全旋流分离马铃薯淀粉试验研究及计算机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在深入实践和广泛查阅国内外有关马铃薯淀粉旋流分离资料的基础上,对单级水力旋流器分离马铃薯淀粉进行旋流管分离性能的实验研究、建立了水力旋流器单因素和多因素分离模型、提出了全旋流系统优化设计方案并对较优全旋流系统进行了计算机模拟。
     旋流管是全旋流系统进行分离的核心,本文首先对水力旋流管分离性能进行了实验研究,定性分析出进料压力、底流口直径及进料淀粉浓度三个因素对生产能力、分股比以及分离效率等三个指标的定性影响规律。通过对实验结果的分析可获知应用于马铃薯淀粉分离的水力旋流器的性能指标随着各参数变化的规律,得出一定条件下最佳分离状态的各参数值。后又得出随底流直径变化,旋流管对淀粉分离效率的影响与对蛋白和渣分离效率的影响相矛盾,要依据进料浓度和分离任务来选择合适的旋流管,以获得良好的分离效果。
     在马铃薯淀粉分离的实验研究中根据多年的生产经验和实际的实验条件来确定参数和指标,在实验台上创造相似的实验条件进行正交实验。针对全旋流系统运行中进料压力、底流直径和进料浓度三个可调节因素,通过试验研究具体分析了它们对生产能力、分股比、分离效率以及底流浓度的定量影响,将这些指标和参数之间的关系由Matlab拟合成曲线即单因数影响数学模型;通过应用相似理论对马铃薯淀粉分离进行模化实验,并应用相似准则对数据进行整理,对整理后的数据应用逐步回归的方法建立起一组反映单级水力旋流器分离马铃薯淀粉效果的具有较高精度的多因素影响数学模型。该模型可以对分离作出预测,并为放大设计和优化提供依据。
     本文的编程计算基本思想基于物料衡算法。通过编程计算,得出在简化情况下全旋流系统中各级旋流器的工作状态参数与单级旋流器底流分率和分离效率的函数关系,以及整个系统的最终分离效率。在综合分析系统的构成及实测与计算结果的基础上,本文首次提出了可行的系统设计思路,为高效节能的全旋流分离系统的开发提供了必要的理论依据。研究结果表明,适当的改进旋流管配置,提高单级旋流器的分离效率,可以有效的提高系统的分离效果,简化系统构成。最后通过计算比较得出全旋流分离马铃薯淀粉的较优系统。
     网络计算机模拟方法即在对较优网络系统充分分析的基础上,根据近几年的生产实践经验、实验测量的数据,应用单级马铃薯淀粉分离数学模型,利用Matlab数学应用软件中强大的Simulate功能,模拟仿真实际生产过程。通过计算机模拟,可以得出在已知进料流量、淀粉含量、进水量以及各级配置的情况下得出各级的分离状况以及整个网络系统分离状况,以达到预测的目的;通过计算机模拟,可以为调试安装节省大量的人力和物力;通过计算机模拟,可以为设计提供检验的手段。
     本论文对水力旋流器应用于马铃薯淀粉分离进行的试验研究和普遍适用的单因素、多因素分离模型的建立以及对网络进行的计算机模拟的完成填补了国内外在该领域研究的空白,为该项技术的推广和生产应用提供了理论依据和指导,具有较高的实际意义。
Based on the deep practice and wide collection of literature in this field, the theoretical analysis of the individual hydrocyclone separation was studied, the separation models for hydrocyclone were established, the full-hydrocyclone-network was studied by experiments and the whole system is simulated through computer. The main contents as follows:
    Firstly, experimental studies were made on relationships among adjustable parameters hi the working system (input pressure, underflow diameter and input concentration) and separation performance measured by feed flow rate, underflow percentage and separation efficiency. The optimal parameters were formed.
    Secondly, in potato separation experiments, the parameters and targets were decided by the rich experiences and conditions provided by the reality. There are so many parameters affecting the separation of potato starch. The similar conditions were made to perform orthogonal experiments. The results of the experiments were displayed by figures and the data were fitted to be curves with Matlab. The change characteristics of the parameters and the optimal parameters under certain conditions were found. And the underflow diameter of hydrocyclone can give contrary effect on starch separation efficiency and protein & dregs separation efficiency. To achieve better separation performance, hydrocyclones with different underflow diameter had to be chosen according to the duty of separation and the concentration of feed materials. Dealing with the data gained from experiments with similarity theory and applying mathematical stepwise regression method a series of equations could be established. These equations reveal th
    e effect of separating potato starch precisely. These equations were also used to predict the performance of separation and provide a foundation for the amplification and optimization of the designing of separation operation.
    Thirdly, it is the first time in China the working states of each stage and the outputs of the whole system were calculated by mass balance calculations. The system will be
    
    
    
    simplified before simulation. With calculations and the analysis of the whole system we provided a method to design optimization system. And through comparison we found out which network is the best.
    Fourthly, the computerized simulation method is that based on the analysis of the best network of separating potato starch and the experience of production and the separation characteristics gained from experiments, the process of separation can be simulated with the strong toolbox SIMULATE of mathematical software MATLAB. With the computerized simulation, the separation situation of each hydrocyclone and full-hydrocyclone-networks can be obtained only if the quantity of input per hour, the content of starch, the quantity of input water per hour and the structure parameters of each hydrocyclone are provided. The predicted results fit well with experimental data. With the computerized simulation the separation performance can be predicted and the expenses of erecting and trying a new production line can be decreased. It also provides the reliable tool to check the design of new hydrocyclones and networks. It is particularly valuable for the optimization of alternative designs or arrangements for a given duty.
     Strategies to design multistage hydrocyclones are also proposed. The research work shows that it is possible to achieve even better separation performance or less number of multi-hydrocyclone stages by properly improving the scheme of hydrocyclone so as to the higher separation efficiency of single stage.
引文
1.禇良银,陈文梅等.水力旋流器.北京:化学工业出版社,1998
    2.袁惠新,冯斌,陆振曦.混合物分离技术的选择.化工装备技术,1999(3):7~8
    3.褚良银.水力旋流器流场研究成果及进展.化工机械,1995,19(5):299-302
    4. Yuan H.Hydrocyclones for the separation of yeast and protein particles.[PhD.Thesis]University of Southampton, 1996
    5.张先达等.马铃薯淀粉加工新工艺.中国机械工程学会包装与食品工程分会第五届学术年会论文集,1998
    6.秦波涛等.薯类综合加工及利用.中国轻工出版社,1997
    7.陈礅.马铃薯与马铃薯淀粉有那些特性.淀粉与淀粉糖,1999,4:42~45
    8.韩德乾主编,农产品加工业的发展与新技术应用.中国农业出版社,2001
    9. Hwang C.C.On the main flow pattern in hydrocyclones. Journal of Fluids Engineering, March 1993, Vol115:21~25
    10.庞学诗.水力旋流器工艺计算.北京:中国石化出版社,1997
    11. Rietema K. On the efficiency in separating mixtures of two constituents.Chemical Engineering Science, 1957 (7)
    12. Svarovsky L. Hydrocyclones.London, 1984
    13.韩跃新.水力旋流器分级相似模拟器的建立及参数优化的研究,[博士学位论文]沈阳:东北工学院,1992
    14.李建明.水力旋流器固液两相湍流数值模拟及分离性能研究,[博士学位论文]成都:四川联合大学,1997
    15. Svarovsky J, Svarovsky L.Computer-aided design of hydrocyclone networks. Fine Particle Software, UK.1976
    16.李浪,周平,杜平定遍著,淀粉科学与技术.河南科学技术出版社,1994
    17.[苏]в.г.柯斯明科A.E.奥甫琴尼科夫B.M.高尔巴托夫著王启尧译淀粉生产中国食品出版社.1986
    18.王肇慈遍著,三薯综合加工利用,中国食品出版社.1988
    19.张先达.当代国外淀粉加工新技术.机械工业食品装备设计研究所,1993
    20. Williamson R D. The use of hydrocyclone for small particle separation .Separation Science and Technology .1983;N18:1395-1416
    21.雷明光,陈文梅,刘玉良,超小型旋流器流体动力学性能和分离性能研究.流体机械.1999第27卷,第7期:p6-9
    22.陈文梅,褚良银.旋流分离器流体流动理论研究与实践.第三届中日合作过滤与分离国
    
    际学术讨论会.1997年10月
    23.褚良银.水力旋流器应用开发与进展.过滤与分离.1998年第1期p14-18
    24.陈海.液-液旋流器结构参数实验优选及其内流场测量[硕士学位论文]北京:石油大学1997
    25.阎安,李学辉.水力旋流器现状及发展趋势,石油机械,1996年增刊第24卷:p159-163
    26. Sheng,H.P, Welker, J.R. LiquiD-liquiD seperation in a conventional hyDrocyelone,C an. J.Chem. Eng. 52,pp487-491
    27. Duggins, R.K and Frith,P.C.W.,Tubulent effects in hyDrocyclones,3nD Int,Conf. on hyDrocyclones,OxforD, 1987:75-80
    28. Roldan Villasana EJ.,Williams RA. Calculation of a steady state mass balance for complex hydrocyclone networks Minerals engineering 1991 4(3/4): 289-310
    29. Roldan villasana EJ, Dyakowski T.,Lee MS,Dickin FJ.,Williams RA. Design and modelling of hydrocyclone and hydrocyclone networks for fine particle precessing Minerals engineering 1993,6(1): 41-54
    30. Williams RA, Albarran de Garcia Colon IL. , Lee MS.,Roldan villasana EJ. Design targeting of hydrocyclone network Minerals engineering 1994,7(5/6): 561-576
    31.邱家山.磷酸污水封闭循环处理系统中的旋流分离,过滤过程的实验研究及数模建立.成都科技大学[硕士论文]:1993
    32.袁惠新,陈国金等.废硅藻土旋流洗涤回收的探讨.农机与食品机,1999(5):12~15
    33. Fontein J.The influence of some variables upon hydrocyclone performance.Brit.Chemical Engineering, 1962 (7): 410~421
    34. Bednarski S.A new method of starch production from potatoes.4th Int. Conf. on Hydrocyclones, Southampton, 1992:23~25
    35. Singh N, EckhoffS R.Hydrocyclone procedure for starch-protein separation in laboratory wet milling. Cereal Chemistry, 1995, 72 (4):: 344~348
    36.陈文梅,褚良银.旋流分离器流体流动理论研究与实践.过滤与分离,1997(4):5~9
    37.赵宗昌.油水分离水力旋流器性能研究与流场的数值计算.[博士学位论文]大连:大连理工大学,1996
    38.朱家骅,禇良银等,水力旋流器内干涉沉降效应研究.流体机械,1998(6):15
    39.李晓钟,水力旋流器内流体流动特性及能耗规律的研究.[博士学位论文]成都:四川联合大学,1997
    40.高福成等.食品用圆柱形微型旋流器基本性能的研究.无锡轻工业学院学报,1988,7(1):7~23
    41.刘小义.油水分离用水力旋流器的性能研究.[硕士学位论文]大连:大连理工大学,1997
    
    
    42.徐继润.水力旋流器流场理论.北京;科学出版社,1998
    43. George M.Classification in Hydrocyclones.Ceramie Bullet, 1995 (9)
    44. Kelsall D.F.A further study of the hydraulic cyclone.Chemical Engineering Science,1953 (2)
    45. Yuan H.A cylindrical hydrocyclones. 4th Int. Conf. on Hydrocyclonds , Southampton,1992: 23~25
    46.王国扣.提高马铃薯淀粉提取率的研究.[硕士学位论文]北京:中国农业大学(东区),2001
    47. Rietema K.Performance and design of hydrocyclones. Chemical Engineering Science,1961 (5)
    48. Richard Mozley. Selection and Operation of High Performance Hydrocyclones. Filtration &Separation, 1983, 20(6): 474
    49.王国扣.俄罗斯马铃薯淀粉全旋流装置及应用.淀粉与淀粉糖,1995(2):32~36
    50. Bradley D.The Hydrocyclone.Pergamon,1965
    51.刘培坤,王显君等.水力旋流器的应用综述.矿山机械,1999(4)
    52.高福成.食品加工过程模拟—优化—控制.中国轻工业出版社,1999年
    53.董仁威.淀粉深度加工新技术.四川科学技术出版社,1987年
    54. Williamson-RD;Bott-TR;Newson-IH Small partical separation in a hydrocyclone Papers presented at 2nd Int. Conf. on hydrocyclones (bath, U.K.:sep, 19-21, 1984),Cranfield, U.K., BHRA Fluid Engng.,1984.Session J,Paper J3, p.371-380. (ISBN0-906085-95-0)
    55. Svarovsky-L evaluation of clarification performance of a two-stage hydrocyclone system Papers presented at 2nd Int. Conf. on hydroeyclones (bath,U.K.:sep,19-21, 1984),Cranfield, U.K., BHKA Fluid Engng.,1984.Session J,Paper J2,p.359-370.(ISBN0-906085-95-0)
    56. Bednarski-S Graphical and analytical interpretation of investigation results of the flow rate in hydrocyclones with variable process and parameters .Papers presented at 2nd Int. Conf. on hydrocyclones(bath,U.K.:sep, 19-21,1984),Cranfield,U.K., BHRA Fluid Engng., 1984.Session J,Paper J3,p.371-380.(ISBN0-906085-95-0)
    57. Schwalbach-WW three simple steps to hydrocyclone selection .Filtr and sep.,vol. 25 no 4,Jul-Aug. 1988,P264-266
    58.陈文梅,杜燕,雷明光等.固液分离技术在磷酸污水处理中的应用.
    
    
    59.朱浩东,杨梅,梁家刚.国内外旋流器特点及发展方向.石油机械,1994年第22卷第十二期:P42—45
    60.诸良银,陈文梅,李晓钟等.水力旋流器能耗与节能原理研究 V.流场结构与能量耗损,化工机械,1998年第25卷第六期:P316-320
    61.赖越殿.旋流器入料管结构参数探讨.煤矿机械,1996年第二期:23—25
    62.邱家山.陈文梅,杜燕等.固体浓度、颗粒大小和安装倾角对水力旋流器分离性能的影响.过滤与分离,1995年第二期:P3—6
    63.诸良银.固液分离用水力旋流器的设计.化工机械装备,1995年第16卷第一期:P10—13
    64.诸良银,罗茜.高分离精度的水力旋流器的开发.流体机械,1994年第22卷第六期:P1—6
    65.诸良银,陈文梅,李晓钟等.水力旋流器与分离性能研究(一)——进料管结构,化工装备技术,第19卷第3期1998:P1—5
    66.诸良银,陈文梅,李晓钟等.水力旋流器与分离性能研究(二)——溢流管结构.化工装备技术,第19卷第4期1998:P1—3
    67.诸良银,陈文梅,李晓钟等.水力旋流器与分离性能研究(三)——锥段结构.化工装备技术,第19卷第5期1998:P1—4
    68.诸良银,陈文梅,李晓钟等,水力旋流器与分离性能研究(四)——底流管结构.化工装备技术,第19卷第6期1998:P12—14
    69.诸良银,陈文梅,李晓钟等.水力旋流器与分离性能研究(五)——强制涡区辅助件结构,化工装备技术,第20卷第1期1999:P22—25
    70.诸良银,陈文梅,李晓钟等.水力旋流器与分离性能研究(六)——柱段结构.化工装备技术,第20卷第2期1999:P16—18
    71.冯进,胡泽明,孙自祥.液液旋流分离技术与发展,中国工程热物理学会流体机械学术学会.石油大学 (北京):Pv10-v15
    72.任熙,陈文梅,诸良银等,(四川联合大学)水力旋流器新型结构的研究.第五届全国非均相分离学术会议论文集:P149—151
    73.薛郭松,胡泽明,陈海等.单锥脱油旋流分离器试验研究.石油大学(北京)第五届全国非均相分离学术会议论文集:P156—161
    74.诸良银,陈文梅,李晓钟等.水力旋流器分离空间匹配优化研究,第五届全国非均相分离学术会议论文集:P152—155
    75.陆耀军,李太平,沈熊等.液液旋流分离管的结构选型研究,清华大学工程力学系中国工程热物理学会多相流学术会议:P87—95
    76. Lagutkin-MG; Barannov-DA selection of optimal and regime parameters for the operation of hydrocyclones Chemical-and-Petroleum-engineering. 1998;34 (1): 79-82
    
    
    77.宋振东.小直径水力旋流器微细分级模型.中国有色金属学报,1998年第8卷第3期:P493—496
    78.陈桂明,张明照.应用MATLAB建模与仿真,科学出版社2001
    79.刘则毅.科学计算技术与Matlab科学出版社.2001
    80.苏晓生.MATLAB 5.3实例教程.中国电力出版社.2001
    81.清源计算机工作室,MATLAB6.0基础及应用.机械工业出版社,2001
    82.张福根.粒度测量基础理论与研究论文集.珠海欧美克科技有限公司,2001
    83.王光丰.相似理论及其在传热学中的应用.高教出版社,1990
    84.李之光.相似与模化.国防工业出版社,1982
    85.任露泉.实验优化设计.机械工业出版社,1987
    86.于秀林,任雪松.多元统计分析,中国统计出版社1999
    87.赵作善.实验设计.中国农业大学教材,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700