2879
    [56] Wan P J,Yi C W. Coverage by randomly deployed wireless sensor networks. IEEE Transactions on Information Theory, 2006,52(2): 2658-2669
    [57] Boukerche A,Fei X,Araujo B B. A local information exchange based coverage- preserving protocol for wireless sensor networks. In: Proc. of IEEE ICC. Istanbul,2006,3420-3425
    [58] Boukerche A,Fei X. Coverage protocols for detecting fully sponsored sensors in wireless sensor networks. In: Proc. of ACM PE-WASUN. Terromolinos,Spain 2006,58-65
    [59] Wang L,Kulkarni S S. Sacrificing a little coverage can substantially increase network lifetime. In: Proc. of IEEE SECON. Reston,VA,USA,2006,326-335
    [60] Meguerdichian S.,Koushanfar F.,Potkonjak M.,et al. Coverage problems in wireless ad-hoc sensor networks. In: Proc. of the IEEE Conf. on Computer Communications (INFOCOM). Alaska,USA,2001,1380-1387.
    [61] Thai M T,Wang F,Du D Z. Coverage problems in wireless sensor networks: designs and analysis. Int'l Journal of Sensor Networks (Special Issue on Coverage Problems in Sensor Networks) ,2007. http://www-users.cs.umn.edu/~mythai/ research.html
    [62] Kumar S,Lai T H,Balogh J. On k-coverage in a mostly sleeping sensor network. In: Proc. of ACM MOBICOM. Roppongi Hills,Tokyo,Janpan,2004,144-158
    [63] Wang X,Xing G.,Zhang Y,et al. Integrated Coverage and Connectivity Coniguration in Wireless Sensor Networks. In: Proc. of 1st ACM Conference on Embedded Networked Sensor systems. Los Angeles,Carlifornia,USA,2003,28-39
    [64] Zhou Z,Das S,Gupta H. Connected K-coverage problem in sensor networks. In: Proc. of ICCCN. Chicago ,Illinois,2004,373-378
    [65] Li J H,Yu M. Sensor coverage in wireless ad-hoc sensor networks. International Journal of Sensor Networks,2007,2(3): 218-229
    [66]蒋杰,方力,张鹤颖.无线传感器网络最小连通覆盖集问题求解算法.软件学报,2006,17(2): 175-184
    [67] Gupta H, Das S R, Gu Q. Connected sensor cover: self-organization of sensor networks for efficient query execution. In: Proc. of MobiHOC. Annapolis, Maryland, USA, 2003, 189-200
    [68] Liu C, Wu K, King V. Randomized coverage-preserving scheduling schemes for wireless sensor networks. In: Proc. of Fourth IFIP International Conference on Networking. HCMC, Viet Nam, 2005, 956-967
    [69]刘巍,崔莉,黄长城. EasiFCCT:一种保证连通性的传感器网络局部覆盖算法.计算机研究与发展,2008,45(1):196-204
    [70] Nagpal R,Shrobe H,Bachrach J. Organizing a global coordinate system from local information on an Ad Hoc sensor network. In: Proc. of the 2nd International Workshop on Information Processing in Sensor Networks. Palo Alto: Sringer-Verlag Press,2003,333-348
    [71] He T, Huang C, Blum BM,et al. Range-free localization schemes for large scale sensor networks. In: Proc 9th Annual Int’l Conf on Mobile Computing and Networking (MOBICOM). San Diego, CA,2003,81-95
    [72] Bulusu N,Heidemann J,Estrin D. GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications,2000,7(5): 28-34
    [73] Priyantha N,Balakrishnam H,Demaine E,et al. Anchor-free distributed localization in sensor networks. Technical Report MIT-LCS-TR-892,MIT Lab for Computer Science,2003
    [74] Girod L,Estrin D. Robust range estimation using acoustic and multimodal sensing. In: Proc IEEE/RSJ Int’l Conf Intelligent Robots and Systems (IROS’01) ,Maui,Hawaii,USA,2001,1312-1320
    [75] Priyantha N,Charkraborthy A,Balakrishnan H. The cricket location-support system. In: Proc. of Int’l Conf on Mobile Computing and Networking,Boston,MA,USA,August 2000,32-43
    [76] Savvides A,Han C,Srivastava M. Dynamic finger-grained localization in ad-hoc networks of sensors. In: Proc. of 7th Annual Int’l Conf on Mobile Computing and Networking (MOBICOM) ,Rome,Italy,July 2001,166-179
    [77] Savvides A,Park H,Srivastava M. The bits and flops of the N-hop multlateration primitive for node localization problems. In: Proc. of 1st ACM Int’l Workshop on Wireless Sensor Networks and Application,Atlanta,GA,USA,September 2002, 112-121
    [78] Niculescu D,Nath B. Ad hoc positioning system (APS) using AOA. In Proc. of 22nd Annual Joint Conf of the IEEE Computer and Communications Societies (INFOCOM), 2003
    [79] Bahl P,Padmanaban V. RADAR: An in-building RF-based user location and tracking system. In: Proc of INFOCOM 2000,Tel Aviv,Israel,2000,775-784
    [80] Elson J,Griod L,Esrein D. Fine-grained network time synchronization using reference broadcasts. In: Proc 5th Symp Operating Systems Design and Implementation (OSDI 2002). Boston,MA,December 2002
    [81] Elson J,Romer K.Wireless sensor networks: A new regime for time synchronization. In: Proc 1st Workshop on Hot Topics in Networks(HotNets-I). Princeton,NJ,October 2002
    [82] Elson J,Estrin D. Time synchronization for wireless sensor networks. In: Proc 15th Int’l Parallel and Distributed Processing Symposium (IPDPS), Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing, San Francisco, CA. April 2001. IEEE,2001,1965-1970
    [83] Ganeriwal S,Kumar R,Srivastava M B. Timing-sync protocol for sensor networks. In: Proc 1st Int’l Conf on Embedded Networked Sensor Systems (SenSys 2003), Los Angeles, CA. Novermber,2003,138-149
    [84] Ganeriwal S,Kumar R,Adlakha S,et al. Network-wide time synchronization in sensor networks. Networked and Embedded Systems Lab (NESL), UCLA Technical Report 01-01-2003
    [85] Galli D. Distrbuted Operating Systems: Concepts and Practice. Prentice Hall,2000
    [86] Greunen J,Rabaey J. Lightweight time synchronization for sensor networks. In: Proc. of 2nd ACM Int’l Conf Wireless Sensor Networks and Applications (WSNA) ,San Diego,CA,USA,September 2003,11-19
    [87] Sichitiu M,Veerarittiphan C. Simple accurate time synchronization for wireless sensor networks. In: Proc. of IEEE Wireless Communications and Networking conference (WCNC) ,New Orleans,LA,USA,March 2003
    [88] Ping S. Delay measurement time synchronization for wireless sensor networks. Intel Research Berkely lab,June 2003. Http://www.intel_research.net/ publications/ 081120031327_137.pdf
    [89] Hu A,Servetto S. Asymptotically optimal time synchronization in dense sensor networks. In: Proc. of 2nd ACM Int’l Workshop on Wireless Sensor Networks and Applicatins (WSNA) ,San Diego,CA,September 2003
    [90] Hong Y,Scaglione A. Time synchronization and reach-back communications with pulse-coupled oscillators for UWB wireless ad hoc networks. In: Proc. of IEEE Conf on Ultra Wideband Systems and Technologies,November 2003,190-194
    [91] Kirkpatrick S,Gelatt C,Vecchi MD. Optimization by simulated annealing, Science,1983,220,671-680
    [92] Heinzelman W,Chandrakasan A,Balakrishnan H. An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communication,2002,1(4): 660-670
    [93] Hu L,Evans D. Localization for mobile sensor networks. In: Proc of MOBICOM. Philadelphia,Pennsylvania,USA,2004,45-57
    [94] Muhammad A,Jadbabaie A. Dynamic coverage verification in mobile sensor networks via switched higher order laplacians. In: Proc. of Robotics: Science and Systems. Caambridge,MA,2007
    [95] Chin T L, Ramanathan P,Saluja K K,et al. Exposure for collaborative detection using mobile sensor networks. In: Proc. of IEEE International Conference on Mobile Adhoc and Sensor Systems. Washionton,DC,2005,743-750
    [96] Sibley G T,Rahimi M H,Sukhatme G S. Robomote: a tiny mobile robot platform for large-scale ad-hoc sensor networks. In: Proc. of the 2002 IEEE International Conference on Robotics and Automation. Washiongton,DC,USA,2002, 1143-1148
    [97] Thrun S,Fox D,Burgard B,et al. Robust monte carlo localization for mobile robots. Artificial Intelligence Journal,2001,128:99-41
    [98] Intanagonwiwat C, Govindan R, Estrin D,et al. Directed diffusion for wireless sensor networking. IEEE/ACM Transaction on Networking, 2003, 11(1):2-16
    [99] Braginsky D, Estrin D. Rumor routing algorithm for sensor networks. In: Proc. of the 1st Workshop on Sensor Networks and Applications (SNA). Atlanta, USA, 2002, 22-31
    [100] Shah R, Rabaey J. Energy aware routing for low energy ad hoc sensor networks. In: Proc. of the IEEE Wireless Communications and Networking Conference (WCNC). Orlando, USA, 2002, 350-355
    [101] Sohrabi K, Gao J, Ailawadhi V, et al. Protocols for self-organization of a wireless sensor network. IEEE Personal Communications, 2000, 7(5): 16-27
    [102] Ye F, Chen A, Lu S, et al. A scalable solution to minimum cost forwarding in large sensor networks. In: Proc. of the Tenth International Conference on Computer Communications and Networks (ICCCN). Scottsdale, USA, 2001, 304-309
    [103] Heinzelman W, Kulik J, Balakrishnan H. Negotiation-based protocols for disseminating information in wireless sensor networks. In: Proc. of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom). New York, USA, 1999, 2-16
    [104] Lindsey S, Raghavendra C S. PEGASIS: Power-efficient gathering in sensor information systems. In: Proc. of the IEEE Aerospace Conference. Montana, USA, 2002, 1125-1130
    [105] Lindsey S, Raghavendra C, Sivalingam K M. Data gathering algorithms in sensor networks using energy metrics. IEEE transactions on parallel and distributed systems, 2002, 13(9): 924-935
    [106] Manjeshwar A, Agrawal D P. TEEN: A protocol for enhanced efficiency in wireless sensor networks. In: Proc. of the 15th Parallel and Distributed Processing Symposium (ISPA). San Francisco, USA, 2001, 2009-2015
    [107] Younis O, Fahmy S. HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 2004, 3(4): 366-379
    [108] Ye F, Luo H, Cheng J, et al. A two-tier data dissemination model for large-scale wireless sensor networks. In: Proc. of the 8th Annual International Conference on Mobile Computing and Networking (Mobicom). Atlanta, USA, 2002,148-159
    [109] Rao A,Papadimitriou C,Shenker S,et al. Geographic routing without location information. In: Proc. Of the 9th Annual International Conference on MobileComputing and etworking. San Diego,2003,96-108
    [110] Caruso A,Urpi A,Chessa S,et al. GPS free coordinate assignment and routing in wireless sensor networks. In: Johnson DB, ed. Proc. of the 24th Conference of the IEEE Communication Society. Seattle,2005,150-160
    [111] Lin F,Chiu P L. A near-optimal sensor placement algorithm to achieve complete coverage/discrimination in sensor networks. IEEE Communications Letters, 2005,9(1): 43-45
    [112] Shakkottai S,Srikant R,Shroff N. Unreliable sensor grids: Coverage, connectivity and diameter. In: Proc. of the IEEE INFOCOM. San Francisco,2003, 1073-1083
    [113] Chakrabarty K,Lyengar S S,Qi H,et al. Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transaction on Computers, 2002,51(12):1448-1453
    [114] Cerpa A,Estrin D. ASCENT: Adaptive self-configuring sensor networks topologies. In: Proc. Of 11th Joint Conference on IEEE Computer and Communication Societies (INFOCOM). New York,NY,2002
    [115] Deb B,Bhatnagar S,Nath B. A topology discovery algorithm for sensor networks with applications to network management. DCS Techinical Report DCS-TR-441,Rutgers University,2001
    [116] Chen H,Wu H,Tzeng N. Grid-Based approach for working node selection in wireless sensor networks. In: Proc. of the Int'l Conf. on Communications. Paris,2004,3673-3678
    [117] Chen B,Jamieson K,Balakrishnan H,et al. Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. In: Proc. of the 7th Annual International Conference on Mobile Computing and Networking. Rome,Italy,2001,85-96
    [118] Yao Y, Gehrke J. The cougar approach to in-network query processing in sensor networks. SIGMOD Record, 2002, 31(3): 9-18
    [119] Bonnet P, Gehrke J E, Seshadri P. Towards sensor database systems. In: Proc. of the 2nd International Conference on Mobile Data Management. Hong Kong, China, 2001, 3-14
    [120] Krishnamachari B, Estrin D, Wicker S. The impact of data aggregation in wireless sensor networks. In: Proc. of the International Workshop of Distributed Event Based Systems. Los Alamitos, USA, 2002, 1-11
    [121] Madden S R, Szewczyk R, Franklin M J, et al. Supporting aggregate queries over ad-hoc wireless sensor networks. In: Proc. of the Workshop on MobileComputing and Systems Applications. Los Alamitos, USA, 2002, 49-58
    [122] Madden S R, Franklin M J. Fjording the stream: an architechture for queries over streaming sensor data. In: Proc. of the 18th International Conference on Data Engineering (ICDE). Los Alamitos, USA, 2002, 555-666
    [123] Madden S R, Shah M A, Hellerstein J M, et al. Continuously adaptive continuous queries over streams. In: Proc. of ACM SIGMOD International Conference on Management of Data. New York, USA, 2002, 49-60
    [124] Madden S R, Franklin M J, Hellerstein J M, et al. The design of an acquisitional query processor for sensor networks. In: Proc. of ACM SIGMOD International Conference on Management of Data. New York, USA, 2003, 491-502
    [125] Zhao J, Govindan R. Computing aggregates for monitoring wireless sensor networks. In: Ekici E, ed. Proceedings of the 1st IEEE International Workshop on Sensor Network Protocols and Applications. Piscataway, USA, 2003, 37-48
    [126] Przydatek B, SONG D, PERRIG A. SIA: Secure Information Aggregation in Sensor Networks. In: Proc. of the First ACM Conference on Embedded Networked Systems(SenSys’03). New York, USA, 2003, 255-265
    [127] Shrivastava N,Buragohain C,Agrawaid, et a1. Medians and beyond: new aggregation techniques for sensor networks. In: Proc. of the Second International Conference on Embedded Networked Sensor Systems (SenSys’04). New York, ACM Press, 2004, 239-249
    [128]李建中,郭龙江,张冬冬,等.数据流的预测聚集查询处理算法.软件学报, 2005, 16(7): 1252-1261
    [129]张冬冬,李建中,王伟平等.数据流历史数据的存储与聚集查询处理算法.软件学报, 2005, 16(12): 2089-2098
    [130]郭龙江,李建中,李贵林.无线传感器网络环境下时-空查询处理方法.软件学报, 2006, 17(4): 794-805

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700