基于无网格方法的声学问题数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无网格法是近年来发展比较迅速的一种数值方法,它可以克服传统数值分析方法对网格的依赖性,彻底或部分的消除网格,抛开网格的初始划分和网格重构,成为科学和工程数值计算研究的热点。径向基函数(Radial Basis Function, RBF)在散乱数据插值中已经得到了广泛的应用,基于RBF配点的无网格方法是一种真正的无网格方法,在求解偏微分方程过程中具有不需要任何网格、易于实施、计算精度高等诸多优点,近年来逐步发展成为一种比较成熟的无网格方法。
     论文将基于RBF配点的无网格方法较为完整的引入到声学数值计算领域,针对RBF配点型无网格方法的自身特点和其应用于声学计算时所面临的特殊问题进行了深入的研究,以期利用RBF方法不需要网格划分等优点突破基于网格的数值方法在声学领域应用中的局限性,建立了适用于声学问题求解的无网格方法。
     论文将RBF配点点型无网格方法引入计算气动声学(Computational aeroacoustics,CAA)领域,提出了适用于CAA问题求解的局部RBF配点法,克服了RBF全域配点方法所带来的病态密集矩阵难以求解问题,同时仅在计算数据点周围灵活配点的处理方式,也为求解中采用矢通量分裂方法引入迎风机制提供了保证。
     论文提出了适用于声学特征值问题求解的边界型RBF无网格方法。该方法将修正变分原理和移动最小二乘相结合,利用RBF插值实现方程中非齐次项的求解。该方法的实施过程中只用在求解域的边界上布点,域内少量布点仅是为了实现径向基函数插值,这就使得该方法既具有边界元方法的半解析半数值方法的优点,求解精度比较高,同时又具有无网格方法的特点,不用在求解域内以及边界上划分网格,前处理非常简单。
     论文研究了不同气流流动、不同壁面条件、不同截面形状的管道中声传播的基本规律和管道声模态的传播特点。利用RBF无网格方法对具有不同壁面边界条件的单扩张腔消声器的声传播模态及截止频率等进行了数值模拟,验证了RBF无网格方法应用于简单消声器结构声学性能计算的有效性。最后论文将基于RBF的无网格数值方法拓展至实际工程领域中消声器的声学性能计算。由单室扩张式、内插管单室扩张式和穿孔管共振式三种简单消声器结构的计算拓展至基于这三种基本结构组合的复合型消声器结构。通过数值计算与消声器实验结果对比表明,RBF无网格方法可以有效应用于工程实际中消声器的设计和计算。相对于传统的基于一维结构的计算方法而言,该数值计算中应用的是消声器结构的三维模型,得到的计算结果对于消声器结构的设计和改进更有指导意义。
     本文对RBF无网格方法应用于声学问题计算的系统研究表明:基于RBF配点的无网格方法作为一种真正的无网格方法,摆脱了求解中对网格剖分的依赖,具有精度高、易于扩展到高维问题、中心点和配点设置灵活、编程简单等优点。可以预期RBF配点无网格方法必将会成为一种重要的声学数值模拟方法。
Meshless method is a new kind of numerical methods which has rapidly developed in the recent years. This method is independent of the concept of element which traditional element-type method depends on, and has the advantages that no elements are needed totally or partly, avoiding the onerous mesh generation and re-meshing, etc. The method is paid very much attention by scientists and engineers in various computational researches because of its greatly theoretical and applicable value. Radial basis function (RBF) has been used successfully in scattered data interpolation, the introduction of the RBF to the collocation method for solving partial differential equations has many advantages, such as the method is a truly meshless method, does not require any meshes, easy to implement, high accuracy, and gradually developed into a mature meshless method.
     The main purpose of this dissertation is to introduce the basis system of the RBF collocation meshless method into acoustics researches and develop new types of meshless methods which are suitable for the acoustics numerical simulation. Therefore, two parts of important contents are studied in details, including researches on the common theoretical problems of meshless methods themselves and the special applicable background of acoustics, especially for the analysis of computational aeroacoustics (CAA) problems.
     A localized RBF collocation method was proposed to solve CAA problems, the method yields the generation of a small interpolation matrix for each data center and hence circumvent the highly ill-conditioned dense matrix dute to the globally supported RBF. An upwind implementation is further introduced to contain the hyperbolic property of the governing equations by using flux vector splitting method.
     A boundary type RBF meshless method is presented for acoustic eigenvalue problems, in which the modified variational formulation is combined with the moving least squares (MLS), while the domain integration is interpolated by RBF. This method is a truly meshless method, and elements are not required for either interpolation or integration, only discrete nodes are constructed on the boundary of a domain, several nodes in the domain are needed just for the RBF interpolation. The numerical examples show that the accuracy and convergence of the methodare high, and the pre-processing is very easy.
     The propagation of acoustic waves along a duct with different air flow, different wall conditions, and different shapes of the duct cross-section is considered in this dissertation. The duct cut-off frequency and the transmission characteristics of acoustic mode are dicussed deeply. The numerical simulation on the acoustics perforces of a single cavity expansion muffler are carried by the localized RBF collocation method, including the rigid and impedance wall boundary conditions. Some studies on the transmission characteristics of acoustic mode and duct cut-off frequency are carried by the boundary-type RBF collocation method. The meshless method is finally extended to the calculation on acoustic performance of mufflers in practical engineering field. The comparision between the results obtained from the numerical method and which from the expermential shows that the meshless method can be applied to engineering pratice in the muffler design and calculation. As opposed to the traditional one-dimensional models, the use of RBF meshless method which based on three-dimensional models is more guidance for the muffler structure design.
     The systematic studies on the numerical simulation of acoustic problems show that, as a truly meshless method, the RBF collocation method has several advantages over the traditional methods:such as it does not need any mesh, it is an independent spatial dimension which can be easily extended to high-dimensional problems, it can also be extended to solve the partial differentional equations with higher order derivatives whithout any difficulties, and it is easy in implementation and programming. RBF collocation method will become an important method in acoustic numerical simulation because of its feasibility, effectiveness and outstanding advantages in the simulation of acoustics.
引文
[1]阎超.计算流体力学方法及应用.北京:北京航空航天大学出版社,2006
    [2]王保国,刘淑艳,黄伟光.气体动力学.北京:北京理工大学出版社,2005
    [3]吴子牛.空气动力学.北京:清华大学出版社,2008
    [4]李太宝.计算声学--声场的方程和计算方法.北京:科学出版社,2006
    [5]张海澜.理论声学.北京:高等教育出版社,2007
    [6]Lele S. K. Computational aeroacoustics-a review. AIAA paper 97-0018,1997,
    [7]Tam C. K. W. Computational aeroacoustics:issues and methods. AIAA Journal,1995, 33(10):1788-1796
    [8]孙晓峰,周盛.气动声学.北京:国防工业出版社,1994
    [9]邵敏,王勖成.有限单元法基本原理和数值方法.北京:清华大学出版社,2003
    [10]嵇醒,臧跃龙,程玉民.边界元进展及通用程序.上海:同济大学出版社,1997
    [11]Liu G. R., Gu Y. T. An introduction to meshfree methods and their programming. New York:Springer,2005
    [12]张雄,刘岩.无网格法.北京:清华大学出版社,2004
    [13]刘更,刘天祥,谢琴.无网格法及其应用.西安:西北工业大学出版社,2005
    [14]Liu G. R. Mesh free methods:Moving beyond the finite element method. Boca Raton: CRC Press LLC,2003
    [15]Perrone N., Kao R. A general finite difference method for arbitrary meshes. Computers & Structures,1975,5(1):45-58
    [16]Liszka T., Orkisz J. Finite difference method for arbitrary irregular meshes in nonlinear problems of applied mechanics. San Francisco:In:IV SMiRt,1977
    [17]Lucy L. B. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal,1977,8(12):1013-1024
    [18]Gingold R. A., Monaghan J. J. Smoothed particle hydrodynamics:theory and applications to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 1977,18:375-389
    [19]Johnson G. R., Stryk R. A., Beissel S. R. SPH for high velocity impact computations. Computer Methods in Applied Mechanics and Engineering,1996,139:347-373
    [20]Johnson G. R., Beissel S. R., Stryk R. A. A generalized particle algorithm for high velocity impact computations. Computational Mechanics,2000,25:245-256
    [21]Swegle J. W., Attaway S. W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Computational Mechanics,1995, 17:151-168
    [22]Bonet J., Kulasegaram S. A simplified approach to enhance the performance of smooth particle hydrodynamics methods. Applied Mathematics and Computation,2002, 126:133-155
    [23]Borve S., Omang M., Trulsen J. Regularized smoothed particle hydrodynamics:A new approach to simulating magnetohydrodynamics shocks. The Astrophysical Journal, 2001,561(1):82-93
    [24]Hicks D. L., Liebrock L. M. Conservative smoothing with B-splines stabilizes SPH material dynamics in both tension and compression. Applied Mathematics and Computation,2004,150:213-234
    [25]Monaghan J. J. Smooth particle hydrodynamics. Annual review of Astronomy and Astrophysics,1992,30:543-574
    [26]Monaghan J. J. An introduction to SPH. Computer Physics Communications,1998, 48(1):89-96
    [27]Liu W. K., Jun S., Zhang Y. F. Reproducing kernel particle methods. International Journal for Numerical Methods in Engineering,1995,20(1):1081-1106
    [28]Liu W. K., Chen Y., Chang C. T. Advances in multiple scale kernel particle methods. Computational Mechanics,1996,18(2):73-111
    [29]Liu W. K., Hao W., Chen Y.et al. multiresolution reproducing kernel particle methods. Computational Mechanics,1997,20:295-309
    [30]Liu W. K., Jun S. Multiresolution reproducing kernel particle methods for computational fluid dynamics. International Journal for Numerical Methods in Fluids, 1997,24(12):1391-1415
    [31]Uras R. A., Chang C. T., Chen Y. Multiresolution reproducing kernel particle methods in acoustics. Journal of Computational Acoustics,1997,5:71-94
    [32]Aluru N. R. A reproducing kernel particle methods for meshless analysis of microelectromechanical systems. Computational Mechanics,1999,23:324-338
    [33]Lancaster P., Salkauskas K. Surfaces generated by moving least-squares methods. Mathematics of Computation,1981,37(155):141-158
    [34]Nayroles B., Touzot G., Villon P. Generalizing the elements. Computational Mechanics,1992,19:307-318
    [35]Belytschko T., Lu Y. Y., Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering,1994,37:229-256
    [36]Liu G. R., Gu Y. T. Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation. Computational Mechanics,2000,26(2): 166-173
    [37]Gu Y. T., Liu G. R. A coupled element free Galerkin/boundary element method for stress analysis of two-dimensional solids. Computer Methods in Applied Mechanics and Engineering,2001,190:4405-4419
    [38]Belyschko T., Organ D., Krongnauz Y. A coupled finite element-element free Galerkin method. Computational Mechanics,1995,17:186-195
    [39]Karutz H., Chudoba R., Krtzing W. B. Automatic adaptive generation of a coupled finite element/element-free Galerkin discretization. Finite Element in Analysis and Design, 2002,38:1075-1091
    [40]Onate E., Idelsohn S., Zienkinewicz O. C. A finite point method in computational mechanics:applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering,1996,39:3839-3866
    [41]Onate E., Idelsohn S., Zienkinewicz O. C. A stabilized finite point method for analysis of fluid mechanics problems. Computer Methods in Applied Mechanics and Engineering,1996,139:315-346
    [42]Onate E., Idelsohn S. A meshfree finite point method for advective-diffusive transport and fluid flow problems. Computational Mechanics,1998,21:283-292
    [43]Liu W. K., Li S., Belytschko T. Moving least square kernel Galerkin methods part: Methodology and vonvergence. Computer Methods in Applied Mechanics And Engineering,1997,143:113-154
    [44]Zhu T., Zhang J., Atluri S. N. A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Computational Mechanics,1998,21(3):223-235
    [45]Atluri S. N., Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics,1998,22:117-127
    [46]Zhu T. A new meshless regular local boundary integral equation (LBIE) approach. International Journal for Numerical Methods in Engineering,1999,46(8):1237-1252
    [47]Dilts G. A. Moving least square particle hydrodynamics I:consistency and stability. International Journal for Numerical Methods in Engineering,1999,44:1115-1155
    [48]Dilts G. A. Moving least square particle hydrodynamics II:conservation and boundries. International Journal for Numerical Methods in Engineering,2000,48: 1503-1524
    [49]Park S. H., Youn S. K. The least-squares meshfree method. International Journal for Numerical Methods in Engineering,2001,52(9):997-1012
    [50]Duarte C. A., Oden J. T. Hp-clouds:a h-p meshless method. Numerical Methods For Partial Differential Equations,1996,12:673-705
    [51]Babuska I., Melenk J. M. The partition of unity finite element methods:basic theory and applications. computer Methods in Applied Mechanics And Engineering,1996,139: 91-158
    [52]Liszka T. J., Duarte C., Tworzydlo W. W. Hp-meshless cloud method. Computer Methods in Applied Mechanics and Engineering,1996,139:263-288
    [53]Oden J. T., Duarte C., Zienkiewicz O. C. A new cloud-based hp finite element method. International Journal for Numerical Methods in Engineering,1998,50:160-170
    [54]Li S., Liu W. K. Reproducing kernel hierarchical partition of unity, Part I: formulation and theory. International Journal for Numerical Methods in Engineering,1999, 45:251-288
    [55]Li S., Liu W. K. Reproducing kernel hierarchical partition of unity, Part II: applications. International Journal for Numerical Methods in Engineering,1999,45: 289-317
    [56]Liu G. R., Gu Y. T. A point interpolation method for two-dimensional solids. International Journal for Numerical methods in Engineering,2001,50(4):937-951
    [57]Liu G. R., Gu Y. T. A local point interpolation method for stress analysis of two-dimensional solids. Structural Engineering And Mechanics,2001,11(2):221-236
    [58]Liu G. R., Gu Y. T. A matrix triangularization algorithm for the polynomial point interpolation method. Computer methods in Applied Mechanics And Engineering,2003, 192(19):2269-2295
    [59]Liu G. R., Yan L., Wang J. G.et al. Point interpolation method based on local residual formulation using radial basis function. Structural Engineering And Mechanics,2002, 14(6):713-732
    [60]Wang J. G., Liu G. R. A point interpolation meshless method based on radial basis function. International Journal for Numerical methods in Engineering,2003,54(11): 1623-1648
    [61]Hardy R. L. Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical REsearch,1971,76(8):1905-1915
    [62]Kansa E. J. Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics I. Surface approximations and partial derivative estimates. Computers & Mathematics with Applications,1990,19:127-145
    [63]Kansa E. J. Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics Ⅱ. Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Computers & Mathematics with Applications,1990,19:147-161
    [64]Wendland H. Meshless Galerkin method using radial basis functions. Mathematics of Computation,1999,68(228):1521-1531
    [65]Larsson E., Fornbert B. A numerical study of some radial basis functions based solution methods for elliptic PDEs. Computers and Mathermatics with applications,2003, 46:891-902
    [66]Kupradze V. D., Aleksidze M. A. The method of functional equations for the approximate solution of certain boundary value problems. Comput Math Math Phys,1964, 4(4):82-126
    [67]Mathon R., Johnston R. L. The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J Numer Anal,1977,14:638-650
    [68]Bogomolny A. Fundamental solutions method for elliptic boundary value problems. SIAM J Numer Anal,1985,22:644-669
    [69]Young D. L., Jane S. J., Fan C. M.et al. The method of fundamental solutions for 2D and 3D Stokes problems. Journal of Computational Physics,2006,211(1-8)
    [70]Young D. L., Jane S. J., Fan C. M.et al. Time-dependent fundamental solutions for homogeneous diffusion problems. Engineering Analysis With Boundary Elements,2006, 28:1463-1473
    [71]Kondapali P. S., Shippy D. J., Fairweather G. Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions. The Journal of the Acoustical Society of America,1992,91(4):1844-1854
    [72]Zhang X., Lu M. W. A 2-D meshless model for jointed rock structures. International Journal for Numerical Methods in Engineering,2000,139:75-89
    [73]Zhang X., Song K. Z., Lu M. W. Meshless methods based on collocation with radial basis function. Computational Mechanics,2000,26(4):333-343
    [74]Zhang X., Liu X. H., Song K. Z. Least-square collocation meshless method. International Journal for Numerical methods in Engineering,2001,51(9):1089-1100
    [75]张雄,胡炜,潘小飞.加权最小二乘无网格法.力学学报,2003,35(4):425-431
    [76]Zhang J. M., Yao Z. H. A new regular meshless hybrid boundary method.In:Proceedings of the first MIT conference on computational fluid and solid mechanics.Elsevier.2001.
    [77]Zhang J. M., Yao Z. H., Masataka T. The meshless regular hybrid boundary node method for 20D linear elasticity. Engineering Analysis With Boundary Elements,2003, 127:259-268
    [78]Chen W. Meshfree boundary particle method applied to Helmholtz problems. Engineering Analysis With Boundary Elements,2002,26(7):577-581
    [79]Chen W., Tanaka M. A meshless, integration-free, and boundary-only RBF technique. Computers & Mathematics with Applications,2002,43:379-391
    [80]Chen W., Hon Y. C. Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems. Comput Meth Appl Mech Eng,2003,192(15):1859-1875
    [81]周维垣,寇晓东.无单元法及其工程应用.力学学报,1998,30(2):193-202
    [82]庞作会,葛修润,郑宏.一种新的数值方法-无网格伽辽金法(EFGM)计算力学学报,2000,16(3):320-329
    [83]吴宗敏.函数的径向基表示.数学进展,1998,27:202-208
    [84]吴宗敏.散乱数据拟合的模型、方法和理论.北京:科学出版社,2007
    [85]Wu Z. M., Schaback R. Local error estimates for radial basis function interpolation of scattered data. IMA Journal of Numerical Analysis,1993,13:13-27
    [86]Wu Z. M. Compactly supported positive definite radial functions. Adv Comput Math, 1995,4:283-292
    [87]Lighthill M. J. On sound genereated aerodynamically part I. General Theory. Proceedings of the Royal Society,1952, A211(1107):564-587
    [88]Lighthill M. J. Report on the final panel discussion on computational aeroacoustics. ICASE Report 92-53,1992,
    [89]Colonius T., Lele S. K. Computational aeroacoustics:progress on nonlinear problems of sound generation. Progress in Aerospace Science,2004,40:345-416
    [90]Curle N. The influence of solid boundaries upon aerodynamic sound. Proceedings of the Royal Society of London Series A-Mathematical Physical And Engineering Sciences, 1955,231(1187):505-514
    [91]Ffowcs Williams J. E., Hawkings D. L. Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of The Royal Society of London Series A-Mathematical Physical And Engineering Sciences,1969,264(1151):321-342
    [92]Goldstein M. Unified approach to aerodynamic sound generation in the presence of solid boundaries .Journal of the Acoustical Society Of America,1974,56(2):497-509
    [93]Tam C. K. W., Webb J. C. Dispersion-relation-reserving finite difference schemes for computational acoustics. Journal of computational physics,1993,107:262-281
    [94]Cheong C., Lee S. Grid-Optimized Dispersion-Relation-Preserving Schemes on General Geometries for Computational Aeroacoustics. Journal of Computational Pysics, 2001,174:248-276
    [95]Lele S. K. Compact Finite Difference Schemes with Spectral-Like Resolution. Journal of Computational Physics,1992,103:16-42
    [96]Kim J. W., Lee D. J. Optimized compact finite difference schemes with maximum resolution. AIAA Journal,1997,34(5):887-893
    [97]Hixon R. Prefactored Small-Stencil Compact Schemes. Journal of Computational Physics,2000,165:522-541
    [98]Chu P. C., Fan C. W. A Three-Point Combined Compact Difference Scheme. Journal of Computational Physics,1998,140:370-399
    [99]Nabavi M., Kamran S. M. H. A new nine-point sixth-order accurate compact finite-difference method for the Helmholtz equation. Journal of Sound and Vibration, 2007,307:972-982
    [100]Hu F. Q., Hussaini M. Y., Manthey J. L. Low-Dissipation and Low-Dispersion Runge-Kutta chemes for Computational Acoustics. Journal of Computational Physics, 1996,124(1):177-191
    [101]Wang Z. J., Chen R. F. Optimized Weighted Essentially Nonoscillatory Schemes for Linear Waves with Discontinuity. Journal of Computational Pysics,2001,150:199-238
    [102]Hu F. Q., Hussaini M. Y., Rasetarinera P. An analysis of the Discontinuous Galerkin method for wave propagation problems. Journal of Computational Physics,1999,151: 929-946
    [103]Delorme P., Mazet P., Peyret C.et al. Computational aeroacoustics applications based on a discontinuous Galerkin method. Comptes Rendus Mecanique,2005,333: 676-682
    [104]Toulopoulos I., Ekaterinaris J. A. High-order Discontinuous Galerkin discretizations for computational aeroacoustics in complex domains. AIAA Journal,2006,44(3):502-511
    [105]Degrande G., Roeck G. D. A spectral element method for two-dimensional wave propagation in horizontally layered saturated porous media. Computers & Structures,1992, 44(4):717-728
    [106]Mehdizadeh O. Z., Paraschivoiu M. Investigation of a two-dimensional spectral element method for Helmholtz's equation. Journal of Computational Physics,2003,189: 111-129
    [107]Terai T. On calculation of sound fields around three dimensional objects by integral equation methods. Journal of Sound And Vibration,1980,69(1):71-100
    [108]Shen L., Liu Y. J. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation. Computational Mechanics,2007,40:461-472
    [109]Karageorghis A. The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation. Applied Math Letters,2001,14:837-842
    [110]Chen J. T., Chen I. L., Lee Y. T. Eigensolutions of multiply connected membranes using the method of fundamental solutions. Engineering Analysis With Boundary Elements,2005,29:166-174
    [111]Alves C. J. S., Valtchev S. S. Numerical comparison of two meshfree methods for acoustic wave scattering. engineering Analysis With Boundary Elements,2005,29: 371-382
    [112]Bouillard P., Suleaub S. Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of the pollution effect. Computer Methods in Applied Mechanics And Engineering,1998,162:317-335
    [113]Suleaub S., Deraemaeker A., Bouillard P. Dispersion and pollution of meshless solutions for the Helmholtz equation. Computer Methods in Applied Mechanics And Engineering,2000,190:639-657
    [114]Chen J. T., Chang M. H., Chen K. H.et al. The boundary collocation method with meshless concept for acoustic eigenanalysis of two-dimensional cavities using radial basis function. Journal of Sound And Vibration,2002,257(4):667-711
    [115]Jia X. F., Hu T. Y., Wang R. Q. A meshless method for acoustic and elastic modeling. Applied Geophysics,2005,2(1):1-6
    [116]Tsai C. C., Young D. L., Chen C. W.et al. The method of fundamental solutions for eigenproblems in domains with and without interior holes. Proceedings of the Royal Society of London Series A-Mathematical Physical And Engineering Sciences,2006, 462(2069):1443-1466
    [117]Antonio T., Antonio J., Castro L. Coupling the BEM/TBEM and the MFS for the numerical simulation of acoustic wave propagation. Engineering Analysis With Boundary Elements,2010,34(4):405-416
    [118]Batina J. T. A gridless Euler/Navier-Stokes solution algorithm for complex aircraft applications. AIAA Paper,1993,93-0333
    [119]陈红全.求解Euler方程的隐式无网格算法.计算物理,2003,20(1):9-13
    [120]江兴贤,陈红全Euler方程无网格算法及布点技术.南京航空航天大学学报,2004,36(2):174-178
    [121]江兴贤,陈红全.多段翼型无网格算法及其布点技术.南京理工大学学报,2005,29(1):22-25
    [122]Buhmann M. D. Radial Basis Functions:theory and implementations. New York: Cambridge University Press,2003
    [123]Fasshauer G. E. Meshfree approximation methods with Matlab. New Jersey:World Scientific,2007
    [124]Wendland H. Scattered data approximation. New York: Cambridge University Press, 2005
    [125]吴宗敏.径向基函数、散乱数据拟合与无网格偏微分方程数值解.工程数学学报,2002,19(2):1-12
    [126]Wendland H. Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degee. Adv Comput Math,1995,4:389-396
    [127]Franke R. Scattered data interpolation:test of some methods. Mathematics of Computation,1982,38:181-200
    [128]Halton J. On the efficiency of certain quasirandom sequences of points in evaluating multidimensional integrals. Numersiche Mathematik,1960,2:84-90
    [129]Caflisch R. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica,1998,7: 1-49
    [130]黎志勤,黎苏.汽车排气系统噪声与消声器设计.北京:中国环境科学出版社,1991
    [131]应怀樵.现代振动与噪声技术(第6卷).北京:航空工业出版社,2008
    [132]NASA-CP-1995-3300. ICASE/LaRc workshop on benchmark problems in computational aeroacoustics (CAA).1995
    [133]NASA CP-1997-3352. Second computational aeroacoustics (CAA) workshop on benchmark problems.1997
    [134]NASA CP-2000-209790. Third computational aeroacoustics (CAA) workshop on benchmark problems.2000
    [135]NASA CP-2004-212954. Fourth computational aeroacoustics (CAA) workshop on benchmark problems.2004
    [136]居鸿宾,沈孟育.计算气动声学的问题、方法与进展.力学与实践,1995,17:1-10
    [137]Ziomek L. J. Fundamentals of acoustic field theory and space-time signal processing. Washington: CRC Press,1995
    [138]Temkin S. Elements of acoustics. New York:Wiley,1981
    [139]Wong ASM, Hon YC, Li Tset al. Multizone decomposition of time dependent problems using the multiquadric scheme. Computers & Mathematics with Applications, 1999,37(8):23-43
    [140]Ling L, Kansa EJ. A least-square preconditioner for radial basis functions collocation methods. Adv Comput Math,2005,23:31-54
    [141]Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math,1995,4:389-396
    [142]吴子牛.计算流体力学基本原理.北京:科学出版社,2001
    [143]Van Leer B. Flux-vector splitting for the Euler equations. Lecture notes in physics. New York, Berlin:Springer,1982
    [144]Ciskowski R. D., Brebbia C. A. Boundary element method in acoustics. Southampton:Computational Mechanics Publications,1991
    [145]Kim Y. Y., Kim D. K. Applications of waveguide-type base functions for the cigenproblems of two-dimensional cavities. Journal of the Acoustical Society Of America, 1999,106(4):1704-1711
    [146]Ali A., Rajakumar C., Yunus S. M. Advances in acoustic eigenvalue analysis using boundary element method. Computers & Structures,1995,56:837-847
    [147]乔渭阳.航空发动机气动声学.北京:北京航空航天大学出版社,2010
    [148]马大猷.噪声控制学.北京:科学出版社,1987
    [149]朱孟华.内燃机振动与噪声控制.北京:国防工业出版社,1995
    [150]Bauer A. Impedance theory and measurements on Porous Acoustic Liners. Journal of Aircraft,1977,14(8):720-728

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700