水力旋流器分离过程随机特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深入理解水力旋流器内流体动力学实质,准确认识其分离机理,才能对其进行正确的设计。但是,由于以往的研究只考虑旋流器内分离过程的确定性因素,忽略了其随机因素,因此以往的研究结果不够准确,并且通用性较差。在本研究中综合考虑影响旋流器内分离过程的各种因素,采用数值模拟和实验验证与理论分析相结合的方法,系统研究了水力旋流器内分离过程的随机特性,较完整地认识了其分离机理。
     采用高精度的计算流体力学软件FLUENT 6.1对水力旋流器内的流体流场、流动结构和颗粒的运动过程进行了系统的数值模拟,分析了三维速度分布、压力分布、流体流动结构、空气核(又叫空气柱)以及颗粒运动的轨迹、进料口位置对分离过程的影响和颗粒粒度对分离效率的影响。结果表明:水力旋流器内流场具有不对称性,这种不对称主要是由于不对称的进料位置以及旋流器内流体流场的强烈湍动、空气核不规则的形状以及径向强烈偏摆等因素造成的。同时,在旋流器内随机分布着形状和大小不相同的各种形式的涡团,严重影响了流场的稳定性,因此旋流器内流场表现出强烈的随机特性;模拟计算结果显示出空气核直径除与溢流口直径、底流口直径、锥角、给入压力有关外,还与所处轴向位置有关;单个颗粒在旋流器内的运动轨迹是随机的,对单个颗粒运动而言,其受力系统非常复杂,其在运动过程中所受的确定性和随机性作用同样重要;还系统分析了进料位置对分离过程的影响。
     在本研究中首次利用先进的高速摄象技术,实测了固体颗粒在旋流器内的运动过程,并获得了颗粒的准确运动轨迹,进而分析了颗粒在旋流器中的运动规律。实测研究结果证明了单个颗粒在旋流器内运动轨迹的随机性,颗粒在旋流器内的运动形态可以分为颗粒的外螺旋运动、内螺旋运动、短路流运动、衍
The optimum design of structure of hydrocyclones need deeply and exactly understanding the essential of fluid flow dynamics and the separation mechanism of hydrocyclones. However, the previous investigations only considered determinate factors, and ignored the stochastic factors. So the conclusions were inaccurate and unsatisfied. In this study, comprehensively considered factors effecting on the separation process, the stochastic characteristics of the separation process inside hydrocyclones was investigated systemically using numerical simulation and validated by experiment.
     Flow field, flow structure and movement of particles inside hydrocyclones were simulated systemically by a high-precise software named FLUENT 6.1. The velocity distribution, pressure distribution, flow structure, air core, movement tracks of particles, effect of location of particle entrance on separation process and influence of particles size on separation efficiency were analyzed. The results showed that the flow field inside hydrocyclones was asymmetric. The factors that caused this asymmetry were asymmetric feeding location, strong turbulence of fluid flow, irregular form and radial fluctuating violently of air core. Eddies with different forms and sizes which distribute randomly within hydrocyclones have affected the stability of flow field. Therefore, the flow field had stochastic characteristics; The results of numerical simulation indicated that the diameter of air core depended not only on diameters of overflow and underflow orifices, cone angle and pressure, but also on its axial position; Movement track of single particle inside hydrocyclones was randomly. For single particle, forces acting on it are very complex, the determinate and stochastic effects were both important. The effects of location of particle entrance on separation process were also analyzed systematically.
     The moving process of particles inside hydrocyclones were observed using advanced KODAK EKTAPRO HS Motion Analyzer for the first time. The moving traces of partices were obtained and the motion behavior were further analyzed.The results testified that movement track of single particle inside hydrocyclones was stochastic.From above investigations,we discovered that the moving forms of
引文
[1] Trawinski H.F.. Practical Hydrocyclone Operation[J]. Firtration & seperation, January/February, 1985, 22~27
    [2] Driessen M.G..Review of Industrial Mining[J]. Special Issue N. St.Etienne, 1951,4:449~61
    [3] D.F.Kesall. A study of the motion of solid particles in a hydraulic cyclone [J].Trans. Inst. Chem. Eng. 1952,20:87~104.
    [4] 姚书典,隋志宇.水力旋流器的发展现状和趋势[M].有色金属﹙选矿部分﹚;1988,(3):31~37
    [5] D.Bradley.The Hydrocyclone.Pergamon Press[M], London,1965
    [6] Chu Liang-yin,Chen Wen-Mei. Research on the motion of solid particles in a hydrocyclone[J].Seperation Science & Technology,1993,28(10):1875~1886
    [7] K.Rietema. Performance and design of hydrocyclones[J]. Parts I to IV, Chemical Engineering Science .1961,15:298~325.
    [8] 阎安,李雪辉.水力旋流器现状及发展趋势[J].石油机械,1996,024(A01):159~163
    [9] A.B.Holland-Batt.A bulk model for separation in hydrocyclones[J]. In Trans. Instn, Min. Metall.(Sect. C:Mineral Process Extr. Metall.).1980,91~98
    [10] Fahlstrom P.H., Proc. Int.Min. Processing Congress.Inst[C]. Mining and Metallurgy. 1960,632~643
    [11] G. van Duyn , K.Rietema. Performance of a large cone angle hydrocyclone[J]. In G.van Duyn (ed) Separation of Fluidized Solids Parts I and II .Chs 3 and De University Press .Delft.1982,4:29~93
    [12] K. Rietema. The mechanism of the separation of finely dispersed solids in cyclones[J]. In K. Rietema and C.G.Verver (eds) Cyclones in Industry Ch. 4. Elsevier. Amsterdam.1961
    [13] H. Schubert and T. Neesse . A hydrocyclone separation model in consideration of the turbulent multi-phase flow[A]. In Proc. Int . Conf,on Hydrocyclones. Cambridge[C]. 1-3 October . 1980,3:23~36
    [14] 郭荣.水力旋流器湍动两相流运动规律及其分离性能实测研究[D].成都:四川联合大学;1996
    [15] Rhodes N.,Preicieous K.A.,Drake S.N..In:proc. 3rd Int. Conf. On Hydrocyclones[M]. Oxford,England:1987,51~58
    [16] Dyakowski T. Williams R.A. Chemical Engineering Science. 1993,48(6):1143
    [17] Duggins R.K., Frith P.C.W. Filtration & Separation. 1987,24(6):394~397
    [18] 陆耀军,周力行. 油滴在液—液旋流分离中的随机轨道数值模拟 [J].力学学报.1999.031(005):513~520
    [19] 楮良银,陈文梅.描述水力旋流器分级过程的一个新模型[J].科技通报,1996;12(2):91~95
    [20] 李里特,李树君,林亚玲,孙赟.水力旋流器及其网络系统数学模拟技术进展[J].农业机械学报.2002,(4):121~125
    [21] 王光风,李峻宇,邵国兴等.水力旋流器用于分级的实验研究[A].宜昌:中国工程热物理学会流体机械学术会议,1995
    [22] 任熙 ,褚良银,陈文梅,李晓钟.水力旋流器新型分离模型的研究[J].流体机械,1997,25(11):24~27
    [23] Dahlstrom D.A.Trans. Amer[M]. Instn Min. Engrs. 1952,4:788~793
    [24] 邱家山,陈文梅,杜燕.水力旋流器数学模型的研究与进展(二)[J].化工装备技术,1994,15(5):48~50
    [25] K .Rietema.Performance and Design of Hydrocyclone[J]. Part Ⅰ to Ⅳ .Chemical Engineering Science.1961,15:298~325
    [26] Plitt L.R. A mathematical model of the hydrocyclone classifier[J]. CIM Bulletin.1976(12):114~122
    [27] 张鉴,陈炳辰,刘其瑞.水力旋流器倾角变化对分级指标影响的研究[J].金属矿山,1990,2:42~46
    [28] 刘一横.分离用水力旋流器性能研究[D].成都科技大学化机系,1989:41~48
    [29] Dahlstrom D.A. Miniture hrdrocyclones energy requirements and solid elimination efficiency[J].Chem Eng Proc.1958,54(12):60~64
    [30] H.Schubert , T.Neesse. The rode of tuberbulence in wet classification[J]. 10th.Int.Miner.Process,Congr. London,1973,213~239 
    [31] 姚书典,隋志宇.高浓度条件下水力旋流器的分离粒度[J].有色金属,1988,(3):31~37 
    [32] Doheim M.A.,Zbrahim G.A.,Ahmed A.A..Rapid estimation of corrected cut point in hydrocyclone classification units[J].International Journal of Mineral Processing.1985,14:149~159
    [33] Yoshioka B.,Hotta Y..Liquid cyclone as a hydraulic classifier[J].Chemical Engineering Japan.1955,19(12):632~640
    [34] Lynch A.J.,Rao T.C..Modelling and scale-up of hydrocyclone classifiers[J].11th International Mineral Processing Congress,Cagliari.1975,9:9~25
    [35] Plitt L.R.,Kawatra S.K..Estimating the cut size of classifiers without particle-size measurement[J].Int.J.of Min.Processing.1979,5:369~378
    [36] Mular A.L.,Jull N.A..The selection of cyclone classifiers[M].Pump & Pump-boxes for Grinding Circuits,in Mineral Processing Plant Design,AIMME,New York,1978
    [37] 褚良银.水力旋流器固液两相流场研究[D].成都科技大学化机系,1992
    [38] Dahlstrom D.A..Cyclone Operating Factors and Capacities on Caol and Refuse Slurries[M].Trans.AIME,1949,V.184,331~344
    [39] Tarjan G..One the Theory and Use of the Hydrocyclone[M].Budapest,1953
    [40] Broadway J.D..2nd Int.Conf On hydrocyclone[C].Bath,England,1984, 99~108
    [41] 蒋明虎,周立,贺杰.水力旋流器压力损失的综合试验研究[J].石油机械,1999,27(11):14~16
    [42] 龚伟安.水力旋流器的蜗壳设计理论与计算[J].石油机械,1992,20(12):1~6
    [43] 李玉星,冯淑初,李安星,李付玉.水力旋流器压降及压力分布特性的数值模拟[J].流体机械,2002,30(10):15~19
    [44] 徐继润.水力旋流器强制涡及内部损失研究[M]. 沈阳:东北工学院, 1989
    [45] 褚良银,陈文梅.旋流器分离理论[M].北京:冶金工业出版社,2002
    [46] 王志斌,陈文梅,褚良银,王升贵.旋流器流场和结构对分离性能影响的研究进展[J].,过滤与分离,2004,14(3):1~3
    [47] 王尊策,赵立新,李枫.液液水力旋流器流场特性与分离性能研究(Ⅳ).锥角变化对压力损失的影响[J].化工装备技术.1999,20(6):5~7
    [48] 褚良银,陈文梅,李晓钟等.水力旋流器结构与分离性能研究(Ⅲ)锥段结构[J].化工装备技术,1998,19(5):1~4
    [49] Kutepov A.M,Study and calculation of the seperation officiency of hydrocyclones[J].Zh.Prikl.Khim,1978,51(3):614~619
    [50] А.М.Кутепов,Е.А.Непомнящий,Изв.вузоьв. Хим. и Хим[J]. технХV1.1973,11:1749~1753
    [51] А.М.Кутепов,Е.А.Непомнящий,Т.О.Х.Т.,11,n.1973,6:892~895
    [52] А.М.Кутепов,Е.А.Непомнящий, Т.О.Х.Т.,X,1976,n3:433~437
    [53] А.М.Кутепов,Е.А.Непомнящий,Журн.Прикn[J].Хим.1978,51(3):614~619
    [54] 褚良银,陈卫国,陈文梅.水力旋流器分离过程的 Monte Carlo模拟[J].过滤与分离,1998,(4):3~7
    [55] 陈卫国.水力旋流器分离过程的蒙特卡罗模拟[D],成都:四川联合大学,1998
    [56] 舒朝晖,刘根凡,褚良银,陈文梅,李晓钟.用 Monte Carlo 方法预测油水分离旋流器的分级效率[J].工程热物理学报,2003,24(1):59~62
    [57] Henri Berthiaux,John Dodds.Modeling classifier networks by Markov chains[J]. Powder Technology, v 105, n 1~3, Nov, 1999, 266~273
    [58] 李玉星 ,张劲松,冯叔处,单永波.CFD 在液液水力旋流器入口结构及尺寸优化中的应用[J].化工机械,2002.029(001):11~14
    [59] Slack M.D.,Del Porte S.,Engelman, M. S..Designing automated computational fluid dynamics modeling tools for hydrocyclone design[J]. Minerals Engineering, v 17, n 5, June, 2004, 705~711
    [60] Schuetz S., Mayer G., Bierdel M., et al.Investigations on the flow and separation behabiour of hydrocyclones using computational fluid dynamics[J]. International Journal of Mineral Processing, 2004,73(2~4):229~237
    [61] Narasimha M., Sripriya R., Banerjee P.K.. CFD modelling of hydrocyclone-prediction of cut size[J].International Journal of Mineral of Mineral Processing. 2005,75 (1~2): 53~68
    [62] Olson T.J., Van Ommen R.. Optimizing hydrocyclone design using advanced CFD model[J]. Minerals Engineering.2004,17(5):713~720
    [63] Cullivan J.C.,Williams R. A., Dyakowski T. et al. New understanding of a hydrocyclone flow flied and separation mechanism from computational fluid dynamics[J]. Minerals Engineering. 2004, (17): 651~660.
    [64] Nowakowski A.F.,Cullivan J.C.,Williams R.A.et al.Application of CFD to modelling of the flow in hydrocyclone .Is this a realizable option or still a research challenge?[J].Minerals Engineering.2004,17:661~669
    [65] Slack M.D., Del Porte S., Engelman M.S.Designing automated computational fluid dynamics modelling tools for hydrocyclone design[J].Minerals Engineering.2004,17(5):705~711
    [66] Delfos R., Murphy S., Stanbridge D., et al.A design tool for optimising axial liquid-liquid hydrocyclones[J]. Minerals Engineering.2004, 17 (5): 721~731
    [67] Gradv S.A.,Wesson G.D.,et al.Prediction of 10-mm hydrocylone separation efficiency using computational fluid dynamics[J]. Filtration and Separation.2003,40(9):41~46
    [68] Madge D.N., Romero J., Strand W.L..Hydrocarbon cyclones in hydrophilic oil sand environments[J].Hydrocyclones 2003 Meeting, SEP, 2003. Minerals Engineering. 2004,17 (5): 625~636
    [69] 李玉星,冯叔初,李安星,李付玉.水力旋流器压降及压力分布特性的数值模拟[J].流体机械,2002,30(10):15~19
    [70] 赵立新,蒋明虎,孙德智.水力旋流器流场分析与测试[J].化工机械,2005,32(3):139~142
    [71] Delgadillo J.A., Rajamani R..Hydrocyclone modeling: large eddy simulation CFD approach[J].Minerals & Metallurgical Processing.2005, 22 (4): 225~232
    [72] Jose A..Delgadillo,Raj K.Rajamani.A comparative study of three turbulence-closure models for the hydrocyclone problem[J].Int.J.Miner.Process.2005,70(007):217~230
    [73] 李玉星 ,张劲松,冯叔处.CFD 在液-液水力旋流器能耗及分离效率预测中的应用[J].流体机械,2001,29(10):20~24
    [74] Chu Liang-Yin,Qin Jian-Jun,Chen Wen-Mei,et al.Energy consumption and Its Reduction in the hydrocyclone separation process[J].Part Ⅲ.Effect of the structure of flow field on energy consumption and energy saving principles.Separation Science & Technology,2000,35(16):2679~2705
    [75] 褚良银,陈文梅等.水力旋流器[M].化学工业出版社.北京,1998,60~63
    [76] 褚良银,陈文梅,杜燕等.应用粒子动态分析仪研究水力旋流器流场[J].应用激光,1993,13(2):59~61
    [77] Ohasi H., Maeda S. Chem.Eng.(Japan),1958,22:200
    [78] Knowles S.R., Woods D.R. , Feuerstem I.A..The velocity distribution within a hydrocyclone operating without air core[J] .Can.J.Chem .Eng.1973,51:263
    [79] Chu Liang-Yin, Chen Wen-Mei.Research on the motion of solid particles in a hydrocyclone[J].Separation Science & Technology,1993,28(10):1875~1886
    [80] Kelsall D.F..A further study of the hydraulic cyclone[J].Chem.Eng.Sci.1953,2:254~272
    [81] Dreissen H.H.,Fontein F.J..Applications of hydrocyclones and sieve bends in the wet treatment of coal ,minerals and mineral products[C].Preprint No.63FB18.Annual Meeting of the American Institute of Mining,Metallurgical and Petroleum Engineers,Dallas,1963
    [82] 徐继润,罗倩.水力旋流器流场[M].科学出版社,1998
    [83] Kelsall D.F.,Stewart P.S.B.,Restarick C.J..A practical multiple cyclone arrangement for improved classification[C].Paper E5,Proc.First European Conference on Mixing and Centrifugal Separation.Cambridge,BHRA Fluid Engineering,Cranfield,1974
    [84] АнееловА.И..Τруды ТИГФС [M].вып.1960,6:237~250
    [85] Bloor M.I.G.,Ingham D.B.,Laverack S.D..An analysis of boundary layer effects in a hydrocylone[J].In Proc.Int.Conf.on hydrocyclones,Cambridge.1980,5:49~62
    [86] Hsieh C.C., Larson R.G..Modeling hydrodynamic interaction in Brownian dynamics: Simulations of extensional and shear flows of dilute solutions of high molecular weight polystyrene [J].Journal of Rheology.2004,48(5):995~1021
    [87]RennerV.G.,CohenH.E.Trans.Instn[J].Min.Metall.(Sect.C:Miner.Process.Extr.Metall.),1978 C139~145.
    [88] 褚良银,陈文梅.用 PDA 研究水力旋流器内固相颗粒运动规律[J].矿冶工程,1993,13(1):39~43
    [89] Chu Liang-Yin, Chen Wen-Mei.Research on the solid-liquid two-phase flow field in hydrocyclone[J].In:Proc. Of 18th Int. Miner. Process, Sydney, Australia,1993:1469~1472
    [90] Hsieh K.T.,Rajamani R.K..Mathematical model of the hydrocyclone based on physics of fluid flow[J]. AIChE Journal,1991,34(5):735
    [91] Averous J., Fuentes R..Advances in the numerical simulation of hydrocyclone classification[J]. Canadian Metallurgical Quarterly,1997,36(5):309~314
    [92] Luo Qian,Xu Jirun..The effect of the air core on the flow field within hydrocyclone[A].In: SVAROVSKY L,THEW M T.Hydrocyclone Analysis Application[C].London:Kluwer academic publishers,1992.51~62
    [93] Nissan A.H.,Bresan P.V.. Swirling flow in cyclinders[J].AICHE Journal,1961,7(3):543~547
    [94] ? .? .П оваров ,吴振祥,卢荣富译.水力旋流器[M].中国工业出版社,1964
    [95] ? .? .? ?????? ? ? .?.? ?????. 水力旋流器中液体运动的研究[M].矿冶译丛?重选文选,1958
    [96] Chu Liang-yin,Yu Wei,Wang Guang-jin,Zhou Xian-tao,Chen Wen-mei,Dai Guang-qing. Enhancement of hydrocyclone separation performance by eliminating the air core[J]. Chemical Engineering and Processing, 2004,43(12):1441~1448
    [97] 禇良银,陈文梅,李晓钟等.水力旋流器湍流结构控制与能耗降减[J].化工学报,1998,49(6):760~763.
    [98] 刘谦. 传递过程原理[M]. 北京:高等教育出版社,1990
    [99] 樊建人,姚军,张新育等.气固两相流中颗粒-颗粒随机碰撞新模型[J].工程热物理学报.2001,22(5):629~633
    [100] Drissen M.G.? ? ? ? ? ?   ? ? ? ? ? ? ? ? ? ?   ? ? ? ? ? [M].1978,51(3):614~619
    [101] 徐继润,罗茜.水力旋流器内固液两相间的相对运动(Ⅰ ) — — 湍流频率与固液跟随特性[J].中国有色金属学报.1998,8(3):487~490
    [102] 徐继润,罗茜.水力旋流器内固液两相间的相对运动(Ⅱ )— — 湍流频率与固液跟随特性[J].中国有色金属学报.1998,8(4):691~694
    [103] 徐继润,罗茜.水力旋流器内固液两相间的相对运动(Ⅲ ) — — 湍流频率与固液跟随特性[J].中国有色金属学报.1999,9(1):133~140
    [104] 徐继润,刘正宁,刑军等.水力旋流器内颗粒运动的几个问题[J].过滤与分离.2002,12(3):10~14
    [105] 徐继润,罗茜.水力旋流器内固体颗粒的沉降[J].化工矿山技术.1997,26(2):20~23
    [106] L. Svarovsky. Hydrocyclones[M]. Holt, Rinehart and Winston,1984
    [107] 余钟祺,马秀兰.随机过程理论及应用[M].天津:天津科学技术出版社,1996
    [108] Kraipech W.,Nowakowski A.,Dyakowski T.,Suksangpanomrung A..An investigation of theeffect of the particle-fluid and particle-particle interactions on the flow within a hydrocyclone[J].Chemical Engineering Journal.2005,111:189~197
    [109] 赵东伟,董长银,张琪,付显威.考虑位置随机性固体颗粒起动临界流速研究[J].石油大学学报.2004,28(4):59~66
    [110] 王坤,姚寿广.带入口旋流器的文丘利调风器出口冷态流场中液相流动的数值模拟[J].江苏船舶.2002,19(4):17~19
    [111] Renner V.G.,Cohen H.E..Measurement and interpretation of size distribution of particles within a hydrocyclone[M]. Trans.Inst.Min.and Extr.Met.1978,75:C129~C138 
    [112] 王殿辉,禇良银.用神经网络综合预测水力旋流器性能[J].有色金属,1994,46(1):29~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700