飞秒激光场中双原子分子电离解离动力学理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着脉冲激光技术的发展,超快超强脉冲激光越来越多地被用来控制光化学反应。从理论上研究在超快超强激光场作用下的原子和分子动力学具有重要的意义。对于求解原子和双原子分子等这类少体问题,使用基于求解含时Schr(o|¨)dinger方程的量子波包方法能够详细地描述系统的时变动力学过程,因此它被广泛地应用于分子反应动力学研究中。
     本论文基于量子含时波包方法来研究双原子分子在飞秒激光场中的动力学过程,探索利用飞秒激光脉冲控制化学反应的方法。主要工作包括以下几个方面:
     (1)使用一维含时波包模型,计算并讨论了NO分子里德堡态C~2Π和价态B~2Π之间的非绝热相互作用对C~2Π←X~2Π吸收光谱的影响。从激发态波包随时间的演化过程可以看出,波包的一部分在里德堡态C~2Π上演化而另一部分则被束缚在价态B~2Π上。结果表明,C~2Π和B~2Π之间的相互作用会影响到C~2Π←X~2Π吸收谱峰的强度和位置。C~2Π态上v′=0,1,2的吸收谱峰发生红移,而v′=3,4,5的峰发生蓝移。
     (2)以Na_2分子为例,讨论了利用电离连续态作为中间态实现激光控制分子布居转移的可行性。首先使用一维含时波包模型,研究了激光强度、延迟时间、失谐对布居转移效率的影响。之后,将一维波包的计算结果与二维含时波包模型的结果进行比较,研究分子转动和分子取向对布居转移效率的影响。结果表明,尽管电离连续态对布居转移会产生一定损耗,同时分子转动也会在一定程度上降低布居转移效率,但是通过合理调节激光参数,仍然可以实现较高的布居转移效率。
     (3)以Br_2分子为例,提出了通过控制解离波包干涉来控制产物分支比的方案。两束泵浦光在解离势能面上先后产生两个解离波包,随着波包的演化,两个波包会发生干涉叠加。使用二维波包模型,计算并分析了解离产物在坐标和速度空间的径向分布以及速度角分布。结果表明,通过改变两束泵浦光的相位差以及延迟时间,可以控制分子光解离波包的干涉图样。同时,分子在不同解离通道中的解离几率也会发生不同程度的改变,进而产物分支比将会得到控制。
     (4)研究了NaI分子的非绝热光解离和光电离过程,提出了利用一阶非共振非微扰Stark效应来控制非绝热解离过程的方案。使用二维波包模型,分别研究了Stark控制脉冲的延迟时间、强度、频率和相位对非绝热解离动力学以及各通道解离几率的影响。结果表明,尽管在一阶非共振非微扰动力学Stark效应中,Stark能移方向在每个光周期内会改变两次,即两个透热态之间的能量差会以激光的频率来回地变大变小,但是利用一阶非共振非微扰动力学Stark效应,仍然可以实现对非绝热解离动力学的控制。通过调节Stark脉冲参数,可以很有效地实现对解离产物分支比控制,相应的结果可以从最终的光电子动能分布中反映出来。
Along with the development of the laser pulse technology,the ultra-fast and ultra-intense laser pulses are used to control the photochemical reactions more and more extensively.Studying the interaction between ultra-fast and ultra-intense laser fields and atoms or molecules in theory is very necessary.For the solution of few-body problems such as interactions of atoms or diatomic molecules with laser fields,the time-dependent quantum wave packet method which is based on the solution of the time-dependent SchrSdinger equation,is an efficient way.Thus,it is widely used in the study of molecular reaction dynamics.
     The works in this thesis are based upon the time-dependent quantum wave packet method to study the dynamics of diatomic molecules in femtosecond laser fields,in order to make use of the femtosecond laser pulse to control the chemical reaction.The main works are as follows.
     (1) Using the one-dimension model,the effect of the nonadiabatic coupling between the Rydberg state C~2Πand the valence state B~2Πon the C~2Π←X~2Πabsorption spectrum of the NO molecule is calculated and discussed.From the evolution of the excited wave packet,it can be seen that one part of the excited wave packet travels on the Rydberg state C~2Π,and the other part is trapped in the valence state B~2Π.The coupling between C~2Πand B~2Πcan affect the absorption spectrum of C~2Π←X~2Πin spectrum intensities and peak locations.The peaks ofν′= 0,1,2 are shifted to the red and those ofν′= 3,4,5 are shifted to the blue.
     (2) The feasibility of steering molecular population transfer via ionization continuum is studied using the Na_2 molecule as an example.The effects of the intensity, delay and detuning of the laser pulse on the population transfer are discussed in detail based on the one-dimension model.The effect of molecular rotation and alignment on the population transfer is studied by comparing the one-dimension model with the two-dimension one.It is shown that although the ionization and the molecular rotation can decrease the population transfer efficiency to some extent,a large part of population transfer via ionization continuum can still be achieved by properly choosing the laser parameters.
     (3) An approach of controlling the dissociation product branching ratio of the Br_2 molecule is proposed based on the dissociating wave packet interference.Two pump pulses create dissociating wave packets interfering with each other.Using twodimension model,the radial distributions of dissociation products in coordinate and momentum space and the angular distribution are calculated and analyzed.It is shown that by varying the phase difference and delay time between the two pump pulses,the interference pattern of dissociating wave packets can be controlled and the dissociation probabilities in different dissociation channels can be changed to different degrees.
     (4) The nonadiabatic photodissociation and the following photoionization processes have been studied,using the NaI molecule as an example.Dissociation probabilities of different dissociation,channels and the branching ratio can be controlled by using the first order nonresonant nonperturbative dynamic Stark effect(DSE).Using two-dimension model,the effects of the delay time,intensity,frequency and phase of the Stark pulse on the nonadiabatic dissociation dynamics and the dissociation probabihties are calculated.It is shown that although in this first order nonresonant nonperturbative DSE case,the Stark shift changes direction twice every laser period, i.e.,the energy difference between the two diabats can be enlarged and reduced backward and forward at the laser pulse carrier frequency,the nonadiabatic dissociation dynamics can be controlled by the first order nonresonant nonperturbative DSE.By choosing proper parameters of the Stark pulse,the dissociation product branching ratio can be efficiently Controlled,which can be reflected from the final photoelectron kinetic energy distributions.
引文
[1]Maiman T H,Ruby laser systems,United States Patent Office,3,353,115.
    [2]Drescher M,Hentscher M,Kienberger R,Tempea G,Spielmann C,Reider G A,Corkum P B and Krausz F,X-ray pulses approaching the attosecond frontier,Science,2001,291(5510):1923-1927.
    [3]Hentscher M,Kienberger R,Spielmann C,Reider G A,Milosevic N,Brabec T,Corkum P B,Heinzmann U and Krausz F,Attosecond metrology,Nature,2001,414(5510):509-513.
    [4]McCullough,Jr.E A and Wyatt E T,Quantum dynamics of the co[linear(H,H_2) reaction,J.Chem.Phys.,1969,51(2):1253-1254.
    [5]Heller E J,Time-dependent approach to semiclassical dynamics,J.Chem.Phys.,1975,62(4):1544-1555.
    [6]Heller E J,The semiclassical way to molecular spectroscopy,Acc.Chem.Res.,1981,14(12):368-375.
    [7]Kosloff R,Time-dependent quantum-mechanical methods for molecular dynamics,J.Phys.Chem.,1988,92(8):2087-2100.
    [8]Light J C,Hamilton I P and Lill J V,Generalized discrete.variable approximation in quantum mechanics,J.Chem.Phys.,1985,82(3):1400-1409.
    [9]Henriksen N E and Engel V,Femtosecond pump-probe spectroscopy:A theoretical analysis of transient signals and their relation to nuclear wave-packet motion,Int.Rev.Phys.Chem.,2001,20(2):93-126.
    [10]Zhang D H and Zhang J Z H,Full-dimensional time-dependent treatmentfor diatom-diatom reactions:The H_2+OH reaction,J.Chem.Phys.,1994,101(2):1146-1156.
    [11]Bergmann K,Theuer H and Shore B W,Coherent population transfer among quantum states of atoms and molecules,Rev.Mod.Phys.,1998,70(3):1003-1025,and references therein.
    [12]Zhang J Z H,Theory and Application of Quantum Molecular Dynamics,World Scientific Publishing Co.Pte.Ltd.,Singapore,1999.
    [13]Garraway B M and Suominen K A,Wave-packet dynamics:New physics and chemistry in femto-time,Rep.Phys.Prog.,1995,58:365-419.
    [14]Marston C C and Balint-Kurti G G,The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions,J.Chem.Phys.,1989,91(6):3571-3576.
    [15]Tal-Ezer H and Kosloff R,An accurate and efficient scheme for propagating the time dependent Schr(o|¨)dinger equation,J.Chem.Phys.,1984,81(9):3967-3971.
    [16]Smirnov V I and Lebedov M A.,Functions of a Complex Variable,ILIFFE Books,London,1968.
    [17]Feit M D,Fleck,Jr.J A and Steiger A,Solution of the Schr(o|¨)dinger equation by a spectral method,J.Comput.Phys.,1982,47(3):412-433.
    [18]Feit M D and Fleck,Jr.J A,Solution of the Schr(o|¨)dinger equation by a spectral method Ⅱ:Vibrational energy levels of triatomic molecules,J.Chem.Phys.,1982,78(1):301-308.
    [19]Feit M D and Fleck,Jr.J A,Wave packet dynamics and chaos in the H(?)non - Heiles system,J.Chem.Phys.,1984,80(6):2578-2584.
    [20]Brix P and Herzberg G,Fine structure of the Schumann-Runge bands near the convergence limit and the dissociation energy of the oxygen molecule,Can.J.Phys.,1954,32(2):110-135.
    [21]White M G,Seaver M,Chupka W A and Colson S D,Observation of Rydberg(C~2Π)-valence (B~2Π) interactions in NO by multiphoton photoelectron spectroscopy,Phys.Rev.Lett.,1982,49(1):28-31.
    [22]Wang S M,Cong S L,Yuan K J and Yu J,Probing wave packet dynamics of B~2Π and C~2Πstates of NO molecule with time- and energy:resolved photoelectron spectra,Chem.Phys.Lett.,2005,401(4-6):509-514.
    [23]Huber K P and Herzberg G,Constants of Diatomic Molecules,Van Nostrond Reinhold,New York,1979.
    [24]Engel V and Metiu H,A quantum mechanical study of predissociation dynamics of NeI excited by a femtosecond laser pulse,J.Chem.Phys.,1989,90(11):6116-6128.
    [25]Hart Y C,Wang S M,Yuan K J and Cong S L,The effect of the coupling between valence state B~2Π and Rydberg state C~2Π on the absorption spectrum of the NO molecule,J.Theor.Comp.Chem.,2006,5(4):743-752.
    [26]Bandrauk A D,Molecules in Laser Fields,Marcel Dekker Inc.,New York,1994.
    [27]Rice S A and Zhao M,Optical Control of Molecular Dynamics,Wiley,New York,2000.
    [28]Vitanov N V,Halfmann T,Shore B W and Bergmann K,Laser-induced population transfer by adiabatic passage techniques,Annu.Rev.Phys.Chem.,2001,52:763-809.
    [29]Carroll C E and Hioe F T,Coherent population transfer via the continuum,Phys.Rev.Lett.,1992,68(24):3523-3526.
    [30]Nakajima T,Elk M,Zhang J and Lambropoulos P,Population transfer through the continuum,Phys.Key.A,1994,50(2):R913-R916.
    [31]Carroll C E and Hioe F T,Selective excitation and structure in the continuum,Phys.Rev.A,1996,54(6):5147-5151.
    [32]Yatsenko L P,Unanyan R G,Bergmann K,Halfmann T and Shore B W,Population transfer through the continuum using laser-controlled Stark shifts,Opt.Comm.,1997,135(4-6):406-412.
    [33]Buffa R,Optimal control of population transfer through the continuum,Opt.Comm.,1998,153(4-6):240-244.
    [34]Tran P,Population transfer through the continuum:ir excitation of HeH+,Phys.Rev.A,1999,59(2):1444-1450.
    [35]Longhi S,Transfer of light waves in optical waveguides via a continuum,Phys.Rev.A,2008,78(1):013815-1-10.
    [36]Peters T,Yatsenko L P and Halfmann T,Experimental demonstration of selective coherent population transfer via a continuum,Phys.Rev.Lett.,2005,95(10):103601-1-4.
    [37]Paspalakis E,Protopapas M and Knight P L,Population transfer through the continuum with temporally delayed chirped laser pulses,Opt.Comm.,1997,142(1-3):34-40.
    [38]Vitanov N V and Stenholm S,Population transfer by delayed pulses via continuum states,Phys.Rev.A,1997,56(1):741-747.
    [39]Meier C and Engel V,Interference structure in the photoelectron spectra obtained from multiphoton ionization of Na_2 with a strong femtosecond laser pulse,Phys.Rev.Lett.,1994,73(24):3207-3210.
    [40]Wollenhaupt M,Engel V and Baumert T,Femtosecond laser photoelectron spectroscopy on atoms and small molecules:Prototype studies in quantum control,Annu.Rev.Phys.Chem.,2005,56:25-56.
    [41]Photoionization of NO molecule in two-color femtosecond pulse laser fields,Chem.Phys.Lett.,2006,417(1-3):164-169.
    [42]Frasinski L J,Posthumus J H,Plumridge J,Coding K,Taday P F and Langley A J,Manipulation of bond hardening in H_2~+ by chirping of intense femtosecond laser pulses,Phys.Rev.Lett.,1999,83(18):3625-3628.
    [43]Bucksbaum P H,Zavriyev A,Muller H G and Schumacher D W,Softening of the H_2~+molecular bond in intense laser fields,Phys.Rev.Lett.,1990,64(16):1883-1886.
    [44]Corkum P B,Ivanov M Y and Wright J S,Subfemtosecond processes in strong laser fields,Annu.Rev.Phys.Chem.,1997,48:387-406.
    [45]Levis R J and DeWitt M J,Photoexcitation,ionization,and dissociation of molecules using intense near-infrared radiation of femtosecond duration,J.Phys.Chem.A,1999,103(33):6493-6507.
    [46]Zavriyev A,Bucksbaum P H,Squier J and Saline F,Light-induced vibrational structure in H_2~+ and D_2~+ in intense laser fields,Phys.Rev.Lett.,1993,70(8):1077-1080.
    [47]Magnier S,Millie P,Dulieu 0 and Masnou-Seeuws F,Potential curves for the ground and excited states of the Na_2 molecule up to the (3s+5p)dissociation limit:' Results of two different effective potential calculations,J.Chem.Phys.,1993,98(9):7113-7125.
    [48]Konowalow D D,Rosenkranz M E and Hochhauser D S,Electronic transition dipole moment functions and difference potentials for transitions among low-lying states of Li_2 and Na_2,J.Mol.Spectrosc,1983,99(2):321-338.
    [49]Shapiro M and Brumer P,Principles of the Quantum Control of Molecular Processes,Wiley,New York,2003.
    [50]Dantus M,Coherent nonlinear spectroscopy:From femtosecond dynamics to control,Annu.Rev.Phys.Chem.,2001,52:639-679.
    [51]Sage J M,Sainis S,Bergeman T and DeMille D,Optical production of ultracold polar molecules,Phys.Rev.Lett.,2005,94(20):203001-l-4.
    [52]Ergler T,Feuerstein B,Rudenko A,Zrost K,Schroter C D,Moshammer R and Ullrich J,Quantum-phase resolved mapping of ground-state vibrational D_2 wave packets via selective depletion in intense laser pulses,Phys.Rev.Lett.,2006,97(10):103004-l-4.
    [53]Lagmago Kamta G and Bandrauk A D,Nonsymmetric molecules driven by intense few-cycle laser pulses:Phase and orientation dependence of enhanced ionization,Phys.Rev.A,2007,76(5):053409-l-15.
    [54]Tannor D J and Rice S A,Control of selectivity of chemical reaction via control of wave packet evolution,J.Chem.Phys.,1985,83(10):5013-5018.
    [55]Brummer P and Shapiro M,Control of unimolecular reactions using coherent light,Chem.Phys.Lett.,1986,126(6):541-546.
    [56]Amstrup B and Henrikesen N E,Control of HOD photodissociation dynamics via bond-selective infrared multiphoton excitation and a femtosecond ultraviolet laser pulse,J.Chem.Phys.,1992,97(11):8285-8295.
    [57]Elghobashi N,Krause P,Manz J and Oppel M,IR+UV laser pulse control of momenta directed to specific products:Quantum model simulations for HOD~*→H+OD versus HO+D,Phys.Chem.Chem.Phys.,2003,5(21):4806-4813.
    [58]Korolkov M V and Manz J,Coherent spin control of matrix isolated molecules by IR+UV laser pulses:Quantum simulations for ClF in Ar,J.Chem.Phys.,2004,120(24):11522-11531.
    [59]Marquetand P and Engel V,Predissociation and dissociation dynamics in quantum control fields,Chem.Phys.Lett.,2005,407(4-6):471-476.
    [60]Mφller K B,Westtoft H C and Heariksen N E,Selective bond breakage in HOD with shaped UV-femtosecond laser pulses,Chem.Phys.Lett.,2006,419(1-3):65-69.
    [61]Scherer N F,Carlson R J,Matro A,Du M,Ruggiero A J,Romero-Rochin V,Cina J A,Fleming G R and Rice S A,Fluorescence-detected wave packet interferometry:Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses,J.Chem.Phys.,1991,95(3):1487-1511.
    [62]Humble T S and Cina J A,Molecular state reconstruction by nonlinear wave packet interferometry,Phys.Rev.Lett.,2004,93(6):060402-1-4.
    [63]Katsuki H,Chiba H,Girard B,Meier C and Ohmori K,Visualizing picometric quantum ripples of ultrfast wave-packet interference,Science,2006,311(5767):1589-1592.
    [64]Noordam L D,Duncan D I and Gallagher T F,Ramsey fringes in atomic Rydberg wave packets,Phys.Rev.A,1992,45(7):4734-4737.
    [65]Weinacht T C,Aim J and Bucksbaum P H,Measurement of the amplitude and phase of a sculpted Rydberg wave packet,Phys.Rev.Lett.,1998,80(25):5508-5511..
    [66]Carley R E,Boleat E D,Minns R S,Patel R and Fielding H H,Interfering Rydberg wave packets in Na,J.Phys.B:At.Mol.Opt.Phys.,2005,38(12):1907-1922.
    [67]Wollenhaupt M,Assion A,Liese D,Sarpe-Tudoran C,Baumert T,Zamith S,Bouchene M A,Girard B,Flettner A,Weichmann U and Gerber G,Interferences of ultrashort free electron wave packets,Phys.Rev.Lett.,1997,89(17):173001-1-4.
    [68]Skovsen E,Machholm M,Ejdrup T,Thφgersen J and Stapelfeldt H,Imaging and control of interfering wave packets in a dissociating molecule,Phys.Rev.Lett.,2002,89(13):133004-1-4.
    [69]Petersen C,P(?)ronne E,Thφgersen J,Stapelfeldt H and Machholm M,Control and imaging of interfering wave packets in dissociating I_2 molecules,Phys.Rev.A,2004,70(3):033404-1-9.
    [70]Cooper M J,Wrede E,Orr-Ewing A J and Ashfold M N R,Ion imaging studies of the Br(2~P_J) atomic products resulting from Br_2 photolysis in the wavelength range 260 |-580nm,J.Chem.Soc.Faraday Trans.,1998,94(19):2901-2907.
    [71]Le Roy R J,Macdonald R G and Burns G,Diatom potential curves and transition moment functions from continuum absorption coefficients:Br_2,J.Chem.Phys.,1976,65(4):1485-1500.
    [72]Tellinghuisen J,Transition strengths and potential curves for the valence transitions in Br_2 from a reanalysis of the ultraviolet-visible absorption at low resolution,J.Chem.Phys.,2001,115(22):10417-10424.
    [73]Rosker M J,Rose T S and Zewail A H,Femtosecond real-time dynamics of photofragment-trapping resonances on dissociative potential energy surfaces,Chem.Phys.Lett.,1988,146(3-4):175-179.
    [74]Rose T S,Rosker M J and Zewail A H,Femtosecond real-time observation of wave packet oscillations (resonance)in dissociation reactions,J.Chem.Phys.,1988,88(10):6672-6673.
    [75]Cong P,Roberts G,Herek J L,Mohktari A and Zewail A H,Femtosecond real-time probing of reactions.18.experimental and theoretical mapping of trajectories and potentials in the Nal dissociation reaction,J.Phys.Chem.,1996,100(19):7832-7848.
    [76]Braun M,Meier C and Engel V,The reflection of predissociation dynamics in pump/probe photoelectron distributions,J.Chem.Phys.,1996,105:530.
    [77]Jouvet C,Martrenchard S,Solgadi D,Dedonder-Lardeux C,Mons M,Gr(?)goire G,Dimicoli I,Piuzzi F,Visticot J P,Mestdagh J M,D'Oliveria P,Meynadier P and Perdrix M,Experimental femtosecond photoionization of Nal,J.Phys.Chem.A,1997,101(14):2555-2560.
    [78]Ch'arron E and Suzor-Weiner A,Femtosecond dynamics of Nal ionization and dissociative ionization,J.Chem.Phys.,1998,108(10):3922-3931.
    [79]Miao X Y,Wang L and Song H S,Theoretical study of the femtosecond photoionization of the nai molecule,Phys.Rev.A,2007,75(4):042512-l-7.
    [80]Nakagami K,Ohtsuki Y and Fujimura Y,Quantum optimal control of unbounded molecular dynamics:Application to Nal predissociation,J.Chem.Phys.,2002,117(14):6429-6438.
    [81]Marquetand P,Materny A,Henriksen N E and Engel V,Molecular orientation via a dynamically induced pulse-train:Wave packet dynamics of Nal in a static electric field,J.Chem.Phys.,2004,120(13):5871-5874.
    [82]Nagaya K,Lin S H and Nakamura H,Control of nonadiabatic dissociation dynamics with the use of laser-induced wave packet interferences,J.Chem.Phys.,2006,125(21):214311-1-9.
    [83]Lin S H,Nomura Y and Fujimura Y,Theory of multiphoton processes by the Fourierexpansion density matrix method,J.Chem.Phys.,1990,92(5):2910-2916.
    [84]Neuhauser R and Neusser HJ,Alignment of gas phase molecules by dynamic Stark effect with coherent narrow-band ultraviolet laser pulses,J.Chem.Phys.,1995,103(13):5362-5365.
    [85]Ghosh B,Majumdar A S and Nayak N,Control of atomic entanglement by the dynamic Stark effect,J.Phys.B:At.Mol.Opt.Phys.,2008,41(6):065503-l-7.
    [86]Stalnaker J E,Budker D,Freedman S J,Guzman J S,Rochester S M and Yashchuk V,Dynamic Stark effect and forbidden-transition spectral line shapes,Phys.Rev.A,2006,73(4):043416-1-13.
    [87]Gonzalez-V(?)zquez J,Sola I R and Santamaria J,Optical control of the singlet-triplet transition in Rb_2,J.Chem.Phys.,2006,125(12):124315-l-9.
    [88]Choi H,Son W J,Shin S,Chang B Y and Sola I R,Selective photodissociation in diatomic molecules by dynamical Stark-shift control,J.Chem.Phys.,2008,128(10):104315-l-8.
    [89]Franco I,Shapiro M and Brummer P,Laser-induced currents along molecular wire junctions,J.Chem.Phys.,2008,128(24):244906-l-13.
    [90]Stapelfeldt H,Constant E and Corkum P B,Wave packet structure and dynamics measured by Coulomb explosion,Phys.Rev.Lett.,1995,74(19):3780-3783.
    [91]Constant E,Stapelfeldt H and Corkum P B,Observation of enhanced ionization of molecular ions in intense laser fields,Phys.Rev.Lett.,1996,76(22):4140-4143.
    [92]Lezius M,Blanchet V,Rayner D M,Villeneuve D M,Stolow A and Ivanov M Y,Nonadiabatic multielectron dynamics in strong field molecular ionization,Phys.Rev.Lett.,2001,86(1):51-54.
    [93]Brixner T,Damrauer N H,Niklaus P and Gerber G,Photoselective adaptive femtosecond quantum control in the liquid phase,Nature,2001,414(1):57-60.
    [94]Pearson B J,White J L,Weinacht T C and Bucksbaum P H,Coherent control using adaptive learning algorithms,Phys.Rev.A,2001,63(6):063412-1-12.
    [95]Meshulach D and Silberberg Y,Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,Phys.Rev.A,1999,60(2):1287-1292.
    [96]Lozovoy V V,Pastirk I,Walowicz K A and Dantus M,Multiphoton intrapulse interference.Ⅱ.control of two-and three-photon laser induced fluorescence with shaped pulses,J.Chem.Phys.,2003,118(7):3187-3196.
    [97]Sussman B J,Underwood J G,Lausten R,Ivanov M Y and Stolow A,Quantum control via the dynamic stark effect:Application to switched rotational wave packets and molecular axis alignment,Phys.Rev.A,2006,73(5):053403-l-14.
    [98]Sussman B J,Townsend D,Ivanov M Y and Stolow A,Dynamic Stark control of photochemical processes,Science,2006,314(5797):278-281.
    [99]Sussman B J,Ivanov M Y and Stolow A,Nonperturbative quantum control via the nonresonant dynamic Stark effect,Phys.Rev.A,2005,71(5):051401R-1-4.
    [100]Faist M B and Levine R D,Collisional ionization and elastic scattering in alkali-halogen atom collisions,J.Chem.Phys.,1976,64(7):2953-2970.
    [101]Peslherbe G H,Bianco R,Hynes J T and Ladanyi B M,On the photodissociation of alkalimetal halides in solution,J.Chem.Soc.Faraday Trans.,1997,93(5):977-988.
    [102]Seel M and Domcke W,Femtosecond time-resolved ionization spectroscopy of ultrafast internal-conversion dynamics in polyatomic molecules:Theory and computational studies,J.Chem.Phys.,1991,95(11):7806-7822.
    [103]Sun Z and Lou N,Autler-Townes splitting in the multiphoton resonance ionization spectrum of molecules produced by ultrashort laser pulses,Phys.Rev.Lett.,2003,91:023002-1-4.
    [104]Numico A K R and Atabek O,Intense-laser-induced alignment in angularly resolved photofragment distributions of H,Phys.Rev.A,1999,60(1):406-413.
    [105]Aymarj M,Influence of core-polarisation effects on the photoionisation cross sections of the ground level and excited as levels of neutral sodium,J.Phys.B:At.Mol.Opt.Phys.,1978,11(8):1413-1423.
    [106]Radojevic V,Kelly H P and Johnson W R,Photodetachment of negative halogen ions,Phys.Rev.A,1987,35(5):2117-2121.
    [107]Zhu C Y,Teranishi Y and Nakamura H,Nonadiabatic transitions due to curve crossings:Complete solutions of the Landau-Zener-Stueckelberg problems and their applications,Adv.Chem.Phys.,2001,117:127-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700