双碱法脱硫系统的固液分离和重金属去除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双碱法烟气脱硫系统中再生浆液分离和重金属控制有利于提高水的重复利用率,可确保脱硫吸收液的循环回用;氧化浆液分离是脱硫渣资源化利用的重要工序;脱硫废水重金属的有效去除可大大减少外排脱硫废水的二次污染,并使其后续处理并入到常规废水处理成为可能。以上三方面的研究将为双碱法脱硫技术的应用提供重要的匹配技术支撑。
     首先,本文通过旋流分离和絮凝沉降分离实验,研究了提高再生浆液分离设备处理效果的方法,结果表明,由于再生浆液的自凝聚集特性,旋流分离后清液难以达到回用吸收液含固率指标;而絮凝沉降则能有效提高分离设备处理能力。
     其次,以分层测定-TOP法获取的沉降速度质量分布定量研究了再生浆液悬浮颗粒沉降性能的改善。结果表明再生浆液的pH对絮凝沉降性能是有利的,但再生浆液中离子浓度在0.035mol/L以上会对絮凝沉降产生不利影响。在TOP法基础上,借助分形理论来研究絮凝形态,结果表明,再生浆液絮凝体沉降速度与特征长度成正比;用CFD技术可预测得到沉降设备表面负荷与絮凝剂量之间的关系,与实际情况较吻合,为实际水处理构筑物设计提供基础数据。
     再者,通过旋流分离氧化浆液实验,研究了进料压力、进料浓度和旋流器结构等对分离效果的影响,结果表明中心构件加入旋流器内部,增加了进料流量和分股比,改善了分离效果,提高了浓缩效率。根据相似理论建立的准数方程,定量描述中心构件、溢流口直径、进料压力、进料流量、进料浓度等影响因素对分离性能指标的影响规律,为氧化浆液的分离工作提供了预测手段。
     还研究了氢氧化物沉淀、硫化物沉淀和壳聚糖捕集法处理脱硫废水,结果表明,三种方法均能有效去除重金属离子,去除效率可达到95%以上,但壳聚糖捕集法具有较强的抗离子干扰能力,适合应用于脱硫废水处理。实验证实水中溶解的壳聚糖能够与Zn~(2+)和Mn~(2+)螯合形成金属配合物,并随pH升高,由壳聚糖螯合作用为主向氢氧化物沉淀作用为主转变。
     最后,实验证明了壳聚糖同步去除再生浆液重金属和悬浮物的可行性,并研制高分子改性絮凝剂聚硅酸和壳聚糖复合絮凝剂,解决聚硅酸稳定性差和壳聚糖价格高的缺陷,在反应条件和絮凝效果上作了探索性试验,结果表明复合絮凝剂能够有效改善悬浮物沉降性能和抑制水中重金属积累。
     通过上述研究,解决了冉生浆液难分离和重金属积累的问题,提高了氧化浆液旋流分离效率,改进了脱硫废水处理方法,提出了改进的双碱法脱硫系统水循环工艺,与双碱法FGD过程有良好适应性,具有应用前景。
During the process of dual-alkali Hue gas desulphuri/ation (FGD). it is necessary for the recycle of the absorption solution to separate suspended solids and remove heavy metal ions from the regenerated slurry; it is indispensable for practical utilization of FGD gypsum to separate suspended solids (SS) from the oxidated slurry; it is required for pollution abatement to remove heavy metal ions from FGD wastewater. The study above can be in favor of the water circulation in the FGD with well promotion and the FGD project with well development.
     Firstly, it was studied that hydrocyclone and flocculation were used to raise the removal efficiency of SS. The results showed that the removal efficiency of hydrocyclone performance was not acceptable due to the self-assemble of SS from the regenerated slurry. The SS concentration of the overflow from hydrocyclone could not meet the demand of the absorption solution. However, flocculation-sedimentation could improve its settling characteristic.
     Secondly, the top loading method was capable of producing a settling velocity curve. which made the settling characteristic of SS in the regenerated slurry quantified. For the case studied, while a basic pH enhanced the separation. a high ionic strength had an adverse effect, especially more than 0.035mol/L. Based on the method, fractal geometry was introduced in order to characterize highly irregular geometric shapes. It showed that the settling velocity was in proportion to the largest size of SS. On the other hand, the relation between the surface loading rate of the sedimentation tank and the flocculant's dosage could be predicted by computional fluid dynamics (CFD). The CFD results were in accordance with the experimental data and could be employed for designing the most cost effective sedimentation tank.
     Thirdly, hydrocyclone experiment studies on the oxidated slurry were made on relationships among adjustable parameters (input pressure, input concentration and some construction parameters of hydrocyclone). The results were that center piece in hydrcyclone could raise the input flowrate and the underflow percentage and promote the concentration effect. Dealing with the data gained from experiments with similarity theory, a series of equations were established for the relationships between adjustable parameters and separation efficiency. The equations could provide a foundation for the designing of separation operation.
     Fourthly, it took neutralization, sulfide precipation and chitosan flocculation to treat FGD wastewater. All of the treatments could remove heavy metal ions effectively and the removal efficiencies could achieve more than 95%. The occurrence of other cations in the solution had little influence on chitosan flocculation for heavy metal ions. The associations between chitosan and heavy metal ions, such as Mn~(2+) and Zn~(2+), were also verified. The pH investigation revealed that there were three stages for different actions: adsorption of chitosan for heavy metal ions, precipitation of heavy metal hydroxide and coprecipitation of heavy metal hydroxide and chitosan- heavy metal complex.
     Finally, the feasibility of coprecipitation of heavy metal and SS from the regenerated slurry by water-soluble chitosan was studied in a lab scale experiment. Based on this research finding, a composite flocculant of chitosan and polysilicic asid was developed to improve performance and achieve stability. The lab experiment showed that application of the composite flocculant could remove heavy metal ions efficiently and meanwhile improve the settling characteristics of SS from the regenerated slurry.
     The research work resolved some problem. It was possible to separate suspended solids easily and remove heavy metal ions efficiently from the regenerated slurry. The SS of the oxidated slurry could be separated effectively at the hydrocyclone performance. The treatment of heavy metal ions from FGD wastewater was improved. Based on above, a modified water circulation was proposed and had a potential utilization prospect for its flexibility with the dual-alkali FGD process.
引文
1 马广大.大气污染控制工程[M].北京:中国环境科学出版社,1985.
    2 李玉平,谭天恩.双碱法烟气脱硫的基础研究[J].重庆环境科学,1999,21(5):49-52.
    3 吴忠标.大气污染控制工程[M].北京:科学出版社,2002.
    4 Srivastava RK, Jozewicz W, Singer C. SO_2 scrubbing technologies: A review[J]. Environ. Prog., 2001, 20(4): 219-228.
    5 张慧明.中国燃煤工业锅炉烟气脱硫的现状及发展趋势[C].北京:中因SO_2污染治理技术国际会议,1999.200-205.
    6 肖萍.火电厂烟气脱硫废水亚硫酸钙非均相氧化特性研究[D].东南大学,南京,2001.
    7 Shoop KJ. Processing of a wet flue gas desulfurization scrubber sludge[D]. Michigan Technological University, USA, 1996.
    8 胡将军,薛非,李英柳等.脱硫废水处理试验[J].环境保护科学,2002,113(28):11-13.
    9 晏乃强,施耀,吴忠标等.双碱法旋流板塔烟气脱硫工艺[J].环境科学,1998,19(5):72-74.
    10 刘天放,黄小林,耿其博.三废处理工程技术手册[M].北京:化学工业出版社,1999.
    11 Navid M, Bohm H. The variables affecting the production of commercial grade gypsum from the FGD process[C]. Toronto, Canada: 2nd international conference on FGD and chemical gypsum, 1991.11.
    12 王正江,杨宝红,王璟等.国产湿法脱硫废水处理系统的研究与应用[J].热力发电,2005,(5):7-10.
    13 管一明.燃煤电厂烟气脱硫废水处理[J].电力环境保护,1998,14(1):38-44.
    14 李传炽,俞新浩.排烟脱硫石膏利用的工业生产[J].新型建筑材料,1998,(11):13-16.
    15 罗茜.固液分离[M].北京:冶金工业出版社,1997.
    16 Perlmutter BA. Comparison of gypsum dewatering technologies at flue gas desulfurization plant[C]. San Diego, California: the 45th ISA Power Industry Division (POWID) Conference 2002.
    17 姜天云.太原第一热电厂FGD中水力旋流器国产化改造试验[J].山西电力,2002,107(5):27-29.
    18 华国钧,蔡培.半山电厂脱硫工程控制系统及其调试[J].浙江电力,2001,(3):49-51.
    19 范懋功.硫化物沉淀处理电镀废水[J].西南给水排水,1994,(4):14-16.
    20 周祖飞.湿法烟气脱硫废水的处理[J].电力环境保护,2002,18(2):37-39.
    21 Nielsen PB, Christensen TC, Vendrup M. Continuous removal of heavy metals from FGD wastewater in a fluidised bed without sludge generation[J]. Water Sci. Technol., 1997, 36(2-3): 391-397.
    22 徐根良.废水控制及治理工程[M].杭州:浙江大学出版社,1999.
    23 Rovinsky LA. Application of separation theory to hydrocyclone design[J]. J. Food Eng., 1995, 26(2): 131-146.
    24 褚良银,陈文梅,戴光清.水力旋流器[M].北京:化学工业出版社,1998.
    25 褚良银.固液分离用水力旋流器的设计[J].化工装备技术,1995,16(1):10-13.
    26 陈文梅,褚良银.旋流分离器流体流动理论研究与实践[J].过滤与分离,1997,(4):5-9.
    27 Gutierrez JA, Dyakowski T, Beck MS 等. Using electrical impedance tomography for controlling hydrocyclone underflow discharge[J]. Powder Technol., 2000, 108(2-3): 180-184.
    28 李里特,李树君,林亚玲.水力旋流器及其网络系统数学模拟技术进展[J].农业机械学报,2002,33(4):122-125.
    29 蒋明虎,赵立新译(Malhotra A,Branion RMR,Hauptmann EG).水力旋流器内流体流动模型的建立[J].国外油阳工程,1997,(4):22-26.
    30 褚良银,陈文梅,李晓钟.水力旋流器湍流数值模拟及湍流结构[[J].高校化学工程学报,1999,13(2):107-113.
    31 李树君.全旋流分离马铃薯淀粉试验研究及计算机模拟[D].中国农业大学,北京,2002.
    32 潘才元,刘有锡译(IR.艾克斯(英国)著).絮凝技术[M].北京:原子能出版社,1981.
    33 郑忠,李宁.分子力与胶体的稳定和聚沉[M].北京:高等教育出版社,1995.
    34 常青.水处理絮凝学[M].北京:化学工业出版社,2003.
    35 王峰.壳聚糖改性絮凝剂的制备、应用与絮凝机理研究[D].同济大学,上海,2003.
    36 陈伟红.聚硅酸盐混凝剂的制备、混凝特性及其在给排水处理中的应用[D].河南大学,开封,2001.
    37 Brian AB, David RD, Stephen RG等. The use of soluble organic polymers in waste treatment[J]. Water Sci. Technol., 1996, 34(9): 117-124.
    38 Anders L, Charlote W, Staffan W. Flocculation of cationic polymers and nanosized particles[J]. Colloid. Surface. A, 1999, 159: 65-76.
    39 马青山,贾瑟.絮凝化学与絮凝剂[M].北京:中国环境科学出版社,1988.
    40 陈保平.黄河高浊度水聚丙烯酰胺投量确定及沉泥浓度影响因素[J].给水排水,1998,(1):12-17.
    41 胡万里.混凝·混凝剂·混凝设备[M].北京:化学工业出版社,2001.
    42 姚重华,顾国维校.混凝剂与絮凝剂[M].北京:中国环境科学出版社,1992.
    43 王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    44 Sinha S, Yoon Y, Amy G等. Determining the effectiveness of conventional and alternative coagulants through effective characterization schemes[J]. Chemosphere, 2004, 57(9): 1115-1122.
    45 Sabah E, Cengiz I. An evaluation procedure for flocculation of coal preparation plant tailings[J]. Water Res., 2004, 38(6): 1542-1549.
    46 Kirwan LJ, Faweil PD, van Bronswijk W. An in situ FTIR-ATR study of polyacrylate adsorbed onto hematite at high pH and high ionic strength[J]. Langmuir, 2004, 20(10): 4093-4100.
    47 王晓昌,丹保宪仁.絮凝体形态学和密度的探讨Ⅰ:从絮凝体分形构造谈起[J].环境科学学报,2000,20(3):257.
    48 Tambo N, Watanabe Y. Physical aspect of flocculation process Ⅰ. The floc density function and aluminum floc[J]. Water Res., 1979, (13): 409-419.
    49 Tambo N, Wang XC. The mechanism of pellet flocculation in a fluidized-bed operation[J]. J. Water Supply Res. T., 1993, 42(2): 67-76.
    50 林鸿溢,李映雪.分形论-奇异性探索[M].北京:北京理工大学出版社,1992.
    51 文志英,苏虹译(Mandelbrot B著).分形对象形、机遇、维数[M].北京:世界图书出版社,1999.
    52 Buffle J, Leppard GG. Characterization of aquatic colloids and macromolecules. Ⅰ. structure and behavior of colloidal material[J]. Environ. Sci. Technol., 1995, (28): 2169-2175.
    53 Buffle J, Leppard GG. Characterization of aquatic colloids and macromolecules, Ⅱ. key role of physical structure on analytical results[J]. Environ. Sci. Technol., 1995, (28): 2176-2184.
    54 Gonzalez EA, Hill PS. A method for estimating the flocculation time of mono dispersed sediment suspensions[J]. Deep-Sea Res. Pt. Ⅰ, 1998, 45: 1931-1954.
    55 吴宁,张琪.固体颗粒在液体中沉降速度的计算方法评述[J].石油钻采工艺,2000,22(2):51-53,56.
    56 Loch RJ. Settling velocity-a new approach to assessing soil and sediment properties[J]. Comput. Electron. Agr., 2001, 31(3): 305-316.
    57 Lovell CJ, Rose CW. Measurement of soil aggregate settling velocities. I. A modified bottom withdrawal tube[J]. Aust. J. Soil Res., 1988, 26: 55-71.
    58 陈忠正译.悬浮杂质沉降过程的理论基础[J].国外建筑科学,1991,6(2):66-70.
    59 Wong KB, Piedrahita RH. Settling velocity characterization of aquacultural solids[J]. Aquacult. Eng., 2000, (21): 233-246.
    60 Pisano W. Summary: United States 'sewer solids' settling characterization methods, results, uses and perspective[J]. Water Sci. Technol., 1996, 33(9): 109-115.
    61 Michelbach S, Weiβ GJ. Settleable sewer solids at stormwater tanks with clarifier for combined sewage[J]. Water Sci. Technol., 1996, 33(9): 261-267.
    62 Elmaleh S, Jabbouri A. Flocculation energy requirement[J]. Water Res., 1991, 25(8): 939-943.
    63 Charerntanyarak L. Heavy metals removal by chemical coagulation and precipitation[J]. Water Sci. Technol., 1999, 39(10-11): 135-138.
    64 刘剑彤,肖邦定,陈珠金.曝气混凝一体法去除碱性废水中砷的研究[J].中国环境科学,1997,17(2):184-187.
    65 张建梅.重金属废水处理技术研究进展[J].西安联合大学学报,2003,6(2):55-59.
    66 绍文,姜风有.重金属废水治理技术[M].北京:冶金工业出版社,1993.
    67 Everet DH, Podoll RT. Adsorption of near-ideal binary liquid mixtures by graphon[J]. J. Colloid Interf. Sci., 1981, 82(1): 14-24.
    68 杨彤.化学法处理重金属离子废水的改进[J].电镀与精饰,1999,21(5):38.
    69 丁明,曾桓兴.铁氧体工艺处理含重金属污水研究现状及展望[J].环境科学,1992,13(2):5-9.
    70 李军.铁氧体沉淀法处理重金属废水[J].电镀与环保,1999,19(1):30.
    71 杨骏,秦涨峰,陈戎英.活性碳吸附水中铅离子的动态研究[J].环境科学,1997,16(5):423-427.
    72 高效江,戎秋涛.麦饭石对金属的吸附作用研究[J].环境污染与防治,1997,19(4):4-8.
    73 杨智宽.用蛇纹石处理含钢废水的研究[J].环境科学技术,1997,10(2):15-17.
    74 顾雪芹.印刷线路板工艺废水处理[J].上海环境科学,1991,10(3):20-23.
    75 徐庆源.用于废水净化与资源化的新型化学絮凝剂[J].化工环保,1994,14(5):281-284.
    76 苏庆平,廖世英.硫W型鳌合纤维素对铜离子吸附性能的研究[J].纤维素科学与技术,1994,2(2):28-35.
    77 Catherine AE. Chitosan[J]. J. Appl. Polym. Sci., 1980, 25: 1587-1599.
    78 Kawamura Y, Yoshida H, Asai S 等. Breakthrough curve for adsorpyion of mercury(Ⅱ) on polyaminated highly prous chitosan beads[J]. Water Sci. Technol., 1997, 35(7): 97-105.
    79 王振东.壳聚糖对含Hg,Bi废水的吸附研究[J].武汉科技学院学报,2001,14(2):6-11.
    80 周永国,齐印阁.脱乙酰甲壳质回收处理含铜废水[J].环境保护科学,1994,20(3):10-12.
    81 Katsutoshi I, Kazuharu Y, Mineto I. Chemically modified chitosans as metal ion adsorbents[P]. Japan, 1992.
    82 陈伟.羧甲基壳聚糖吸附铜离子性能研究[J].福建环境,2000,17(5):9-11.
    83 Dobeti L, Delben F. Binding of metal cations by N-carbosymethyl chitosans in water[J]. Carbohyd. Polym., 1992, 18(4): 273-282.
    84 Inoue K, Yoshizuka K, Ohio K. Solvent extraction of some metal ions with lipophilic chitosan chemically modified with functional groups of dithiocarbamate[J]. Chem. Lett., 2001, 7: 698-699.
    85 相波.天然高分子的改性及对重金属捕集性能的研究[D].同济大学,上海,2003.
    86 Michelbach S, Wohrle C. Settleable solids in a combined sewer system. Settling Charavteristics. Heavey Metals, Efficiency of Stormwater Tanks[J]. Water Sci. Technol., 1993, 27(6): 153-164.
    87 Johnson CP, Li XY, Logan BE. Settling velocities of fractal aggregates[J]. Environ. Sci. Technol., 1996, 30(6): 1911-1918.
    88 Chakraborti RK, Atkinson JF, Van Benschoten JE. Characterization of alum floc by image analysis[J]. Environ. Sci. Technol., 2000, 34(18): 3969-3976.
    89 Logan BE, Kilps JR. Fractal dimensions of aggregates formed in different fluid mechanical environments[J]. Water Res., 1995, 29(2): 443-453.
    90 Wilhelm JH. Dual alkali scrubber liquor regeneration with production of gypsum[P]. USA, 1984.
    91 Chu LY, Chen WM, Lee XZ. Enhancement of hydrocyclone performance by controlling the inside turbulence structure[J]. Chem. Eng. Sci., 2002, 57(1): 207-212.
    92 刘培坤,魏杰锐.水力旋流器浓缩性能试验研究[J].矿业快报,2000,331(1):14-15.
    93 Besra L, Sengupta DK, Roy SK 等. Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension[J]. Sep. Purif. Technol., 2004, 37(3): 231-246.
    94 Backstrom H. The chain reaction theory of negative catalysis[J]. J. Am. Chem. Soc., 1927, 49: 1460-1472.
    95 Mishra GC, Srivastava RD. Homogeneous kinetics of potassium sulfite oxidation[J]. Chem. Eng. Sci., 1976, 31(10): 969-971.
    96 王晓昌,丹保宪仁.絮凝体形态学和密度的探讨Ⅰ:从絮凝体分形构造谈起[J].环境科学学报,2000,20(3):257-262.
    97 王晓昌,丹保宪仁.絮凝体形态学和密度的探讨(Ⅱ)——致密型絮凝体形成操作模式[J].环境科学学报,2000,20(4):385-390.
    98 Bushell GC, Yan YD, Woodfield D 等. On techniques for the measurement of the mass fractal dimension of aggregates[J]. Adv. Colloid. Interface. Sci., 2002, 95(1): 1-5.
    99 崔玉川,马志毅,王效承.废水处理工艺设计计算[M].北京:水利电力出版社,1994.
    100 赵亮富,赵玉龙.宽粒度分布的细颗粒沉降[J].化学反应工程与工艺,1997,13(3):304-309.
    101 Chang E-E, Chiang P-C, Tang W-Y 等. Effects of polyelectrolytes on reduction of model compounds via coagulation[J]. Chemosphere, 2005, 58(8): 1141-1150.
    102 王小文.水污染控制工程[M].北京:煤炭工业出版社,2002.
    103 江龙译(左藤(日)著).聚合物吸附对胶体稳定性的影响[M].北京:科学出版社,1988.
    104 Lu J, Wu J. Effects of soil and water properties on anionic polyacrylamide sorption[J]. Soil. Sci. Sco., 2002, 66: 578-584.
    105 Lecourtier J, Lee LT, Chauveteau G. Adsorption of polyacrylamides on siliceous minerals[J]. Colloid. Surface., 1990, 47: 219-313.
    106 Muller G, Laine JP, Fenyo JC. Highmolecular-weight hydrolyzed polyacrylamides. Ⅰ.Characterization. Effect of salts on the conformational properties[J]. J. Polym. Sci. (Polymer Chemistry Edition), 1979, 17: 659-672.
    107 Jiang Q, Logan BE. Fractal dimensions of aggregates determined from steady-state size distributions[J]. Environ. Sci. Technol., 1991, 25(12): 2031-2038.
    108 Tang P, Greenwood J, Raper JA. A model to describe the settling behavior of fractal aggregates[J]. J. Colloid Interf. Sci., 2002, 247(1): 210-219.
    109 Wang XC, Jin PK. Fractal nature of floes and compact floc formation[J]. J. Xi'an Univ. of Arch & Tech (Natural Science Edition), 2004, 36(3): 253-264.
    110 顾夏声.水处理工程[M].北京:清华大学出版社,1985.
    111 庞学诗.水力旋流器理论与应用[M].长沙:中南大学出版社,2005.
    112 徐继润,罗茜.水力旋流器流场理论[M].北京:科学出版社,1998.
    113 宋振东.小直径水力旋流器微细分级模型[J].中国有色金属学报,1998,8(3):493-496.
    114 雷明光,陈文梅,刘玉良.超小型旋流器流体动力学性能和分离性能研究[[J]. 流体机械,1999,27(7):6-9.
    115 赵庆国,张明贤.水力旋流器分离技术[M].北京:化学工业出版社,2003.
    116 邱家山,陈文梅.水力旋流器分离准数模型的研究[J].流体机械,1994,22(10):5-9.
    117 李之光.相似与模化(理论及应用)[M].北京:国防工业出版社,1982.
    118 胡上序,陈德钊.观测数据的分析与处理[M].杭州:浙江大学出版社,1996.
    119 Mckay G, Blair HS, Findon A. Equilibrium studies for the sorption of metal ions onto chitosan[J]. Indian J. Chem., 1989, 28A: 356-360.
    120 Kaminski W, Modrzejewsk Z. Application of chitosan membranes in separation of heavy metal ions[J]. Separ. Sci. Technol., 1997, 32(16): 2659-2688.
    121 Guibal E. Interactions of metal ions with chitosan-based sorbents: a review[J]. Sep. Purif. Technol., 2004, 38(1): 43-74.
    122 Karthikeyan G, Anbalagan K, Muthulakshmi AN. Adsorption dynamics and equilibrium studies of Zn (Ⅱ) onto chitosan[J]. J. Chem. Sci., 2004, 116(2): 119-127.
    123 Cristiane J, Valfredo TF, Mauro CM. Kinetics and equilibrium adsorption of ions by chitosan functionalized with 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol[J]. J. Colloid Interf. Sci., 2005, 291(2): 369-374.
    124 Ng JCY, Cheung WH, McKay G. Equilibrium studies of the sorption of Cu(Ⅱ) Ions onto chitosan[J]. J. Colloid Interf. Sci., 2002, 255(1): 64-74.
    125 Hao HY, Zhang Q, Ge QK. Formation of Mn(Ⅱ)with chitosan and molecular weight distribution of oligosaccharides by oxidating degradation[J]. Chinese J. Inorg. Chem., 2004, 20(9): 1085-1088.
    126 Sun S, Wang A. Adsorption properties and mechanism of cross-linked carboxymethyl-chitosan resin with Zn(Ⅱ) as template ion[J]. React. Funct. Polym., 2006, 66(8): 819-826.
    127 JHA I, lyengar. L, Prabhakara RV. Removal of cadmium using chitosan[J]. J. Environ. Eng., 1988, 114(4): 962-974.
    128 Muzzarelli RAA, Muzzarelli C. Native and modified chitins in the biosphere[J]. ACS Sym. Ser., 1998, 707: 148-162.
    129 Kang DW, Choi HR, Kweon DK. Constants of amidoximated chitosan-g-poly (acrylonitrile) copolymer for heavy metal Ions[J]. J. Appl. Polym. Sci., 1999, 73(4): 469-476.
    130 Wanda PB, Tadeusz B. Kinetic model of sulfite autoxidation under heterogeneous conditions[J]. Chem. Eng. Sci., 1989, 44(6): 1361-1368.
    131 Iler RK. The chemistry of silica[M]. New York: John-Wiley & Sons, 1979.
    132 戴安邦,江龙.硅酸及其盐的研究Ⅰ.硅酸聚合的速度和机制[J].化学学报,1957,23:90.
    133 Tarutani T. Polymerization of Silicic Acid A Review[J]. Anal. Sci., 1989, 5(3): 245-252.
    134 王东田,陈忠林.特性聚硅酸聚合反应条件的研究[J].哈尔滨建筑大学学报,2001,34(5):49-52.
    135 Dietzel M. Dissolution of silicates and the stability of polysilicic acid[J]. Geochim Cosmochim Ac, 2000, 64(19): 3275-3281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700