无线网络跨层调度算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线网络的快速发展,移动通信用户数和因特网用户数急剧增加,有限的无线资源与多媒体业务不断提高的服务质量要求之间的矛盾日益尖锐。新一代无线通信系统不仅要求具有更大的系统容量,还要支持移动多媒体业务传输,即除了提供话音业务之外,还要支持低/高速数据、图象等非话音业务的传输,同时能够满足不同用户和不同业务的服务质量(QoS)要求。无线资源调度技术是无线网络对用户提供服务质量保障的关键所在。在很多应用场景下,无线信道具有明显的资源受限和时变衰落特性,传统的基于有线网络或无线静态信道的分组调度算法无法保证无线网络用户获得很好的QoS。针对无线网络环境中的无线信道时变传输特性,设计能够在保证用户QoS的同时提高无线网络容量的调度算法是当前无线通信领域的一个研究热点。
     本论文以新一代通信系统中最重要的两类无线网络形态为研究背景,分别对基于IEEE 802.16无线城域网和认知无线电网络的调度算法进行了系统研究,同时尝试将经济学中的相关理论引用到无线调度算法的设计中,以更好地提高系统性能和用户对服务质量的评价水平。本论文的研究成果可为下一代无线通信网络提供高效的跨层调度策略,还可为下一代无线通信系统的标准化提供参考依据。具体而言,本文的主要研究内容和创新之处在于:
     1.研究了IEEE 802.16无线城域网中的跨层资源调度问题。首先深入研究了IEEE 802.16协议对物理层和MAC层的详细规范。对物理层的自适应调制编码技术进行了深入探讨,使传输参数自适应地匹配时变的无线信道,在保证预先设定的误包率(PER)前提下实现对带宽的高效利用。IEEE 802.16协议在MAC层定义了四种业务类型,不同业务类型具有各自不同的QoS需求,也就是说,调度算法需要在多种业务类型共存的场景中运行。基于上述分析,提出了一种新颖的跨层调度算法。该调度算法综合考虑无线信道状态、QoS满意程度、业务优先级、用户公平因子、队列状态等多个跨层因素来做出用户选择的决策,在首先保证各用户最小QoS需求的基础上,尽力提高系统的整体性能。对于选择出来要接受服务的用户,设计高效的时隙分配算法,根据当前系统资源总量及用户需求为其分配恰当的时隙资源,避免资源浪费,更好地提高系统性能。
     2.研究了认知无线电网络中的跨层资源调度问题。认知无线电技术的出现,为解决频谱资源不足、实现频谱动态管理及提高频谱利用率提供了强有力的技术支撑,是未来通信领域的热点技术之一。在认知无线电网络中设计调度算法,必须充分考虑认知用户对主要用户的功率干扰,以保证主要用户的QoS性能不因与次要用户工作在同一区域而受损害。论文采用了机会调度算法的设计理念,同时对信道状态信息和干扰功率信息进行机会的利用,使对主要用户干扰功率较大的用户在信道条件较好的情况下进行数据传输。在此基础上,提出了两种跨层调度算法:基于系统性能联合优化的调度算法和基于最小性能保证的两步调度算法,实现了在认知用户QoS性能没有明显退化的同时显著地降低了认知网络对主要用户的平均功率干扰。
     3.研究了基于投资管理理论的跨层资源调度问题。系统地研究了经济学中的投资管理理论,并找到了无线资源调度与投资管理理论相结合的结合点,研究了基于投资管理理论的无线调度算法的应用及性能,并基于无线接入网络和认知无线电网络分别设计了新颖的跨层调度准则,综合考虑网络性能与用户需求,为用户提供鲁棒的服务质量保证。
     4.研究了基于用户感知服务质量的跨层资源调度问题。将经济学理论中的容忍区域QoS模型以及感知服务质量分析理论应用到无线网络调度算法设计中。对无线网络环境中的用户感知服务质量进行了具体的理论分析并给出了恰当的管理策略。定义了用户感知服务质量的量化表达式,把用户感知服务质量当作一个新颖的QoS参数,并将其作为优化目标来设计高效的跨层调度算法,有效提高了用户对服务水平的满意度,同时实现了对系统资源的合理利用。
With the development of mobile communications, mobile users and Internet users are increasing dramatically, and the conflict between the limited wireless resource and the increasing Quality of Service (QoS) requirement of multimedia traffics is becoming more and more serious. People expect that next generation mobile communication systems can provide larger capacity and support mobile multimedia services. Besides providing real-time speech service, next generation mobile communication systems are required to support other services such as low/high rate data, pictures etc. Heterogeneous services have different QoS requirements, for example, the requirements of time delay, error bit rate, and transmitting rate for heterogeneous services are differentiated. In many circumstances, packet scheduling policies designed for wired networks and wireless static channels are inadequate for wireless networks because of the limited and time-varying wireless channel capacity. As a result, it is a hot topic in the area of wireless communications to design the packet scheduling algorithms by considering the characteristics of wireless time-varying channels with the objectives of providing QoS guarantees to users as well as increasing the capacities of the wireless networks.
     In this dissertation, the cross-layer resource scheduling techniques in the typical two emerging types of wireless networks, IEEE 802.16 based Wireless Metropolitan Area Networks(WMAN) and Cognitive Radio Networks, are intensively studied. Economics theories are introduced into the design of wireless scheduling algorithms in order to improve the system performance and user perceived QoS. The research results provide next generation wireless communication networks reference cross-layer optimization strategies and are helpful for the standardization studied. The contents of this work are listed as follows:
     1. Based on the careful research of IEEE 802.16 protocol, we propose a novel cross-layer scheduling algorithm at the IEEE 802.16 WMAN MAC layer for multiple connections with diverse QoS requirements, where each connection employs AMC scheme at the PHY layer. Based on the specified QoS parameters, our scheduler will first satisfy all the QoS requirements; at the same time, it uses the wireless bandwidth efficiently by exploiting multiuser diversity among connections with different kinds of services and finally makes an optimum trade off between throughput and fairness.
     2. For cross layer resource scheduling in cognitive radio networks. In cognitive radio systems, one more aspect should be considered to protect the primary user from harmful interference when cognitive users are working in the vicinity of the primary user. Providing individual QoS guarantees and hybrid fairness for multimedia services is also a challenging issue, especially exploiting the synergy between the PHY layer and the MAC layer. The design essence of opportunistic scheduling are exploited here. The scheduler can use the channel state information and interference power information opportunistically. As a result, the user whose interference power is larger will be scheduled when its channel condition is in good state. Our scheduler can decrease the average interference to the primary user with efficient bandwidth utilization and without significantly dropping the QoS.
     3. We present novel cross-Layer scheduling strategies based on portfolio optimization for multiple connections in wireless access networks and cognitive radio networks, find the way to incorporate the portfolio theory in the design of wireless resource scheduling, and investigate the application and performance of portfolio optimization based scheduling algorithm. Each connection admitted in the system is assigned a priority, which is updated dynamically based on its channel quality, QoS status, system specific considerations and user preferences. The proposed schemes can achieve a desired QoS level and provide flexibility in setting user preference levels.
     4. For cross layer resource scheduling base on user perceived quality of service, we incorporate the tolerance region based QoS model and the analysis theory of user perceived quality of service into the design of wireless resource scheduling. User perceived QoS in wireless environment is well investigated, and the corresponding policy is given. We regard user perceived QoS as a novel QoS parameter, and make it as the optimize objective to design the cross layer scheduling algorithm. The proposed schemes can clearly improve the degree of user satisfaction, and at the same time use the wireless resource efficiently.
引文
[1] Frattasi S, Fathi H, Fitzek F. H. P., Prasad R, Katz M. D., "Defining 4G Technology from the User's Perspective", IEEE Network, Vol. 20, Issue 1, Jan.-Feb. 2006.
    [2] Zahariadis T. B., "Migration toward 4G Wireless Communications", IEEE Wireless Communications, Vol. 11, Issue 3, June 2004.
    [3] Carneiro G, Ruela J, Ricardo M, "Cross-layer Design in 4G Wireless Terminals", IEEE Wireless Communications, Vol. 11, Issue 2, Apr 2004.
    [4] Lu W. W., Walke B. H., Xuemin Shen, "4G Mobile Communications: toward Open Wireless Architecture", IEEE Wireless Communications, Vol. 11, Issue 2, Apr 2004.
    [5] Ohya T, Miki T, "Enhanced-reality Multimedia Communications for 4G Mobile Networks", 1st International Conference on Multimedia Services Access Networks, 2005. MSAN'05., 13-15 June 2005 pp: 69-72.
    [6] Grenville Armitage, Quality of service in IP Networks: Foundations for Multi-Service Internet, (中译本),机械工业出版社, 2001.
    [7] Safwat A M, Mouflah. H, "4G network technologies for mobile telecommunications[J]". IEEE Network, 2005, 19(5): 3-4.
    [8] IEEE std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks-Part 16 : Air Interface for Fixed Broadband Wireless Access Systems[M]. New York: IEEE Press, Oct. 2004.
    
    [9] 3GPP TS 25913, Requirements for E-UTRA and E-UTRAN (Release 7) [M]. 2006.
    [10] Zander J, "Radio resource management in future wireless network: requiremens and limitations[J]". IEEE Communications Magazine, 1997, 35(8): 30-36.
    
    [11] A. Demers, S. KeshaV, and S. Shenker, "Analysis and simulation of a fair queueing algorimm", Journal of Internetworking Research and Experience, vo 1.1, pp.3-26, 1990.
    [12]A.Parekh and R.Gallager,"A generalized processor sharing approach to flow control in integrated services networks:the single-node case",IEEE/ACM transactions onNetworking,pp.1(3):344-357,1993.
    [13]Yaxin Cao,Li,V.O.K.,"Scheduling algorithms in broadband wireless networks",Proceedings of the IEEE,Volume:89 Issue:1,Jan.2001 Page(s):76-87.
    [14]S.J.Golestani,"A self-clocked fair queueing scheme for broadband applications",IEEE INFOCOM'94,1994:636-645.
    [15]R.Bennett,H.Zhang,"WF~2Q:Worst case fair weighted fair queueing",IEEE INFOCOM'96,Mar.1996:120-128.
    [16]Goldsmith A J,Wicker S B.Design challenges for energy-constrained ad hoc wireless networks[J].IEEE Wireless Communications,2002,9(4):8-27.
    [17]IEEE 802.16 Working Group on Broadband Wireless Access.http://wirelessman.org/.
    [18]贾会玲,异构无线网络中的接入选择与准入控制研究,博士学位论文,杭州:浙江大学,2007.
    [19]Wu G,Havinga P J M,Mizuno M.Wireless Interact over heterogeneous wireless networks[C].Proceeedings ofIEEE GLOBECOM' 01.San Antonio:IEEE.2001:1759-1765.
    [20]Brodersen R W:Wolisz A,Cabric D,et al.Corvus:A cognitive radio approach for usage of virtual unlicensed spectrum[J].UC Berkeley White Paper,2004.
    [21]Home W D,Adaptive spectrum access:Using the full spectrum space.[online][J].Available:http:tprc.org/papers/2003/225/Adaptive Spectrum Home.pdf,2003.
    [22]J Mitola etal.Cognitive radio:Making software radios more personal[J].IEEE Personal Communications,1999,6(4):13-18.
    [23]Federal Communications Commission.Spectrum policy task force[J].Rep.ET Docket,2002,(02-1 35).
    [24]Haykin S.Cognitive radio:brain-empowered wireless communications[J].IEEE Journal on Selected Areas in Communications,2005,23(2):201-220.
    [25] Fatah, H.; Leung, C., "An overview of scheduling algorithms in wireless multimedia networks", Wireless Communicaitons, IEEE [see also IEEE Personal Communicaitons], Volume:9 Issue:5 , Oct.2002 Page(s): 76-83.
    [26] J.L.Rexiford, A.G.Greenberg, E.G.Bonomi, "Hardware-efficient Fair Queueing Architectures for High Speed Networks", Proc. IEEE INFOCOM. 1996, pp.63 8-646.
    [27] J.C.R.Bennett, D.C.Stephens, H.Zhang, "High Speed, Scalable, and Accurate Implementation of Packet Fair Queueing Algorithms in ATM Networks", URL: www.cs.cmu.edu/~hzhang/publications/.
    [28] F.M.Chiussi, A.Francini, "Implementing Fair Queueing in ATM Switches: The Discrete-RateApproach", IEEE INFOCOM, 1998, pp .272-281.
    [29] F.M.Chiussi, A.Francini, "Implementing Fair Queueing in ATM Switches-Part1: A Practical Methodology for the Analysis of Delay Bounds", IEEE GLOBECOM, 1997, pp .509-518.
    [30] F.M.Chiussi, A.Francini, "Implementing Fair Queuing in ATM Switches-Part 2: The Logarithmic Calendar Queue", IEEE GLOBECOM, 1997, pp .519-526
    [31] F.M.Chiussi, A.Francini, "A Low-cost Architecture for the Implementation of Worst-case Fair Schedulers in ATM Switches", IEEE GLOBECOM, 1998.
    [32] F .M.Chiussi, A .Francini, "Adances in Implementing Fair Queueing Schedulers in Broad band network", IEEE I I'C99.
    [33] D.C.Stephens, J.C.R.Bennett, H.Zhang, "Implementing Scheduling Algorithms in High-speed Networks", IEEE Select.Area.Commun.1999, vol.17, no.6.
    [34] H.Jonathan Chao, Hsiling Cheng, Yau-Ren Jenq, "Design of a Generalized Priority Queue Manager for ATM Switches", IEEE J. Select .Areas Commun. June, 1997, vol.15, no.5, pp .867-880.
    [35] E.hahne, "Round Robin Scheduling for Fair Flow Control in Data Communication Networks", PhD.thesis, Dept. Elect. Eng. And Comput. Sci, M.I.T, Dec.1986.
    [36] A.Demers, S.Keshav, S.Shenker, "Analysis and simulation of a fair queueing algorithm", Internet Res. and Exper. vol.1, 1990
    [37] A.K.Parekh, R.G.Gallager, "A Generalized Procesor Sharing Approach to Flow Control in Services Networks:The single-Node Case", IEEE/ACM Transactions on Networking, Vol.1, No.3, June 1993.
    [38] A.K.Parekh, R.G.Gallager, "A Generalized Procesor Sharing Approach to Flow Control in Services Networks:The Multiple Node Case", IEEE/ACM Transactions on Networking, Vol.2, No.2, April 1994.
    
    [39] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar, "Providing quality of service over a shared wireless link," IEEE Commun Mag., vol. 39, no. 2, pp. 150-154, Feb. 2001.
    [40] J.C.R.Bennett, H.zhang, "WF~2Q: Worst-case fair weighted fair queueing", in Proc. IEEE INFOC0M'96, San Francicso, CA, Mar 1996.
    [41] J.C.R.Bennett, H.zhang, "Hierarchical packet fair queueing algorithms", IEEE/ACM Transactions on Networking, Vol.5, No5, Otober 1997.
    [42] P.Goyal, H.M.Vin, H.Cheng, "Start-time Fair Queueing: A Scheduling Algorithm for Integrgted services Packet Swicthing Networks", IEEE/ACM Transactions on Networking,Vol.5, No5, Otober 1997.
    
    [43] N.R.Figueira, J.Pasquale, "A schedule ability condition for deadline-ordered service disciplines", IEEE/ACM Transactions on Networking, Volume:5 Issue:2, April 1997. Page(s): 232-244.
    
    [44] R.L.Cruz, "Quality ofservice guarantees in virtual circuit switched networks", IEEE Journal on Selected Areas in Commuincations, Volume: 13, Issue :6, August 1995. Paes(s): 1048-1056.
    [45] A.Demers, S.Keshav, S.Shenker, "Analysis and simulation of a fair queueing algorithm", Proc.ACM SIGCOMM'89, 1989, pp3-12.
    
    [46] Songwu Lu, Vaduvur Bharghavan, R.Srikant, "Fair scheduling in Wireless Packet NeIworks", IEEE/ACM Transactions on Networking, Aug1999, page(s): 473-489.
    [47] T.S.Eugene Ng, I.Stoica, and H.Zhang, "Packet fair queueing algorithms for wireless networkswith location-dependent errors" , In Proc.INFOCOM96 , Mar1996, pp.1133-1140.
    [48] P.Ramanathanetal, "Adapting packet fair queuing to wireless networks", ACM/MOBICOM, Oct 1998.
    
    [49] Ericsson, N.S, "Adaptive modulation and scheduling of IP traffic over fading channels", VTC1999-Fall. IEEE VTS 50th, Page(s):849-853 vol.2.
    [50] A.Jalali, R.padovani, R.Pankaj, "Data throughput of CDMA-HDR a high efficiency-highdata rate personal communication wireless system" , VTC2000-Spring. Tokyo. Page: 1854-1858 vol.3.
    
    [51] IEEE P802.16-REVd/D5-2004: "Air Interface For fixed Broadband Wireless Access Systems".
    [52] IEEE Standard 802.16 Working Group, IEEE standard for local and metropolitan area networks part 16: air interface for .fixed broadband wireless access systems (revision of IEEE standard 802.16-2001), 2004.
    [53] IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Corl-2005 (Amendment and Corrigendum to IEEE Std 802.16-2004): Part 16: "Air Interface for Fixed and Mobile Broadband Wireless Access Systems."
    [54] Q. Liu, X. Wang, and G. B. Giannakis, "A cross-layer scheduling algorithm with QoS support in wireless networks", IEEE Trans. On Veh. Technol., vol.. 55, no. 3, pp. 839-847, May. 2006.
    [55] 3GPP TR 25.848 V4.0.0, Physical Layer Aspects of UTRA High Speed Downlink Packet Access (Release 4), 2001.
    [56] 3GPP2 C.S0002-0 Version 1.0, Physical Layer Standard for cdma2000 Spread Spectrum Systems, Jul. 1999.
    [57] J. Karaoguz, "High-rate wireless personal area networks," IEEE Commun. Mag., vol. 39, no. 12, pp. 96-102, Dec. 2001.
    [58] Q. Liu, S. Zhou, and G. B. Giannakis, "Cross-layer modeling of adaptive wireless links for QoS support in multimedia networks", in Proc. of 1st Intl. Conf. on QoS in Heterogeneous Wired/Wireless Networks (QShine), pp. 65-75, Dallas, TX, Oct. 18 - 20, 2004.
    [59] Hayes J. F., "Adaptive Feedback Communications", IEEE Transactions on Communications, vol. 16, pp: 29-34, Feb. 1968.
    [60] A. Doufexi, S. Armour, M. Butler, A. Nix, D. Bull, J. McGeehan, and P. Karlsson, "A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards," IEEE Commun. Mag., vol. 40, no. 5, pp. 172-180, May 2002.
    [61] Goldsmith A. J. and Varaiya P. P., "Capacity of Fading Channels with Channel Side Information", IEEE Transactions on Information Theory, Vol. 43, pp: 1986-1992, Nov. 1997.
    [62] Goldsmith A. J. and Chua S. G., "Variable-Rate Variable-Power MQAM for Fading Channel", IEEE Transactions on Communications, Vol. 45, pp: 1218-1230, Oct. 1997.
    [63] Goldsmith A. J. and Chua S. G., "Adaptive Coded Modulation for Fading Channels", IEEE Transactions on Communications, Vol. 46, pp: 595-602, May 1998.
    [64] Alouini M. S. and Goldsmith A J., "Capacity of Rayleigh Fading Channels under Different Adaptive Transmission and Diversity-combining Techniques", IEEE Transactions on Vehicular Technology, Vol. 48, pp: 1165-1181, July 1999.
    [65] Seong Taek Chung and Goldsmith A. J., "Degrees of Freedom in Adaptive Modulation: A Unified View", IEEE Transactions on Communications, Vol. 49, pp: 1561-1571, Sept. 2001.
    [66] Vishwanath S. and Goldsmith A. J., "Adaptive Turbo-coded Modulation for Flat-fading Channels", IEEE Transactions on Communications, Vol. 51, pp: 964-972, June 2003.
    [67] Huawei, "STTD with Adaptive Transmitted Power Allocation", 3GPP, TSG, RAN, WG1#26, R1-02-0711, Gyeongju, Korea, May 13-16, 2002.
    
    [68] Zhou Z., Vucetic B., Dohler M., Yonghui Li, "MIMO Systems with Adaptive Modulation", IEEE Transactions on Vehicular Technology, Vol. 54, pp: 1828-1842, Sept. 2005.
    [69] Maaref A. and Aissa S., "Capacity of Space-time Block Codes in MIMO Rayleigh Fading Channels with Adaptive Transmission and Estimation Errors", IEEE Transactions on Wireless Communications, Vol 4, pp: 2568-2578, Sept. 2005.
    [70] Mighore M. D., Pinchera D., Schetino F., "Improving Channel Capacity Using Adaptive MIMO Antennas", IEEE Transactions on Antennas and Propagation, Vol 54, pp: 3481-3489, Nov. 2006.
    [71] Antonio F. et al, "Adaptive MIMO Transmission for Exploiting the Capacity of Spatially Correlated Channels", IEEE Transactions on Vehicular Technology, Vol. 56, pp: 619-630, March 2007.
    [72] Keller T. and Hanzo L., "Adaptive Modulation Techniques for Duplex OFDM Transmission", IEEE Transactions on Vehicular Technology, Vol. 49, pp: 1893-1906, Sept. 2000.
    [73] Olfat M., Farrokhi F. R., Liu K. J. R., "Power Allocation for OFDM Using Adaptive Beam forming over Wireless Networks", IEEE Transactions on Communications, Vol. 53, pp: 505-514, March 2005.
    [74] Sigen Ye, Blum R. S., Cimini L. J., "Adaptive OFDM Systems with Imperfect Channel State Information", IEEE Transactions on Wierless Communications, Vol. 5, pp: 3255-3265, Nov. 2006.
    [75] Pengfei Xia, Shengli Zhou, Giannakis G. B., "Adaptive MIMO-OFDM Based on Partial Channel State Information", IEEE Transactions on Signal Processing, Vol. 52, pp: 202-213, Jan 2004.
    [76] Yong Sun, Zixiang Xiong, "Progressive Image Transmission over Space-time Coded OFDM-based MIMO Systems with Adaptive Modulation", IEEE Transactions on Mobile computing, Vol. 5, pp: 1016-1028, Aug. 2006.
    [77] C. Pirak, Z. J. Wang, K. J. R. Liu, S. Jitapunkul, "Adaptive Channel Estimation Using Pilot-Embedded Data-Bearing Approach for MIMO-OFDM Systems", IEEE Transactions on Signal Processing, Vol. 54, pp: 4706-4716, Dec. 2006.
    [78] TSG-RAN Working Group 1 Meeting #18. TSGRl#18(010004).2001.System Level Simulation Results of Estimating Downlink Channel Quality from the Transmit Power of DPCH.USA.Panasonic.2001
    [79] Porxim Corporation. 802.11a-White Paper.USA.2003
    [80] IEEE.802.16e:Air Interface for Fixed and Mobile Broadband Wireless Access System.USA.2006.2
    [81] Nanda S., Balachandran K., Kumar S., "Adaptation Techniques in Wireless Packet Data Services", IEEE Communications Magazine, Vol. 38, pp: 54-64, Jan. 2000.
    [82] 3GPP Technical Report 25.848, Physical layer aspects of UTRA High Speed Downlink Packet Access.
    [83] Doufexi A et al, "A Comparison of the HIPERLAN/2 and IEEE 802.11a Wireless LAN standards", IEEE Communications Magazine, Vol. 40, pp: 172-180, May 2002.
    [84] M. S. Alouini and A. J. Goldsmith, "Adaptive modulation over Nakagami fading channels", Kluwer J. Wireless Commun., vol. 13, no. 1/2, pp. 119-143, May 2000.
    
    [85] Q. Liu, S. Zhou, and G. B. Giannakis, "Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links," IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1746-1755, Sep. 2004.
    [86] IEEE Standard 802.16 Working Group, FEC Performance With ARQ and Adaptive
    Burst Profile Selection, 2001.
    [87] K. J. Hole, H. Holm, and G. E. Oien, "Adaptive multidimensional coded modulation over flat fading channels," IEEE J. Sel. AreasCommun. ,vol. 18, no. 7, pp. 1153-1158, Jul. 2000.
    [88] S. Shakkottai and A. Stolyar, "Scheduling algorithms for a mixture of real-time and non-real-time data in HDR", in Proc. of the 17th International Teletraf.c Congress (ITC-17), Salvador da Bahia, Brazil, Sept. 24-28, 2001.
    [89] C. Chien, M.B. Srivastava, R. Jain, P. Lettieri, V. Aggarwal, R. Sternowski, "Adaptive radio for multimedia wireless links", IEEE J. Select. Areas Commun. 17 (1999)793-813.
    [90] R. Jain, D. Chiu and W. Haweu, "A Quantitative Measure of Fairness and Dicrimination for Resource Allocation in Shared Computer System", Research Report, TR-301, September, 1984. [91] J. Mitola III. Cognitive Radio: An Integrated Agent Architecture for Software
    Defined Radio. Ph. D. Dissertation, Royal Institute of Technology,2000. [92] Federal Communications Commission. Establishment of Interference Temperature Metric to Qnantify and Manage Interference and to Expand Available Unlicensed Operation in Certain Fixed Mobile and Satellite Frequency Bands. Notice of Inquiry and Proposed Rulemaking,ET Docket No. 03-289, 2003. [93] E Capar,T. Weiss, I. Martoyo, et al. Analysis of Coexistence Strategies for Cellular and Wireless Local Area Networks. Vehicular Technology Conference(VTC' 03), 2003, 3: 1812-1816.
    [94] R W: Broderson,A. Wolisz,D. Cabric, et al. White paper(2004): CORVUS: A cognitive radio approach for usage of virtual unlicensed spectrum,UC Berkeley Wtreless Research Center. [Online] Available at:
    http://bwrc.eecs.berkeley.edu/Research/MCMA/CRWhite paper _nail.pdf. [95] FCC. Notice of Proposed Rule Making and Order, ET Docket No. 03—322, December 2003.
    108
    [96] T. A. Weiss and EK. Jondral. Spectrum Pooling: An Innovative Strategy for the Enhancement of Spectrum Efficiency. IEEE Radio Communications, 2004, 42(3): 8-14.
    [97] T. Weiss, A. Krohn,J. Hillenbrand,et al. Efficient Signaling of Spectral Resources in Spectrum Pooling Systems. Proc, of the 10th Symposium On Communications and Vehicular Technology(SCVT' 03), 2003, 1: 1-6.
    [98] T. Weiss, A. Krohn,E Jondral. Synchronization Algorithms and Preamble Concepts for Spectrum Pooling Systems. Proe. of the Mobile&Wtreless Communications Summit,2003, 1: 788. 792.
    [99] E Capar, I. Martoyo, T. Weiss, et al. Comparison of bandwidth utilization for controlled and uncontrolled channel assignment in a spectrum pooling system. Vehicular Technology Conference(VTC' 02), 2002, 3: 1069—1073.
    [100] D. Cabric, S. M. Mishra, D. Willkomm, et. al. A Cognitive Radio Approach for Usage of V'mual Unlicensed Spectrum. The 14th IST Mobile and Wireless Communications Summit, June 2005.
    [101]S. M. Nishra, D. Cabric, C.Chang, et al. A real time cognitive radio testbed for physical and link layer experiments. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN' 05), 2005,1: 562-567. [102] http: //www. ieee802. org/22/.
    [103] IEEE 802.22 Working Group, IEEE 802. 22 Functional Requirements. September 2005.[Online]. Available at: http://www.ieee802.org/22/.
    [104] C. Cordeiro, IC Challapali, D. BirnJ, et al. IEEE 802. 22: The First Worldwide Wireless Standard Based on Cognitive-Radio. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN' 05), 2005, 1: 328-337.
    
    [105] M. M. Buddhikot, P. Kolodzy,S. Miller,etal. DIMSUMNet: New Directions in Wireless Networking Using Coordinated Dynamic Spectrum Access. IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks(ISWWMMN' 05), 2005, 1: 78-85.
    [106] P. Leaves, D. Grandblaise, D. Bourse, et al. Dynamic Spectrum Allocation in Composite Reconfigurable Wireless Networks. 1EEE Communications Magazine, 2004, 42(5) : 72-8 1.
    
    [107] L. Xu, R. Tonjes, T. Paila, et al. DRIVE-mg to the Internet: Dynamic Radio for Ip Services in Vehicular Environments. Proc. of 25th Annual IEEE Conference Oll Local Computer Networks (LCNC' 00) , 2000, 1: 281-289.
    [108] D. Grandblaise, D. Bourse, IC Moessner, et al. Dynamic Spectrum Allocation (DSA) and Reconfigurability. Proc. SoRware-Defmed Radio (SDR) Forum, 2002. [Online].Available at: http://www.sdrforum.org/pages/sdr02/NP2-03%20Buljore.pdf.
    [109] End-to-End Reconfigurability . [Online] . Available at : http : //e2r. motlabs. com/DeliverablesfE2R_WP5_D5. 3_050 727. pdf.
    [110] D. Grandblaise, C. XIoeck,k Moessner,et al. Techno-economic of Collaborative Based Secondary Spccmnn Usage-E2R Research aroject Outcomes Overview. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN' 05), 2005, 1: 318-327.
    
    [111]P Demestichas, G. Dimitrakopoulos, V Stavroulaki. Introducing reconfigurability in wireless B3G environments . [Online] . Available at : http : //www. eurasip. org/Proceedings/Ext/IST05/papers/1026. pdf.
    
    [112] Jun Zhao, Haitao Zheng, Guang-Hua Yang. Distributed Coordination in Dyllamic Sspectrum Allocation Networks. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN' 05), 2005, 1: 259—268.
    
    [113] http: //www. cs. ucsb. edu/-htzheng/cognitive/.
    
    [114] XG Working Group. The XG Vision. RFC v2. 0. [online]. Available at: http: //www. ir. bbn. com/projects/xmac/rfc/rfc-vision. pdf.
    
    [115] XG Working Group, The XG Architecture Framework . RFC v1.0. [Online]. Available at: http: //www. ir. bbn. com/projects/xmac/rfc/rfc-af. pdf.
    
    [116] Hamdi. K and Wei Zhang, "Uplink Scheduling with QoS Provisioning for Cognitive Radio Systems", in Proc. IEEE WCNC, March 2007, pp. 2592-2596.
    [117] S. Borst and P. Whiting, "The use of diversity antennas in high-speed wireless systems: Capacity gains, fairness issues, multi-user scheduling," Bell Laboratories Technical Memorandum, 2001.
    [118] S. Shakkottai and R. Srikant. Scheduling real-time traffic with deadlines over a wireless channel. In Proceedings of ACM Workshop on Wireless and Mobile Multimedia, Seattle, WA, August 1999.
    [119] P. Viswanath, D. Tse, and R. Laroia, "Opportunistic beamforming using dumb antennas," IEEE Trans. Inf. Theory, vol. 48, pp. 1277-1294, June 2002.
    [120] S. Lu, V. Bharghavan, and R. Srikant. Fair scheduling in wireless packet networks. IEEE/ACM Transactions on Networking, 7(4):473 {489, August 1999.
    [121] T. Nandagopal, S. Lu, and V. Bharghavan. A unified architecture for the design and evaluation of wireless fair queueing algorithms. In Proceedings of ACM Mobicom 1999, August 1999.
    [122] T. Ng, I. Stoica, and H. Zhang. Packet fair queueing algorithms for wireless networks with location-dependent errors. In Proceedings of IEEE INFOCOM 1998, volume 3, New York, 1998.
    [123] P Varaiya, Pricing and provisioning of quality-differentiated services. Information Theory and NetworkingW orkshop.27 June-1 July 1999.38
    [124] D. F. Ferguson, C. Nikolaou, and Y Yemini, An economy for flow control in computer networks.In Conference on Computer Communications( IEEE Infocom), (Ottawa ,Canada),April19 89.110-118.
    [125] Nemo Semret, Market Mechanisms for Network Resource Sharing, Ph.D. Thesis,Department of Electrical Engineering, Columbia University, 1999.
    [126] Lee W. McKnight, Jahangir Boroumand, Pricing Internet services: after flat rate, Telecommunications Policy,2000.24 (6-7):565-590.
    [127] Tristan Henderson, Jon Crowcroft, Saleem Bhati, Congestion Pricing-Paying your way in communication Networks,IEEE Internet Computing,20 01,5( 5),85 -89.
    [128] N.J. Keon and G.Anandalingam. Optimal pricing for multiple services in telecommunications networks ofering quality-of-service guarantees. IEEE/ACM Transactions on Networking,2003,11(1):66-80.
    [129] Jun Shu and P.Varaiya, Pricing network services. INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies.3 0 Ma rch- 3 April 2003.2: 1221-1230.
    [130]H.Markowitz,"Portfolio selection," Journal of Finance,vol.7,no.1,pp.77-91,Mar.1952.
    [131]J.W.Mwangoka,K.B.Letaief and Z.Cao,"Robust end-to-end QoS mainteanace in Non-Contiguous OFDM based cognitive radios",in Proc.IEEE ICC,2008.
    [132]孙红杰,方滨兴,张宏莉,基于用户感知的网络性能测量系统,《计算机工程》,2007年04期。
    [133]Han,Z.;Liu,X.;Wang,J.;Liu,K.J.R.,"Delay sensitive scheduling schemes for heterogeneous QoS over wireless networks",IEEE Wireless Communications,Volume 6,Issue 2,Feb.2007 Page(s):423-428.
    [134]陆彦辉,“B3G移动通信系统中无线资源管理技术的研究”,博士论文,北京邮电大学,2006.
    [135]Young Min Ki,Eun Sun Kim,and Dong Ku Kim,"Downlink Scheduling and Resource Management for Best Effort Service in TDD-OFDMA Cellular Netwrorks",2004.
    [136]Z.Ji and K.J.Ray Liu,"Dynamic Spectrum Sharing:A game Theoretical Overview",IEEE Communications Magazine,vol.45,pp.88-94,May 2007.
    [137]A.Fattahi,F.Fu,M.van der Schaar,and F.Paganini,"Mechanism-Based Resource Allocation for Multimedia Transmission over Spectrum Agile Wireless Networks",IEEE J.Sel.Areas Commun.,vol.25,no.3,pp.601-612,Apr.2007.
    [138]H.P.Shiang and M.van der Schaar,"Queuing-Based Dynamic Channel Selection for Heterogeneous Multimedia Applications over Cognitive Radio Networks",IEEE Trans.Multimedia,to appear.
    [139]D.Wu and R.Negi,"Effective capacity:a wireless link model for support of quality of service",IEEE Trans.Wireless Commun.,vol.2,no.4,pp.630-643,Jul.2003.
    [140]Jia Tang and Xi Zhang,"Cross-Layer Modeling for Quality of Service Guarantees Over Wireless Links",IEEE Trans.WirelessCommun.,vol.6,no.12,pp.4504-4512,Dec.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700