水力旋流器的流场模拟与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力旋流器内固-液两相流场是极其复杂的三维强旋转流流动,这给旋流器的流场数值模拟和实验测量带来了一定的困难。针对旋流器内部的这种复杂两相湍流运动,本文采用了FLUENT软件中的RNG k-ε模型和雷诺应力模型(RSM),利用贴体网格与分块网格技术,对旋流器内液相流动状态进行了数值模拟,并将模拟结果与实验数据进行分析和比较,结果表明雷诺应力模型(RSM)比RNG k-ε模型更准确地描述了旋流器内部的流动状态。固-液两相流的模拟是在液相流场计算的基础上,采用DPM模型和涉及湍流扩散影响的随机轨道模型,同时在湍流模型中加入了颗粒影响的源项,总结了不同直径的颗粒在不同入口位置进入旋流器后的运动轨迹和颗粒分离效率。
     根据数值模拟的结果,分别进行了实验室实验与工业试验。在实验室实验中,分析了入口压力与入口流量的关系,还对旋流器的生产能力、分流比进行了详细的研究,对于确定旋流器的合理工艺参数,解决旋流器分级工艺中的问题,旋流器分级工艺的设计以及对旋流器开展理论研究与新型旋流器的开发等具有重要意义;工业试验是在实验室实验与数值模拟的基础上,在齐大山选矿厂二选车间的1-1#磨矿系统用水力旋流器代替螺旋分级机,采用分散式控制,试验结果表明控制方案的可行性。同时也提出了一些新的改进方案,用现场总线与PLC相结合,完善了控制系统,稳定性和分级效率也提高了很多。
The strong swirl turbulent flow in hydrocyclone caused major difficulties in modeling their internal solid-liquid flows. In this thesis, the strongly swirling turbulent flow in solid-liquid hydrocyclone separators is simulated using RNG k-ε models and Reynolds stress equation models (RSM) of FLUENT applications to use the body-fitted and partition meshes. It is demonstrated via comparison between the simulation results with experimental data that the RSM model is superior to the RNG k-ε models. It correctly predicts the Ranking vortex of tangential velocity and the anisotropic behavior of the Reynolds stresses. Certain discrepancy remains between the simulation results and the experiment results, not only caused by the turbulent model, but also by the simplification of the inlet boundary condition and the mesh generation. Modeling solid-liquid interaction flows is complex. Liquid phase transport equations coupled with the solid particles interaction are derived based on the RSM turbulent models to handle the interaction of momentum and kinetic energy of turbulence between the liquid and solid particles,in this thesis DPM models and stochastic trajectory models are adopted, and join the source of particles influence at the base of turbulence models, summarize the movement track and separation efficiency while different diameter particles in different displacement enter the hydrocyclone.
    According to the numerical simulation results, the lab experiment and industrial experiment are implemented in this thesis. The relation of the inlet pressure and flux is analyzed in the lab experiment, and then the relation curve of production capacity-inlet pressure and separating property-inlet pressure is also protracted. The lab experiment has great value to confirm the advisable technology parameter, solve classification technique and its design, study theory and develop new type of hydrocyclone; On the foundation of the lab experiment and numerical calculative results, in the 1-1# system in the second department of the Qidashan milling factory, to use the hydrocyclone to substitute for the spiral classifier and to adopt the dispersive control, the results indicate the feasibility of the control projects, at the same time some new improved problems are put forward in this thesis, adopt the fieldbus and PLC,and perfect the control system, the
引文
[1] BretneyE, US453105, 1891
    [2] Drissen M. G.. Theory of flow in a hydrocyclone classier, Rev. L-industries min. Spl. 1951.4: 449-461
    [3] Svarovsky L. Hydrocyclones. London: 1984
    [4] 贺杰,蒋明虎.水力旋流器.北京:石油工业出版社,1996
    [5] 蒋明虎,赵立新等.旋流分离技术.哈尔滨:哈尔滨工业大学出版社,2000
    [6] Henry P and Sheng E: Separation of liquid-liquid in a conventional hydrocyclone, Sep, PurifMethod, 1977. 6(1): 89-127
    [7] Thew M. T. Hydrocyclone redesign for liquid-liquid separation using hydrocyclone: an experimental research for optimum dimensions. Journal of Petroleum Science and Engineering, 1994. 11: 37-50
    [8] 赵庆国,张明贤.水力旋流器分离技术,北京:化学工业出版社,2003
    [9] 褚良银,陈文梅.旋转流分离理论,北京:冶金工业出版社.93.103
    [10] A.H.波瓦罗夫.选矿厂水力旋流器,北京:冶金工业出版社,1982.65-67
    [11] 贺杰,姜明虎等.水力旋流器液.液分离效率.石油规划设计,1995.5.27-33
    [12] M Franchon et al. A general model for hydrocyclone partition curves. Chemical Engineering, 1999, Journal73: 53-59
    [13] (英)L.斯瓦洛夫斯基等.固液分离,北京:原子能出版社,1982
    [14] 庞学诗.水力旋流器的选择计算(一).国外金属矿选矿.1997.12:39-48
    [15] 邱家山,陈文梅等.水利旋流器数学模型的研究与进展(二).化工装备技术.1994.15(5):48-50
    [16] A.波瓦罗夫.选矿厂水力旋流器.北京:冶金工业出版社,1982.28-38
    [17] 庞学诗.水力旋流器工艺计算.北京:中国石化出版社,1997
    [18] 李晓钟,陈文梅等.水力旋流器压力场测试及能耗机理研究,流体机械,2000.28(9):11-14
    [19] 褚良银,陈文梅等.水力旋流器.北京:化学工业出版社,1998
    [20] Bradley D. Hydrocyclones. London: PermamonPress, 1965
    [21] 徐继润,罗茜著.水力旋流器流场理论.北京:科学出版社,1998
    [22] 褚良银等.水力旋流器.北京:化学工业出版社,1998
    [23] 庞学诗等.水力旋流器.北京:中国石化出版社,11-15,54-62
    [24] D. Bladley and D. J. Pulling. "Flow patterns in the hydraulic cyclone and their interpretation in terms of performance" Trans. Inst. Chem. Eng., 1959: 37. 34
    [25] Kelsall D. F. A study of the motion of solid particles in a hydraulic cyclone, Trans. Inst. Chem. Eng., 1952. 30: 87-104
    [26] Yuan, H. PhD. Dissertation, Univ. of Southampton, 1996
    [27] M. I. G. Bllor and D. B. Ingham. in progress in Filtration and Separation by R. J. Wakeman, 1983: 57-147
    [28] Kelsall D. F. A further study of the hydraulic cyclone Chem. Eng. Sci. 1953.2: 254-272
    [29] Bradley D and Pulling D J. Flow pattern in the hydraulic cyclone and their interpretation in terms of performance. Trans. Instn Chem. Engs, 1959. 37(1): 34-35
    [30] Clift R, Grace JR and Weber ME,. Bubbles, drops, particles. Academics Press, London, 1978
    [31] 赤田进.远.饱和轴动力性能检讨,机械,1985
    [32] 李文广.水力机械流动理论.北京:中国石化出版社,2000
    [33] 周光炯.计算流体力学.高等教育出版社,2000
    [34] 窦国仁.湍流力学.高等教育出版社,2000
    [35] B. E. Launder, G. J. reece and W. Rodi. Progress in the Development of a Reynolds-stress Turbulence Closure. J. Fluid Mech, 1975, Vol. 68, Part3: 537-566
    [36] Charles GsPeziale, Thomas B.Gatski and Nessan Fitzmaurice. An Analysis of RNG based Turbulence Models for Homogeneous Shear Flow. Phys, Fluid, 1991, Vol. 3, No.9: 2278-2281
    [37] 洪若瑜.内循环和外循环流化床中超细粉流态化的研究[博士学位论文]:中国化学院化工冶金研究所,1996
    [38] Horio M., Iwadate Y., Sugaya T, PowderTech., 1998 Vol. 96: 148-157
    [39] 周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社,1994
    [40] Tsuji Y. Tanaka T . Yonemura S. Powder Tech. 1998. Vol. 95: 254-264
    [41] Ge W., Li J. In Circulating Fluidized bed Technology V(eds, Kwauk M, Li J), Science Press 1996. P2: 0-266
    [42] 计算流体力学及应用,北京:国防工业出版社,2003.109-117
    [43] McDonald P W. The Computation of Transonic Flow through two-Dimensional Gas Turbine Cascades, ASME Paper 71-GT-89, 1971
    [44] 陶文锉.计算传热学的近代发展.西安:西安交通大学出版社,2001
    [45] Boysan. F. Ayers W. H. and Swithenbank, J.,A.,1982,Trans.
    [46] Duggins, R. K. and Frith P. C. W. Filtration & Separation, 1987 : 394-397
    [47] Dyakowski T., Williams R. A. Chem. Eng. Sc. 1993:1143-1152
    [48] Madsen H. J. Thorstenssen J. H. Salimi P. Prediction of the Performance of Gas Cyclone, 2nd CFDS international User Conference, 1994:211-227
    [49] Meier H. F. and Mori M. Modeling and Simulation of Turbulent Gas Flow in a Cyclone Separator, Argentina, 1996:193-198
    [50] 彭维民.切向旋风分离器内部流场的数值模拟及试验研究,农业机械学报2001.7
    [51] 魏志军,张平.旋风分离器的气相流场进行了数值模拟 2000.10
    [52] 林玮,王乃宁.用应力模型计算旋风分离器的流场,华东工业大学学报,1996.3
    [53] Lapple CE and Shepherd CB. ind. Eng. Chem. 1940. Vol.32
    [54] Kriebel AR J. Basic Eng. 1961. Vol. 83
    [55] Soo SL. Fluid Dynamics of Multiphase System Blasdell Pub. Co. Walth-am, 1967
    [56] Muhle J. Chem. -Ing. Tech. 1971. Vol. 43: 21
    [57] Muhle J. Chem.-Ing. Tech, 1972. Vol. 44:14
    [58] Muhle J. Dissertation TU Berlin, 1969
    [59] Kruger R. Dissertation TU Berlin, 1973
    [60] Kuts P S and Grinchik N N. Heat Transfer-Soviet Research, 1977. Vol. 9:1
    [61] Patankar S V and Spalding D B. A Calculation Procedure for Heat, Mass and Momentum Transfer in three-dimensional Parabolic Flows, J. Heat and Mass transfe, 1972. 15:1787-1806
    [62] 魏新利,张海红等.水力旋流器流场的数值模拟研究,热科学与技术,2005.6: 164-168
    [63] 邹宽,杨茉等.水力旋流器湍流流动的数值模拟,工程热物理学报,2004.1:127-129
    [64] Addle G R. Design, selection, sizing and control considerations for cyclone feed slurry pumps, POWDER TECHNOLOGY, 1999(104): 223-239
    [65] 孙玉波.浅谈水力旋流器的工作原理和影响参数,矿业快报,2003.1(1):5-8
    [66] 袁国才.水力旋流器分级工艺参数的确定及计算,有色冶金设计与研究, 1995,16(1):4-10
    [67] 陈俊文.旋流器组粒度分级原理及粒度控制技术.基础自动化,1999,6(5):39-41
    [68] 兰岚,徐文立等.水力旋流器控制方法的研究与应用,矿冶,2003年第12卷,第4期:19-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700