有线/无线网络中TCP拥塞控制的公平性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线技术的不断发展,无线网络(无线接入网络、卫星网络、移动自组网、传感器网络等)已经融入到Internet,成为了目前互联网络中重要的组成部分。虽然网络带宽在以吉尔德定律飞速增长,但仍然无法满足各种网络应用对网络资源的需求,因此必须对有限的网络资源进行公平和高效的分配。特别在目前有线/无线互联网络中,由于无线信道具有低带宽、高延时和高差错率等特点,传统的基于有线网络的拥塞控制机制暴露出严重的不公平和网络效率低下等问题。本文主要研究有线/无线网络中TCP拥塞控制的公平性,以改善网络整体的传输性能。本文的主要工作包括以下几个方面:
     1、在多速率无线网络中,由于低速率信道节点挤占高速率信道节点的信道时间,造成网络整体效率低下。本文提出了一种多速率无线网络中时间公平的主动队列管理算法TFRED。在接入节点上,TFRED依据各流的无线信道数据发送速率进行丢包率的计算,实现了保证信道时间公平的拥塞控制机制。理论分析和仿真实验证明了该算法相对于吞吐率公平的算法有效提高了多速率无线网络的总吞吐率。
     2、通过仿真实验分析发现上下行TCP流不公平问题的直接原因是ACK包在接入节点缓存中的侵占性,并基于此结论提出了限制缓存大小的算法MBA。MBA算法基于上下行TCP流的不公平比例和缓存大小的关系,自适应地调节ACK包的最大缓存排队数量。实验结果表明MBA算法不但能实现上下行TCP流公平,还能通过减少无线信道ACK包传输概率提高网络总有效吞吐率。
     3、针对TCP在无线网络中接入有线网络时出现的上行流之间不公平、上下行流不公平和时间不公平问题,提出了上下行时间公平的调度算法UDTFLAS。UDTFLAS算法依据TCP流信道发送速率和上下行TCP流的方向实施分组调度,以保证上下行TCP流占用相等的无线信道时间。实验结果表明UDTFLAS算法可以保护单流的吞吐率,实现上下行TCP流的时间公平,最终提高网络总吞吐量。
     4、针对有线/无线网络中接入节点的拥塞问题,提出了基于ECN的拥塞控制算法APCC。APCC结合缓存队列长度和无线信道负载来检测拥塞,依据联合的拥塞测度来实施拥塞控制,在保证低丢包率和低排队延时的同时得到高信道利用率和网络吞吐率;利用ECN显式反馈机制,APCC对通过接入节点的上行和下行TCP DATA和ACK分组实施ECN标记,实现了上下行TCP流公平的双向拥塞控制;同时在多速率信道环境下,依据各流的无线信道速率来合理调节ECN的标记概率,实现不同无线信道速率TCP流之间的时间公平,改进网络的总体效率。
     论文对有线/无线网络中TCP拥塞控制的公平性进行了深入的研究,提出了时间公平的主动队列管理算法、上下行TCP流公平的缓存限制算法、上下行TCP时间公平的调度算法和基于ECN的拥塞控制算法,这些研究成果解决了目前混合网络拥塞控制中存在的多种不公平性问题,在下一代互联网络中具有良好的应用前景。
With the rapid development of wireless technology, wireless networks including wireless access network, satellite network, mobile ad hoc network and sensor network have become the important part of the Internet. Though increasing under Gilder's law, the network bandwidth can not meet the requirement of the network applications. It is indispensable to allocate the network resources in fair and effective manners. Especially, because of the low bandwidth, high delay and high bit error rate in wireless channel, the traditional congestion control mechanisms suffer great unfairness and inefficiency in wired/wireless hybrid networks. Considering these problems in the wired/wireless hybrid networks, this thesis proposes enhanced congestion control mechanisms to improve network performances. The main works include:
     1. In multi-rate wireless network, when the wireless node with lower data rate dominates channel usage time, the throughput experienced by other nodes transmitting at higher data rates will be drastically reduced. While most fair AQM (active queue management) algorithms are based on throughput fairness, we propose an AQM algorithm based on time fairness—TFRED (Time Fair RED), which works on AP (Access Point). To guarantee equal channel usage time for each wireless node, TFRED sets different drop probability for each flow going through the AP according to the transmission rate of each flow. Analysis and simulation results show that, compared with throughput fair congestion control algorithms, TFRED achieves time fairness and increase in total throughput.
     2. Through the extensive network simulations, we find that the direct cause of the TCP unfairness problem is the TCP-unfriendly nature of TCP ACK packet. According to this consideration, a buffer sizing algorithm, called MBA (Maximum Buffer for ACKs), is proposed. Based on the relation between up/down TCP unfairness index and buffer sizing, MBA algorithm adjusts the maximum size of buffer allocated for the ACK packets. Analysis and simulation results show that, MBA not only improves the fairness greatly by limiting the buffer for ACK packets, but also achieves higher total goodput by reducing the channel occupying by ACK packets.
     3. A new scheduling algorithm for up/down TCP flows, which is denoted as UDTFLAS (Up/Down Time Fair LAS) is proposed. Taking into account the transmission rate of each flow, UDTFLAS sets higher transmission probability for flows with higher wireless rate. In this way, UDTFLAS guarantees equal channel time for each up/down TCP flow. Analysis and simulation results show that UDTFLAS achieves per-flow throughput protection, up/down time fairness, and increase in total throughput.
     4. To resolve the congestion problem in AP, an ECN-based congestion control scheme called APCC (AP congestion control) is proposed. The main properties of APCC are: (1) Using both wireless channel load and buffer length as congestion indicators, APCC brings low loss rate and low queue delay while keeping high link utilization and network goodput; (2) APCC achieves the up/down TCP fairness by marking the ECN bit in TCP DATA and ACK packets; and (3) Taking into account the wireless channel rate of each TCP flow, APCC sets different ECN marking probability for each flow to guarantee the time fairness of each flow and higher total goodput.
     The dissertation focuses on the fairness of TCP congestion control in wired/wireless networks. It proposes a time fair AQM algorithm, a buffer sizing algorithm to achieve the up/down TCP fairness, a scheduling algorithm for up/down time fairness, and an ECN-based congestion control scheme. These algorithms slove the unfairness problems of TCP congestion control and can be used in the next generation networks.
引文
[1]IEEE Std.802.11b-1999,Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) Specification:Higher-Speed Physical Layer Extension in the 2.4GHz Band,1999
    [2]IEEE 802.16 working group.2006.http://wirelessman.org/
    [3]Mobile ad hoc networks charter.2005.http://www.ietf.org/manet-charter.html
    [4]孙利民,李波,周新运.无线传感器网络的拥塞控制技术.计算机研究与发展,2008,45(1):63-72
    [5]于宏毅等.无线移动自组织网.北京:人民邮电出版社,2005
    [6]章步云,刘中,王仁波.GSM数据传输技术及其在野外实时数据采集系统中的应用.通信学报,2004,25(4):94-97
    [7]张源,毕光国.使用带外信令的CDMA媒体接入算法延时性能分析.通信学报,2005,26(1):40-47
    [8]孙永中.CDPD技术实验系统的研制.通信学报,2001,22(7):117-122
    [9]IEEE 802.11-1999,IEEE Standard for Local and Metropolitan Area Networks Specific Requirements-Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) Specifications,1999
    [10]IEEE 802.11g-2003,IEEE Standard for Local and Metropolitan Area Networks Specific Requirements-Part 11:Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications Amendment 4:Further Higher Data Rate Extension in the 2.4 GHz Band,2003
    [11]Nagle J.Congestion Control in IP/TCP Internetworks.RFC896,1984
    [12]Jacobson V.Congestion avoidance and control.ACM Computer Commnication Review,1988,18(4):314-329
    [13]罗万明,林闯,阎保平.TCP/IP拥塞控制研究.计算机学报,2001,24(1):1-18
    [14]Braden B.Recommendations on queue management and congestion avoidance in the internet.RFC2309,1998
    [15] Ramakrishnan K, Floyd S, Black D. The addition of explicit congestion no tification (ECN) to IP. IETF RFC 3168, 2001
    [16] Guerin R, Kamat S, Peris V, et al. Scalable QoS provision though buffer management. In: Proceedings of the ACM SIGCOMM, New York, 1998, 29-40
    [17] Karagiannis T, Molle M, Falout M, et al. A non-stationary poisson view of Internet traffic. In: Proceedings of IEEE INFOCOM, Hong Kong, 2004, 1558-1569
    [18] Sahinoglu Z, Tekinay S. On multimedia networks: Self similar traffic and network performance. IEEE Communications Magazine, 1999, 37 (1): 48-52
    [19] Beran J, Sherman R, Taqqu M. S, et al. Long range dependence in variable bit rate video traffic. IEEE Transactions on Communications, 1995, 43(2/3/4):1566-1579
    [20] Willinger W, Paxson V, Taqqu M. Self similarity and heavy tails: Structural modeling of network traffic. In: Adler R., Feldman R, Taqqu M. S. eds. A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Boston: Birkhauser, 1998, 27-53
    [21] Sahinoglu Z, Tekinay S. On multimedia networks: Self similar traffic and network performance. IEEE Communications Magazine, 1999, 37(1): 48-52
    [22] Padhye J, Firoiu V, Towsley D, et al. Modeling TCP throughput: a simple model and its empirical validation. ACM SIGCOMM Computer Communication Review, 1998, 28(4):303~314.
    [23] Misra V, Gong W B, Towsley D. Stochastic differential equation modeling and analysis of TCP window size behavior. Technical Report ECE-TR-CCS-99-10-01. 1999
    [24] Misra V, Gong W B, Towsley D. Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. In: Proceedings of ACM SIGCOMM 2000, Stockholm, Sweden, 2000, 151-160
    [25] Low S H. A duality model of TCP and queue management algorithms. IEEE/ACM Transactions on networking, 2003,11(4):523-536
    [26] 章淼,吴建平, 林闯.互联网端到端拥塞控制研究综述.软件学报, 2002, 13(3):354-363
    [27]Jacobson V.Congestion avoidance and control.ACM Computer Communication Review,1988,18(4):314-329
    [28]Allman M,Paxson V,Stevens W.TCP congestion control.RFC2581,1999
    [29]Stevens W.TCP slow start,congestion avoidance,fast retransimit,and fast recovery algorithms.RFC 2001,1997
    [30]Mathis M,Mahdavi J,Floyd S,et al.TCP selective acknowledgement options.RFC 2018,1996
    [31]Floyd S.Highspeed TCP for large congestion windows.IETF RFC 3649,2003
    [32]Lisong X,Khaled H,Injong R.Binary Increase Congestion Control(BIC) for Long Distance Networks.In:Proceedings of IEEE INFOCOM,2004,2514-2524
    [33]Kelly Y.Scalable TCP:Improving performance in highspeed wide area networks.ACM SIGCOMM Computer Communication Review,2003,32(2):83-91
    [34]Brakmo L,Malley S O,Peterson L.TCP Vegas:New techniques for congestion detection and avoidance.In:Proceedings of ACM SIGCOMM,1994,24-35
    [35]Mascolo S,Casetti C,Gerla M,et al.TCP Westwood:Bandwidth estimation for enhanced transport over wireless links.In:Proceedings of ACM MOBICOM,2001,287-297
    [36]Jin C,Wei D,Low S H.FAST TCP:motivation,architecture,algorithms,performance.In:Proceedings of IEEE INFOCOM,2004,2490-2501
    [37]Wang R,Pau G,Yamada K,et al.TCP Startup performance in Large Bandwidth Delay Networks.In:Proceedings of IEEE INFOCOM,2004,796-805
    [38]Katabi D,Handley M,Rohrs C.Congestion control for high bandwidth delay product networks.In:Proceedings of SIGCOMM,2002,89-102
    [39]Xia Y,Subramanian L,Stoica I,et al.One more bit is enough.In:Proceedings ofACM SIGCOMM,2005,37-48
    [40]王建新,龚皓,陈建二.高带宽延时网络中一种协同式拥塞控制胁议.软 件学报,2008,19f1):125-135
    [41]Floyd S,Jacobson V.Random early detection gateways for congestion avoidance.IEEE/ACM Transactions on networking,1993,1(4),397-413
    [42]Teunis J O,Lakshman T V,Larry H W.SRED:Stabilized RED.In:Proceedings of IEEE INFOCOM,1999,1346-1355
    [43]Floyd S,Gummadi R,Shenker S.Adaptive RED:An algorithm for increasing the robustness of RED's active queue management.ACIRI Technical Report,2001
    [44]Pan R,Probhakar B,Psounis K.CHOKe:A stateless active queue management scheme for approximating fair bandwidth allocation.In:Proceedings of IEEE INFOCOM,2000,942-951
    [45]Hollot C,Misra V,Towsley D,et al.Analysis and design of controllers for AQM routers supporting TCP flows.IEEE Transactions on automatic control,2002,47(6):945-959
    [46]Wang C,Li B,Hou Y T,et al.LRED:A robust active queue scheme based on packet loss ratio.In:Proceedings of IEEE INFOCOM,2004,1-12
    [47]Long C,Zhao B,Guan X,et al.The yellow active queue management algorithm.Computer Networks,2005,47(4):525-550
    [48]Kunniyurs,Srikant R.Analysis and design of an adaptive virtual queue(AVQ)algorithm for active queue management.In:Proceddings of ACM SIGCOMM,2001,123-134
    [49]Feng W,Kandlur D D,Saha D,et al.The blue active queue management algorithms.IEEE/ACM Transactions on networking,2002,10(4):513-528
    [50]Pan R,Breslau L,Prabhakar B,et al.Approximate fairness through differential dropping.ACM Computer Communication Review,2003,33(2):23-39
    [51]Stoica I.Core-stateless fair queue:Achieving approximately fair bandwidth allocations in high-speed networks.IEEE/ACM Transactions on networking,2003,11(1):33-46
    [52]王建新,杨湘,陈建二.QL-CSFQ:一种结合队列长度的CSFQ算法.电子学报,2007,35(4):736-742
    [53]Athuraliya S,Low S,Li V.REM:Active queue management.IEEE Network Magazine,2001,15(3):945-949
    [54]高文字,王建新,陈松乔.PFED:一种基于预测的公平的主动队列管理算法.计算机研究与发展,2006,43(2):204-210
    [55]Park E C,Lim H,Park K J,et al.Analysis and design of the virtual rate control algorithm for stabilizing in TCP Netwarks.Computer Networks,2004,44(1):17-41
    [56]Jianxin W,Liang R,Yunhao L.A Robust Proportional Controller for AQM Based on Optimized Second-Order System Model.Elsevier Journal of Computer Communications.2008,31(10):2468-2476
    [57]Jianxin W,Liang R,Yunhao L.Design of a Stabilizing AQM Controller for Large-Delay Networks based on Internal Model Control.Elsevier Journal of Computer Communications.2008,31(10):1911-1918
    [58]Wydrowski B,Zukerman M.MaxNet:A congestion control architecture.IEEE Communications Letters,2002,6(11):512-514
    [59]Jain S,Loguinov D.PIQI-RCP:Design and Analysis of Rate-Based Explicit Congestion Control.In:Proceedings of IWQoS,2007,10-20
    [60]Zhang Y,Kang S R,Loguinov D.Delay-independent stability and performance of distributed congestion control.IEEE/ACM Transactions on Networking,2007,15(4):838-851
    [61]Zhang Y,Leonard D,Loguinov D.JetMax:Scalable max-min congestion control for high-speed heterogeneous networks.In:Proceedings of IEEE INFOCOM,2006,1(1):1-13
    [62]Ihsan A Q,Taieb Z.On the Design of Load Factor based Congestion Control Protocols for Next-Generation Network.In:Proceedings of IEEE INFOCOM 2008,546-555
    [63]叶进,王建新,龚皓.无线/有线混合网络中基于丢包区分的TCP改进.通信学报,2007,28(5):15-21
    [64]Ellen L,Hahne.Round-robin scheduling for max-min fairness in data networks.IEEE Journal on Selected Areas in Communications,1991,9(7):1024-1039
    [65]Parekh A K,Gallager R G.A generalized processor sharing approach to flow control in integrated services networks:the single-node case.IEEE/ACM Tran sactions on Networking,1993,1(3):344-357
    [66]Katevenis M,Sidiropoulos S,Courcoubetis C.Weighted round-robin cell multiplexing in a general-purpose ATM switch chip.IEEE Journal on Selected Areas in Communications,1991,9(8):1265-1279
    [67]Shreedhar M,Gvarghese.Efficient fair queueing using deficit round robin.IEEE/ACM Transactions on networking,1996,4(3):375-385
    [68]Guo C.SRR:An O(1) time complexity packet scheduler for flows in muti-service packet networks.In:Proceedings of ACM SIGCOMM,2001,211-222
    [69]Ramabhadran S,Paqquale J.Stratified round robin:a low complexity packet scheduler with bandwidth fairness and bounded delay.In:Proceedings of ACM SIGCOMM,2003,239-250
    [70]Parekh A K,Gallager R G.A generalized processor sharing approach to flow control in integrated services networks:The single-node case.IEEE/ACM Transactions on networking.1993,1(3):344-357
    [71]Stiliadis D,Varma A.Efficient fair queueing algorithms for packet-switched networks.IEEE/ACM Transactions on networking,1998,6(2):75-185
    [72]Zhang L.Virtual clock:A new traffic control algorithm for packet switching networks.In:Proceedings of ACM SIGCOMM,1990,19-29
    [73]高文宇,陈松乔,王建新.用于DiffServ的核心无状态的虚拟时钟调度算法.通信学报,2004,25(10):134-142
    [74]Cobb J A.Time-shift scheduling:Fair scheduling of flow in high-speed networks.IEEE/ACM Transactions on networking,1998,6(3):274-285
    [75]Ferrero D,UrvoyKeller G.A size-based scheduling approach to improve fairness over 802.11 wireless networks.In:Proceedings of ACM SIGCOMM Post session,2006
    [76]Jiang Y,Tham C K,Ko C C.A probabilistic priority scheduling discipline for high-speed networks.In:Proceedings of IEEE HPSR,2001,1-5
    [77]Jiang Y,Tham C K,Ko C C.A probabilistic priority scheduling discipline for mufti-service networks. In: Proceedings of IEEE ISCC, 2001, 450-455
    [78] Anker T. Probabilistic Fair Queuing. In: Proceedings of IEEE Workshop on HPSR, 2001, 397-401
    [79] Zhang M. Probabilistic packet scheduling: achieving proportional share bandwidth allocation. In: Proceedings of IEEE INFOCOM, 2002,1650-1659
    [80] Kenney P M. Stochastic fairness queueing. In: Proceedings of IEEE INFOCOM, 1990, 733-740
    [81] Bhagwal P, Bhattacharya P, Krishma A. Enhancing throughput over wireless LANs using channel state dependent packet scheduling. In: Proceedings of IEEE INFOCOM, 1996, 1133-1140
    [82] Lu S, Bharghavan V, Srikant R. Fair scheduling in wireless packet networks. In: Proceedings of ACM SIGCOMM, 1997, 63-74
    [83] Ng T S, Sloica I, Zhang H. Packet fair queueing algorithms for wireless networks with location dependent errors. In: Proceedings of IEEE INFOCOM, 1998,1103-1111
    [84] Srivaslava M, Fragouli C, Sivaraman V. Controlled multimedia wireless link sharing via enhancedclass-based queuing with channel-state-dependent packet scheduling. In: Proceedings of IEEE INFOCOM, 1998, 572-580
    [85] Ramanalhan P, Agrawal P. Adapting packet fair queueing algorithms to wireless networks. In: Proceedings of ACM MOBICOM, 1998, 1-9
    [86] Lu S, Vandagopal T, Bharghavan V. Fair scheduling in wireless packet networks. Computer Communication Review, 1997, 27(4):63-74
    [87] Kim B. A network service providing wireless channel information for adaptive mobile applications. In: Proceedings of IEEE ICC, 2001,1345-1351
    [88] Kawadia V, Kumar P R. A cautionary Perspectivw on.Corss layer design. IEEE Wireless Communication Magazine, 2005, 12(1):3-11
    [89] Pilosof S, Ramjee R, Raz D, Shavitt Y, et al. Understanding TCP fairness over wireless LAN. In: Proceedings of IEEE INFOCOM, 2003, 863-872
    [90] Wu Y, Niu Z, Zheng J. Upstream downstream unfairness issue of TCP over wireless LANs with per-flow queueing. In: Proceedings of IEEE ICC, 2005, 3543-3547
    [91] Ha J, Choi C H. TCP fairness for uplink and downlink flows in WLANs. In: Proceedings of IEEE GLOBECOM, 2006,4145-4150
    [92] Ferrero D, Urvoy-Keller G. A size-based scheduling approach to improve fairness over 802.11 wireless networks. In: Proceedings of ACM SIGCOMM Post session, Italy, 2006
    [93] Heusse M, Rousseau F, Sabbatel G B. Performance anomaly of 802.11b. In: Proceedings of IEEE INFOCOM, 2003, 836-843
    [94] Sadeghi B, Kanodia V, Sabharwal A, et al. Opportunistic media access for multirate Ad Hoc networks. In: Proceedings of ACM MOBICOM, 2002, 24-35
    [95] Heusse M, Rousseau F, Guillier R, et al. Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless LANs. In: Proceedings of ACM SIGCOMM, 2005, 121-135
    [96] Keceli F, Inan I, Ayanoglu E. TCP ACK congestion control and filtering for fairness provision in the uplink of IEEE 802.11 infrastructure basic service set. In: Proceedings of IEEE ICC, 2007, 4512-4517
    [97] Bottigliengo M, Casetti C, Chiasserini C F, et al. Enhancing fairness for short-lived TCP flows in 802.11b WLANs. IEEE Transactions on Vehicular Technology, 2007, 56(1): 206-217
    [98] Zhou W, Qiao D. Fulfillment-based fairness: A new fairness notion for multi-AP wireless hotspots. In: Proceedings of IEEE ICC, 2007, 791-796
    [99] Bejerano Y, Han S J, Li L E. Fairness and load balancing in wireless lans using association control. In: Proceedings of ACM MobiCom, Philadelphia, 2004,315-329
    [100]Kuhn F, Wattenhofer R, Zollinger A. Worst-case optimal and average-case efficient geometric ad-hoc routing. In: Proceedings of ACM MobiHoc, 2003, 267-278
    [101]Mahajan R, Floyd S, Wetherall D. Controlling high-bandwidth flows at the congested router. TR-01-001. AT&T Center for Internet Research at ICSI (ACIRI), April 2001
    [102] Feng W, Kandlur D, Saha D, et al. Stochastic fair Blue: A queue management algorithm for enforcing fairness.In:Proceedings of IEEE INFOCOM,2001,1520-1529
    [103]Chatranon G,Labrador M A,Banerjee S.BLACK:detection and preferential dropping of high bandwidth unresponsive flows.In:Proceedings of IEEE ICC,2003,664-668
    [104]汤德佑,骆嘉伟,张大方等.一种提高稳定性和公平性的主动队列管理机制.计算机研究与发展,2005,42(7):1136-1142
    [105]Ho C Y,Chan Y C,Chen Y C.A TCP friendly stateless AQM scheme for fair bandwidth allocation.In:Proceedings of the Joint International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services(ICAS/ICNS 2005),2005,14-19
    [106]Le L,Aikat J,Jeffay K,et al.Differential congestion notification:Taming the elephants.In:Proceedings of ICNP 2004,118-128
    [107]Moon J C,Lee B G.Rate-Adaptive Snoop:A TCP enhancement scheme over rate-controlled lossy links.IEEE/ACM Transactions on Networking,2006,14(3):603-615
    [108]Hu J H,Yeung K L.FDA:a novel base station flow control scheme for TCP over heterogeneous networks.In:Proceedings of IEEE INFOCOM 2001,142-151
    [109]Kamerman A,Monteban L.WaveLAN II:A high-performance wireless LAN for the unlicensed band.Bell Labs Technical Journal,1997,2(3):118-133
    [110]Gavin H,Nitin V,Paramvir B.A rate-adaptive MAC protocol for multi-hop wireless networks.In:Proceedings of ACM MOBICOM.2001,236-250
    [111]Sadeghi B,Kanodia V,Sabharwal A,et al.Opportunistic media access for multirate ad hoc networks.In:Proceedings of ACM MOBICOM,2002,24-35
    [112]Chou C T,Shin P G,Shankar S N,Contention-based airtime usage control in multirate IEEE 802.11 wireless LANs.IEEE/ACM Transactions on Networking,2006,14(6):1179-1192
    [113]Yoo S H,Choi J H,Hwang J H,et al.Eliminating the performance anomaly of 802.11b.In:Proceedings of International Conference on Networking,Beijing,2005,1055-1062
    [114]Seok Y S, Park J, Choi Y. Queue management algorithm for multi-rate wireless local area networks. In: Proceedings of IEEE PIMRC, 2003, 2003-2008
    [115]IEEE Computer Society. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE standard 802.11, 1999
    [116]NS-2 network simulator.http://www.isi.edu/nsnam/ns/,2006
    [117]Widmer J. NOAH. http://icapeople.epfl.ch/widmer/uwb/ns-2/noah/,2004
    [118]Punnoose R, Nikitin P, Stancil D. Efficient simulation of Ricean fading within a packet simulator. In: Proceedings of IEEE VTC, 2000, 764-767
    [119]Chiu D M, Jain R. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Computer Networks and ISDN Systems, 1989,17(1):1-14
    [120]Kim S, Kim B S, Fang Y. Downlink and uplink resource allocation in IEEE 802.11 wireless LANs. IEEE Transactions on Vehicular Technology, 2005, 54(1): 320-327
    [121]Ng A, Malone D, Leith D. Experimental evaluation of TCP performance and fairness in an 802. 11e test-bed. In: Proceedings of ACM SIGCOMM Workshop on Experimental Approaches to Wireless Network Design and Analysis, 2005, 17-22
    [122]Amit P J, Kimaya M, Krishna N, et al. IQU: Practical queue based user association management for WLANs. In: Proceedings of ACM MOBICOM, 2006,158-169
    [123]Sungwon Y, Martin K, Sachin G, et al. Proxy-RED: An AQM scheme for wireless local area networks. In: Proceedings of IEEE ICCCN, 2004, 460-465
    [124]Xiaoyang L, Xiaolin C, Jogesh K M. VQ-RED: an efficient virtual queue management approach to improve fairness in infrastructure WLAN. In: Proceedings of IEEE LCN, 2005, 632-638
    [125]Kaixin X, Mario G, Lantao Q, et al. Enhancing TCP fairness in Ad Hoc wireless networks using neighborhood RED. In: Proceedings of ACM MOBICOM, 2003, 16-28
    [126]Zhenghua F, Petros Z, Haiyun L, et al. The impact of multihop wireless channel on TCP throughput and loss.In:Proceedings of IEEE INFOCOM,2003,1733-1753
    [127]RFC 3168.www.ietf.org/rfc/rfc3168.txt,2007
    [128]Rui Paulo.http://netbsd-soc.sourceforge.net/projects/ecn/,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700