量子含时波包方法研究基元反应的非绝热动力学过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严格的量子力学方法处理基元反应的非绝热动力学过程,目前多以非含时方法为主,并且多用来研究像F+H_2, Cl+H_2等提取反应。针对上述现状,我们将扩展的分裂算符方法引入到绝热含时波包理论中,并将改进后的量子含时波包方法首次应用到三个有深势阱的基元反应O(~1D)+N_2, O(~3P,~1D)+H_2和D~++H_2中,研究了发生在这些体系中的非绝热过程。
     对O(~1D)+N_2体系传能过程的理论计算表明,电子淬灭截面没有明显的共振结构;三重态1~3A”和1~3A’在电子淬灭过程中的作用是等同的;不同类型的单重态势能面1~1A’对计算结果影响很大;自旋-轨道耦合的作用形式对电子淬灭几率的共振结构影响很小。
     对O(~3P, ~1D) +H_2体系的量子计算结果表明,存在于具有不同对称性的三重态之间的自旋-轨道耦合,对体系系间穿越过程的贡献最大;而存在于单重态和三重态之间的自旋-轨道耦合对系间穿越过程的贡献可以忽略不计;碰撞能大于0.6eV时形成产物OH精细结构的分支比Π_(3/2) :Π_(1/2)约为2.75。
     在D~++H_2体系的非绝热研究中,发现D~+和初始振转基态的H_2反应时,反应无电荷转移通道是主要的反应通道;当反应物被振动激发(尤其是被激发到最接近势能面交叉能隙的振动能级v=4)时,可以预测反应电荷转移通道和非反应电荷转移通道将会超过反应无电荷转移通道而成为主要通道。
Most exact quantum dynamical calculations aiming at studying the nonadiabatic processes occurring in fundamental chemical reactions were carried out within the time-independent framework and also focused on abstraction reactions such as F+H_2 and Cl+H_2 thus far. Based on the current status of the theoretical treatment in this field, we introduced an extended split-operator scheme to the quantum time-dependent wave packet method to deal with the multi-surface problems. By using this method, we further investigated the electronically nonadiabatic processes in three fundamental reactions: O(~1D)+N_2, O(~3P, ~1D)+H_2 and D~++H_2, all of which are characterized by a deep potential well. To the best of our knowledge, no previous time-dependent wave packet method has been applied to these three reaction systems thus far.
     It is found that the calculated total electronic quenching cross sections for O(~1D)+N_2 have shown almost no resonances. The second excited state 1~3A”plays an equal role to the 1~3A’state in the quenching process. The type of the singlet 1~1A’potential surface has significant influence on the calculated results. The resonance structures in the calculated quenching probabilities are insensitive to the function form of spin-orbit couplings.
     The quantum study on the intersystem crossing in the O(~3P, ~1D)+H_2 reaction indicated that the spin-orbit couplings between triplet states of different symmetries contribute most to the intersystem crossing. On the contrary, the spin-orbit couplings between singlet and triplet states play insignificant roles
引文
1. J. C. Tully, Dynamics of molecular collisions, Part B, ed. W. H. Miller, Plenum, New York, 1976, pp.217-267.
    2. J. C. Tully, Molecular dynamics with electronic transitions. J. Chem. Phys. 1990, 93: 1061-1071.
    3. A. W. Jasper, S. N. Stechmann and D. G. Truhlar, Fewest-switches with time uncertainty: A modified trajectory surface-hopping algorithm with better accuracy for classically forbidden electronic transitions. J. Chem. Phys. 2002, 116: 5424-5431.
    4. A. W. Jasper, S. N. Stechmann and D. G. Truhlar, Erratum: "Fewest-switches with time uncertainty: A modified trajectory surface-hopping algorithm with better accuracy for classically forbidden electronic transitions" [J. Chem. Phys. 116, 5424 (2002)]. J. Chem. Phys. 2002, 117: 10427.
    5. M. Thachuk, M. Y. Ivanov and D. M. Wardlaw, A semiclassical approach to intense-field above-threshold dissociation in the long wavelength limit. II. Conservation principles and coherence in surface hopping. J. Chem. Phys.1998, 109: 5747-5760.
    6. H. Wang, M. Thoss and W. H. Miller, Systematic convergence in the dynamical hybrid approach for complex systems: A numerically exact methodology. J. Chem. Phys. 2001, 115: 2979-2990.
    7. C. Zhu, S. Nangia, A. W. Jasper and D. G. Truhlar, Coherent switching with decay of mixing: An improved treatment of electronic coherence for non-Born- Oppenheimer trajectories. J. Chem. Phys. 2004, 121: 7658-7670.
    8. M. D. Hack, A. M. Wensmann, D. G. Truhlar, M. Ben-Nun and T. J. Martinez, Comparison of full multiple spawning, trajectory surface hopping, and converged quantum mechanics for electronically nonadiabatic dynamics. J. Chem. Phys. 2001, 115: 1172-1186.
    9. T. J. Martinez, M. Ben-Nun and R. D. Levine, Multi-electronic-state molecular dynamics: A wave function approach with applications. J. Phys. Chem. 1996, 100: 7884-7895.
    10. J. C. Tully, Collisions of F(2P1/2) with H2. J. Chem. Phys. 1974, 60: 3042-3050.
    11. F. Rebentrost and W. A. Lester, Jr., Nonadiabatic effects in the collision of F(2P) with H2(1Σg+). III. Scattering theory and coupled-channel computations. J. Chem. Phys. 1977, 67: 3367-3375.
    12. R. E. Wyatt and R. B. Walker, Quantum mechanics of electronic–rotational energy transfer in F(2P)+H2 collisions. J. Chem. Phys. 1979, 70: 1501-1510.
    13. G. D. Billing, L. Y. Rusin, and M. B. Sevryuk, A wave packet propagation study of inelastic and reactive F+D2 scattering. J. Chem. Phys. 1995, 103: 2482-2494.
    14. M. Gilibert and M. Baer, Exchange processes via electronic nonadiabatic transitions: An accurate three-dimensional quantum mechanical study of the F(2P1/2, 2P3/2) + H2 reactive systems. J. Phys. Chem. 1994, 98: 12822-12823.
    15. M. H. Alexander, D. E. Manolopoulos, Spin–orbit effects in the reaction of F(2P) with H2. J. Chem. Phys. 1998, 109: 5710-5713.
    16. K. Stark and H.-J. Werner, An accurate multireference configuration interaction calculation of the potential energy surface for the F+H2→HF+H reaction. J. Chem. Phys. 1996, 104: 6515-6530.
    17. M. H. Alexander, D. E. Manolopoulos, H. J. Werner, An investigation of the F + H2 reaction based on a full ab initio description of the open-shell character of the F(2P) atom. J. Chem. Phys. 2000, 113: 11084-11100.
    18. F. Dong, S. –H. Lee, and K. Liu, Reactive excitation functions for F + p-H2/n-H2/D2 and the vibrational branching for F+HD. J. Chem. Phys. 2000, 113: 3633-3640.
    19. W. B. Chapman, B. W. Blackmon, D. J. Nesbitt, State-to-state reactive scattering of F + H2 in supersonic jets: Nascent rovibrational HF(v,J) distributions via direct IR laser absorption. J. Chem. Phys. 1997, 107: 8193-8196.
    20. Y. R. Tzeng, M. H. Alexander, Angular distributions for the F+H2→ HF+H reaction: The role of the F spin-orbit excited state and comparison with molecular beam experiments. J. Chem. Phys. 2004, 121: 5812-5820.
    21. D. M. Neumark, A. M. Wodtke, G. N. Robinson, C. C. Hayden, and Y. T. Lee,Molecular beam studies of the F+H2 reaction. J. Chem. Phys. 1985, 82: 3045-3066.
    22. Y. R. Tzeng, M. H. Alexander, Role of the F spin-orbit excited state in the F+HD reaction: Contributions to the dynamical resonance. J. Chem. Phys. 2004, 121: 5183-5190.
    23. Y. Zhang, T. X. Xie, K. L. Han, J. Z. H. Zhang, Time-dependent quantum wave packet calculation for nonadiabatic F(2P3/2,2P1/2)+H2 reaction, J. Chem. Phys. 2003, 119: 12921-12925.
    24. Y. Zhang, T. X. Xie, K. L. Han, Reactivity of the ground and excited spin-orbit states for the reaction of the F(2P3/2,2P1/2) with D2. J. Phys. Chem. A 2003, 107: 10893-10896.
    25. Y. Zhang, T. X. Xie, K. L. Han, J. Z. H. Zhang, The investigation of spin-orbit effect for the F(2P)+HD reaction, J. Chem. Phys. 2004, 120: 6000-6004.
    26. M. H. Alexander, G. Capecchi, H. J. Werner, Details and consequences of the nonadiabatic coupling in the Cl(2P)+H2 reaction. Faraday Discuss. 2004, 127: 59-72.
    27. N. Balucani, D. Skouteris, G. Capozza et al., The dynamics of the prototype abstraction reaction Cl(2P3/2,1/2)+H2: A comparison of crossed molecular beam experiments with exact quantum scattering calculations on coupled ab initio potential energy surfaces. Phys. Chem. Chem. Phys. 2004, 6: 5007-5017.
    28. N. Balucani, D. Skouteris, L. Cartechini et al. Differential cross sections from quantum calculations on coupled ab initio potential energy surfaces and scattering experiments for Cl(2P)+H2 reactions. Phys. Rev. Letts. 2003, 91 (1): Art. No.013201.
    29. M. H. Alexander, E. J. Rackham, D. E. Manolopoulos, Product multiplet branching in the O(1D)+H2→OH(2Π)+H reaction. J. Chem. Phys. 2004, 121: 5221-5235.
    30. J. E. Butler, G. M. Jursich, I. A. Watson, and J. R. Wiesenfeld, Reaction dynamics of O(1D2)+H2, HD, D2: OH, OD(X 2Πi) product internal energy distributions. J. Chem. Phys. 1986, 84: 5365-5377.
    31. C. S. Maierle, G. C. Schatz, M. S. Gordon et al., Coupled potential-energy surfaces and quantum reactive scattering for the Cl(2P)+HCl→ClH+Cl(2P) reaction. J. Chem. Soc. Faraday Trans. 1997, 93: 709-720.
    32. A. J. Dobbyn, J. N. L. Connor, N.A. Besley, P. J. Knowles and G. C. Schatz,Coupled ab initio potential energy surfaces for the reaction Cl(2P)+HCl→ClH+Cl(2P). Phys. Chem. Chem. Phys. 1999, 1: 957-966.
    33. T. W. J. Whiteley, A. J. Dobbyn, J. N. L. Connor et al., Quantum scattering on coupled ab initio potential energy surfaces for the Cl(2P)+HCl→ClH+Cl(2P) reaction. Phys. Chem. Chem. Phys. 2000, 2: 549-556.
    34. G. C. Schatz, M. Hankel, T. W. J. Whiteley, et al. Influence of spin-orbit effects on chemical reactions: Quantum scattering studies for the Cl(2P)+HCl→ClH+Cl(2P) reaction using coupled ab initio potential energy surfaces. J. Phys. Chem. A 2003, 107: 7278-7289.
    35. M. Hankel, J. N. L. Connor, G. C. Schatz,Influence of van der Waals wells on the quantum scattering dynamics of the Cl(2P)+HCl→ClH+Cl(2P) reaction. Chem. Phys. 2005, 308: 225-236.
    36. G. C. Schatz, A. Papaioannou, L. A. Pederson, et al,A global A-state potential surface for H2O: Influence of excited states on the O(1D)+H2 reaction. J. Chem. Phys. 1997, 107: 2340-2350.
    37. G. C. Schatz, L. A. Pederson, P. J. Kuntz,Adiabatic and non-adiabatic dynamics studies of O(1D)+H2 → OH+H. Faraday Discuss. 1997, 108: 357-374.
    38. K. Drukker, G. C. Schatz,Quantum scattering study of electronic Coriolis and nonadiabatic coupling effects in O(1D)+H2→OH+H. J. Chem. Phys. 1999, 111: 2451-2463.
    39. S. K. Gray, C. Petrongolo, K. Drukker et al. Quantum wave packet study of nonadiabatic effects in O(1D)+H2→OH+H. J. Phys. Chem. 1999, 103: 9448-9459.
    40. S. K. Gray, G. G. Balint-Kurti, G. C. Schatz et al. Probing the effect of the H2 rotational state in O(1D)+H2 → OH+H: Theoretical dynamics including nonadiabatic effects and a crossed molecular beam study. J. Chem. Phys. 2000, 113: 7330-7344.
    41. M. R. Hoffmann, G. C. Schatz, Theoretical studies of intersystem crossing effects in the O+H2 reaction. J. Chem. Phys. 2000, 113: 9456-9465.
    42. B. Maiti, G. C. Schatz, Theoretical studies of intersystem crossing effects in the O(3P,1D)+H2 reaction. J. Chem. Phys. 2003, 119: 12360-12371.
    43. B. Maiti, G. C. Schatz, G. Lendvay, Importance of intersystem crossing in the S(3P,1D)+H2→SH+H reaction. J. Phys. Chem. A. 2004, 108: 8772-8781.
    44. L. A. Pederson, G. C. Schatz, T. Hollebeek et al. Potential energy surface of the ? state of NH2 and the role of excited states in the N(2D)+H2 reaction. J. Phys. Chem. A. 2000, 104: 2301-2307.
    45. F. Santoro, C. Petrongolo, G. C. Schatz,Trajectory-surface-hopping study of the Renner-Teller effect in the N(2D)+H2 reaction. J. Phys. Chem. A 2002, 106: 8276-8284.
    46. G. C. Schatz, B. Fisher, W. Grande et al. Reactive and nonreactive quenching of OH(A2Σg+) in collisions with H atoms. J. Phys. Chem. A 2001, 105: 2515-2521.
    47. T. Takayanagi, Nonadiabatic quantum reactive scattering calculations for the O(1D) + H2, D2, and HD reactions on the lowest three potential energy surfaces. J. Chem. Phys. 2002, 116: 2439-2446.
    48. T. Takayanagi, Quantum Scattering Calculations of the O(1D) + N2(X1 g+) O(3P) + N2(X1 g+) Spin-Forbidden Electronic Quenching Collision. J. Phys. Chem. A 2002, 106: 4914-4921.
    49. T. Takayanagi, Y. Kurosaki, Quantum scattering calculations for the electronically nonadiabatic Br(2P1/2) + H2 HBr + H reaction. J. Chem. Phys. 2000, 113: 7158-7164.
    50. G. E. Zahr, R. K. Preston, W. H. Miller, Theoretical treatment of quenching in O(1D) + N2 collisions. J. Chem. Phys. 1975, 62: 1127-1135.
    51. H. Tachikawa, T. Hamabayashi, H. Yoshida, Electronic-to-vibrational and-rotational energy transfer in the O(1D) + N2 quenching reaction: Ab initio MO and surface-hopping trajectory studies. J. Phys. Chem. 1995, 99: 16630-16635.
    52. M. Sizun, J. B. Song, E. A. Gislason, Theoretical study of the reactions of Ar + + HX(v = 0) and Ar + HX + (v) (X=H and D) at E = 0.1 eV using the trajectory surface hopping method. J. Chem. Phys. 2002, 116: 2888-2895.
    53. M. Sizun, J. B. Song, E. A. Gislason, Theoretical study of the reactions of Ar + + H2 and Ar + + HD using the trajectory surface hopping method. J. Chem. Phys. 1998, 109: 4815-4822.
    54. J. C. Tully, R. K. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2. J. Chem. Phys. 1972, 55: 562-572.
    55. C. Y. Zhu, H. Kamisaka, H. Nakamura,New implementation of the trajectory surface hopping method with use of the Zhu–Nakamura theory. II. Application to the charge transfer processes in the 3D DH2+system. J. Chem. Phys. 2002, 116: 3234-3247.
    56. C. Y. Zhu, H. Kamisaka, H. Nakamura, Significant improvement of the trajectory surface hopping method by the Zhu–Nakamura theory. J. Chem. Phys. 2001, 115: 11036-11039.
    57. H. Kamisaka, W. Bian, K. Nobusada, H. Nakamura, Accurate quantum dynamics of electronically nonadiabatic chemical reactions in the DH2+ system. J. Chem. Phys. 2002, 116: 654-665.
    58. T. Takayanagi, Y. Kurosaki, A. Ichihara, Three-dimensional quantum reactive scattering calculations for the nonadiabatic (D + H2) + reaction system. J. Chem. Phys. 2000, 112: 2615-2622.
    59. V. G. Ushakov, K. Nobusada, V. I. Osherov, Electronically nonadiabatic transitions in a collinear H2+H+ system: Quantum mechanical understandingand comparison with a trajectory surface hopping method. Phys. Chem. Chem. Phys. 2001, 3: 63-69.
    60. A. Ichihara, O. Iwamoto, R. K. Janev, Cross sections for the reaction H++H2 (v=0-14)→H+H2+ at low collision energies. J. Phys. B 2000, 33: 4747-4758.
    61. M. Chajia, R. D. Levine, Reactive and nonreactive charge transfer by the FMS method: low energy H++D2, and H+H2+ collisions. Phys. Chem. Chem. Phys. 1999, 1: 1205-1212.
    62. A. Ichihara, T. Shirai, K. Yokoyama,A study on ion–molecule reactions in the H3+ system with the trajectory-surface-hopping model. J. Chem. Phys. 1996, 105: 1857-1861.
    63. P. Halvick, M. Boggio-Pasqua, L. Bonnet et al. Trajectory surface hopping study of the C+CH reaction. Phys. Chem. Chem. Phys. 2002, 4: 2560-2567.
    64. M. Jungen, M. Lehner, R. Guerout et al. Collisions of excited Na atoms with N2, C2H2 and N2O molecules. Surface-hopping calculation of the Na(3p) fine structure population. Phys. Chem. Chem. Phys. 2004, 6: 1666-1671.
    1. M. Born and K. Huang, Dynamical theory of crystal Lattices, Oxford University Press, New Youk, 1954.
    2. M. Baer, Adiabatic and diabatic representations for atom-molecule collisions: Treatment of the collinear arrangement. Chem. Phys. Lett. 1975, 35:112-118.
    3. M. Baer, Adiabatic and diabatic representations for atom-diatom collisions: Treatment of the three-dimensional case. Chem. Phys. 1976, 15: 49-57.
    4. H. Nakamura and D. G. Truhlar, Construction scheme for regularized diabatic states. J. Chem. Phys. 2001, 115: 2377-2388.
    5. H. Nakamura and D. G. Truhlar, Direct diabatization of electronic states by the fourfold way. II. Dynamical correlation and rearrangement processes. J. Chem. Phys. 2002, 117: 5576-5593.
    6. H. Nakamura and D. G. Truhlar, Extension of the fourfold way for calculation of global diabatic potential energy surfaces of complex, multiarrangement, non-Born–Oppenheimer systems: Application to HNCO(S0,S1). J. Chem. Phys. 2003, 118: 6816-6829.
    7. E. Teller, The crossing of potential surfaces. J. Phys. Chem.1937, 41:109-116.
    8. S. Zilberg and Y. Haas, Molecular photochemistry: A general method for localizing conical intersections using the phase-change rule. Eur: J. Chem. 1999, 5: 1755-1765.
    9. S. Zilberg and Y. Hass, Conical intersections in molecular photochemistry-the role of phase change. Chem. Phys. 2000, 259: 249-261.
    10. M. A. Robb, M. Garavelli, M. Olivucci, and F. Bernardi, Reviews in computational chemistry, eds. K. B. Liplovwitz and D. B. Boyd, Wiley-VCH, New York. 2000, Vol.15, pp. 87-212.
    11. S. Wilsey and K. N. Houk, H/Allyl and Alkyl/Allyl conical intersections: ubiquitous control elements in photochemical sigmatropic shifts. J. Am. Chem. Soc. 2000, 122: 2651-2652.
    12. F. Bernardi, M. A. Robb, and M. Olivucci, Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev. 1996, 25: 321-328.
    13. H. K?ppel, W. Domcke, and L. S. Cederbaum, Multi-mode molecular dynamics beyond the Born-Oppenheimer approximation. Adv. Chem. Phys. 1984, 57: 59-246.
    14. G. A. Worth and L. S. Cederbaum, Mediation of ultrafast electron transfer in biological systems by conical intersections. Chem. Phys. Lett. 2001, 338: 219-223.
    15. M. Ito and I. Ohmine, Nonadiabatic transition and energy relaxation dynamics in photosiomerization of s-trans butadiene. J. Chem. Phys. 1997, 106: 3159-3173.
    16. I. Ohmine, Mechanisms of nonadiabatic transitions in photoisomerization processes of conjugated molecules: Role of hydrogen migrations. J. Chem. Phys. 1985, 83: 2348-2362.
    17. M. Ben-Nun and T. J. Martinez, Photodynamics of ethylene: ab initio studies of conical intersections. Chem. Phys. 2001, 259: 237-248.
    18. M. Ben-Nun, J. Quenneville, and T. M. Martinez, Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 2000, 104: 5161-5175.
    19. S. Mahapatra, H. K?ppel, L. S. Cederbaum, P. Stampfuss, and W. Wenzel, Nonadiabatic wave packet dynamics on the coupled X2A1/A2B2 electronic states of NO2 based on new ab initio potential energy surfaces. Chem. Phys. 2000, 259: 211-226.
    20. A. Toniolo, S. Olsen, L. Manohar and T. J. Martinez, Conical intersection dynamics in solution: The chromophore of green fluorescent protein. Faraday Discuss. 2004, 127: 149-163.
    21. V. Vallet, Z. Lan, S. Mahapatra, A. L. Sobolewski, and W. Domcke, Time-dependent quantum wave-packet description of the 1πσ* photochemistry of pyrrole. Faraday Discuss. 2004, 127: 283-293.
    22. S. Matsika and D. R. Yarkony, On the effects of spin-orbit coupling on conical intersection seams in molecules with an odd number of electrons. I. Locating the seam. J. Chem. Phys. 2001, 115: 2038-2050; On the effects of spin–orbit coupling on conical intersection seams in molecules with an odd number of electrons. II. Characterizing the local topography of the seam. J. Chem. Phys. 2001, 115: 5066-5075; Spin-orbit coupling and conical intersections in molecules with an odd number of electrons. III. A perturbative determination of the electronic energies, derivative couplings and a rigorous diabatic representation near a conical intersection. J. Chem. Phys. 2002, 116: 2825-2835.
    23. D. H Zhang, J. Z. H. Zhang, in Dynamics of molecules and chemical reactions, ed. R. E.Wyatt, J. Z. H. Zhang, Marcel Dekker, New York, 1996, ch.6 and references therein.
    24. D. H. Zhang, J. Z. H. Zhang, Full-dimensional time-dependent treatment for diatom-diatom reactions: The H2+OH reaction. J. Chem. Phys. 1994, 101: 1146-1156.
    25. J. Z. H. Zhang, J. Dai, W. Zhu, Development of accurate quantum dynamical methods for tetraatomic reactions. J. Phys. Chem. A. 1997, 101: 2746-2754.
    26. J. A. Fleck Jr., J. R. Morris and M. D. Feit, Time-dependent propagation of high energy laser beams through the atmosphere. Appl. Phys. 1976, 10: 129-160.
    27. M. H. Alexander, D. E. Manolopoulos, H. J. Werner, An investigation of the F+H2 reaction based on a full ab initio description of the open-shell character of the F(2P) atom. J. Chem. Phys. 2000, 113: 11084-11100.
    28. T. X. Xie, Y. Zhang, M. Y. Zhao, K. L. Han, Claulations of the F+HD reaction on three potential energy surfaces. Phys. Chem. Chem. Phys.2003,5: 2034-38.
    29. A. J. C. Varandas, H. G. Yu, Theoretical 3D study of transition state resonances for the H+H2 reaction using two coupled diabatic potential energy surface. Chem. Phys. Lett. 1996, 259: 336-341.
    30. J. V. Lill, G. A. Parker, J. C. Light, Discrete variable representations and sudden models in quantum scattering theory. Chem. Phys. Lett. 1982, 89: 483-489.
    31. J. C. Light, I. P. Hamilton, J. V. Lill, Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys. 1985, 82: 1400-1409.
    32. H. J. Nussbaumer, Fast Fourier transform and convolution algorithms, 2 nd ed. Spinger Verlag : Berlin, 1982.
    1. M. Baer, The electronic non-adiabatic coupling term in molecular systems: A theoretical approach. Adv. Chem. Phys. 2002, 124: 39-142 and references therein.
    2. A. Kuppermann, and R. Abrol, Quantum reaction dynamics for multiple electronic states. Adv. Chem. Phys. 2002, 124: 283-322 and references therein.
    3. M. R. Hoffmann, and G. C. Schatz, Theoretical studies of intersystem crossing effects in the O + H2 reaction. J. Chem. Phys. 2000, 113: 9456-9465.
    4. B. Maiti, and G. C. Schatz, Theoretical studies of intersystem crossing effects in the O(3P, 1D) + H2 reaction. J. Chem. Phys. 2003, 119: 12360-12371.
    5. V. L. Peterson, and T. E. Vanzandt, O(1D) quenching in the ionosphericF-region. Planet. Space Sci. 1969, 17: 1725-1736.
    6. S. Manabe, and R. Strickler, Thermal equilibrium of the atmosphere with a convective adjustment. J. Atoms. Sci. 1964, 21: 361-385.
    7. L. Lam, D. R. Hastie, B. A. Ridley, and H. I. Schiff, Measurements of the relative rate constants for the quenching of O(1D) atoms by N2O and N2 and the branching ratio of the N2O reaction at 23 and -96 °C. J. Photochem. 1981, 15: 119-130.
    8. A. V. Benderskii, and C. A. Wight, Photolysis of ozone and reactions of O(1D) atoms in solid nitrogen. Chem. Phys. 1994, 189: 307 -314.
    9. R. A.Young, G. Black, and T. G. Slanger, Reaction and deactivation of O(1D). J. Chem. Phys. 1968, 49: 4758-4768.
    10. Y. Matsumi, Y. Inagaki, G. P. Morley, and M. Kawasaki, Fine structure branching ratios and translational energies of O(3Pj) atoms produced from collision induced intersystem crossing of O(1D) atoms. J. Chem. Phys. 1994, 100: 315-324.
    11. Y. Matsumi, and A. M. S. Chowdhury, Translational relaxation and electronic quenching of hot O(1D) by collisions with N2. J. Chem. Phys. 1996, 104: 7036-7044.
    12. A. M. S. Chowdhury, and M. Kawasaki, Lase-induced fluorescence studies on the physical quenching of superthermal O(1D). Laser Phys. 1996, 6: 1175-1179.
    13. A. M. S. Chowdhury, Studies on the competing colllisional relaxation reactions of superthermal O(1D) atoms in the upper atmosphere by vacuum ultraviolet laser spectroscopy. Laser Phys. 1999, 9: 959-989.
    14. E. R. Fisher, and E. Bauer, On the quenching of O(1D) by N2 and related reactions. J. Chem. Phys. 1972, 57: 1966-1974.
    15. J. B. Delos, On the reactions of N2 with O. J. Chem. Phys. 1973, 59:2365-2369.
    16. G. Delgado-Barrio, and J. A. Beswick, Resonances in the electronic quenching of O(1D) by N2. A numerical quantum mechanical study for the collinear collision. Chem. Phys. Lett. 1977, 48: 358-362.
    17. G. E. Zahr, R. K. Preston, and W. H. Miller, Theoretical treatment of quenching in O(1D) + N2 collisions. J. Chem. Phys. 1975, 62: 1127-1135.
    18. H. Tachikawa, T. Hamabayashi, and H. Yoshida, Electronic-to-vibrational and -rotational energy transfer in the O(1D) + N2 quenching reaction: Ab initio MO and surface-hopping trajectory studies. J. Phys. Chem. 1995, 99: 16630-16635.
    19. H. Tachikawa, K. Ohnishi, T. Hamabayashi, and H. Yoshida, Translational relaxation of hot O(1D) by inelastic collision with N2 molecule: Ab initio MO and classical trajectory studies. J. Phys. Chem. A 1997, 101: 2229-2232.
    20. T. Takayanagi, Quantum scattering calculations of the O(1D) + N2(X1 g+) O(3P) + N2(X1 g+) spin-forbidden electronic quenching collision. J. Phys. Chem. A 2002, 106: 4914-4921.
    21. H. Nakamura, and S. Kato, Theoretical study on the spin-forbidden predissociation reaction of N2O: Ab initio potential energy surfaces and quantum dynamics calculations. J. Chem. Phys. 1999, 110: 9937-9947.
    22. S. K. Gray, G. G. Balint-Kurti, G. C. Schatz, J. J. Lin, X. H. Liu, S. Harich, and X. M. Yang, Probing the effect of the H2 rotational state in O(1D) + H2 OH + H: Theoretical dynamics including nonadiabatic effects and a crossed molecular beam study. J. Chem. Phys. 2000, 113: 7330-7344.
    1. M. H. Alexander, H. J. Werner, and D. E. Manolopoulos, Spin–orbit effects in the reaction of F(2P) with H2. J. Chem. Phys. 1998, 109: 5710-5713.
    2. P. Honvault, and J. M. Launay, Effect of spin–orbit corrections on the F+D2 → DF+D reaction. Chem. Phys. Lett. 1999, 303: 657-663.
    3. S. A. Nizkorodov, W. W. Harper, W. B. Chapman, B. W. Blackmon, and D. J. Nesbitt, Energy-dependent cross sections and nonadiabatic reaction dynamics in F(2P3/2,2P1/2) + n–H2 HF(v,J) + H. J. Chem. Phys.1999, 111: 8404-8416.
    4. M. H. Alexander, D. E. Manolopoulos, and H. J. Werner, An investigation of the F + H2 reaction based on a full ab initio description of the open-shell character of the F(2P) atom. J. Chem. Phys. 2000, 113: 11084-11100.
    5. Y. Zhang, T. X. Xie, K. L. Han, and J. Z. H. Zhang, Time-dependent quantum wave packet calculation for nonadiabatic F(2P3/2,2P1/2) + H2 reaction. J. Chem. Phys. 2003, 119: 12921-12925.
    6. Y. Zhang, T. X. Xie, and K. L. Han, Reactivity of the ground and excited spin-orbit states for the reaction of the F(2P3/2,2P1/2) with D2. J. Phys. Chem. A 2003, 107: 10893-10896.
    7. Y. Zhang, T. X. Xie, K. L. Han, and J. Z. H. Zhang, The investigation ofspin–orbit effect for the F(2P) + HD reaction. J. Chem. Phys. 2004, 120: 6000-6004.
    8. S. H. Lee, and K. P. Liu, Exploring the spin–orbit reactivity in the simplest chlorine atom reaction. J. Chem. Phys. 1999, 111: 6253-6259.
    9. N. Balucani, D. Skouteris, L. Cartechini, G. Capozza, E. Segoloni, P. Casavecchia, M. H. Alexander, G. Capecchi, and H. J. Werner, Differential cross sections from quantum calculations on coupled ab initio potential energy surfaces and scattering experiments for Cl(2P)+H2 reactions. Phys. Rev. Lett. 2003, 91 (1): Art. No. 013201.
    10. G. C. Schatz, M. Hankel, T. W. J. Whiteley, J. N. L. Connor, Influence of spin-orbit effects on chemical reactions: Quantum scattering studies for the Cl(2P) + HCl ClH + Cl(2P) reaction using coupled ab initio potential energy surfaces. J. Phys. Chem. A 2003, 107: 7278-7289.
    11. G. C. Schatz, P. McCabe, J. N. L. Connor, Quantum scattering studies of spin-orbit effects in the C1(2P)+HCl→ClH+Cl(2P) reaction. Faraday Discuss. 1998, 110: 139-157.
    12. M. R. Hoffmann, G. C. Schatz, Model studies of intersystem crossing effects in the O+H2 reaction. Acs. Sym. Ser. 2002, 828: 329-345.
    13. M. R. Hoffmann, G. C. Schatz, Theoretical studies of intersystem crossing effects in the O + H2 reaction. J. Chem. Phys. 2000, 113: 9456-9465.
    14. B. Maiti, G. C. Schatz, Theoretical studies of intersystem crossing effects in the O(3P, 1D) + H2 reaction. J. Chem. Phys. 2003, 119: 12360-12371.
    15. K. C. Tang, K. L. Liu, I. C. Chen, Rapid intersystem crossing in highly phosphorescent iridium complexes. Chem. Phys. Lett. 2004, 386: 437-441.
    16. L. Bonnet, J. C. Rayez, P. Casavecchia, Statistical treatment of recoil energy and angular distributions in the products of the reactions O(1D, 3P)+ICH3 → OI+CH3. Phys. Chem. Chem. Phys. 2000, 2: 741-745.
    17. M. Alagia, N. Balucani, L. Cartechini, P. Casavecchia, M. van Beek, G. G. Volpi, L. Bonnet, J. C. Rayez, Crossed beam studies of the O(3P,1D)+CH3I reactions: Direct evidence of intersystem crossing. Faraday Discuss. 1999, 113: 133-150.
    18. G. M. Sweeney, A. Watson, K. G. McKendrick, Rotational and spin-orbit effects in the dynamics of O(3Pj) + hydrocarbon reactions. I. Experimental results. J. Chem. Phys. 1997, 106: 9172-9181.
    19. T. X. Xie, Y. Zhang, M. Y. Zhao, and K. L. Han, Claulations of the F+HD reaction on three potential energy surfaces. Phys. Chem. Chem. Phys. 2003, 5: 2034-2038.
    20. M. Braunstein, S. Adler-Golden, B. Maiti and G. C. Schatz, Quantum and classical studies of the O(3P) + H2(v = 0–3,j = 0) OH + H reaction using benchmark potential surfaces. J. Chem. Phys. 2004, 120: 4316-4323.
    21. N. Balakrishnan, Quantum calculations of the O(3P) + H2 OH + H reaction. J. Chem. Phys. 2004, 121: 6346-6352.
    22. S. Rogers, D. Wang, A. Kuppermann, and S. Walch, Chemically accurate ab initio potential energy surfaces for the lowest 3A’ and 3A” electronically adiabatic states of O(3P) + H2. J. Phys. Chem. A 2000, 104: 2308- 2325.
    23. J. Dobbyn, and P. J. Knowles, Faraday Discuss. 1998, 110: 247.
    24. D. J. Garton, T. K. Minton, B. Maiti, D. Troya, and G. C. Schatz, A crossed molecular beams study of the O(3P) + H2 reaction: Comparison of excitation function with accurate quantum reactive scattering calculations. J. Chem. Phys. 2003, 118: 1585-1588.
    1. J. C. Tully, R. K. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2. J. Chem. Phys. 1971, 55: 562-572.
    2. G. Ochs, E. Teloy, Integral cross sections for reactions of H+ with D2: New measurements. J. Chem. Phys. 1974, 61: 4930-4931.
    3. C. Schlier, U. Nowotny, E. Teloy, Proton-hydrogen collisions. Chem. Phys. 1987, 111: 351-360.
    4. A. Ichihara, T. Shirai, K. Yokoyama, A study on ion–molecule reactions in the H3+ system with the trajectory-surface-hopping model. J. Chem. Phys. 1996, 105: 1857-1861.
    5. G. D. Billing, N. Markovic, Semi-classical treatment of chemical reactions. Chem. Phys. 1996, 209: 377-388.
    6. N. Markovic, G. D. Billing, Wavepacket calculations on ion-molecule reactions: the co-planar approximation. Chem. Phys. Lett. 1996, 248: 420-426.
    7. N. Markovic, G. D. Billing, Wave packet calculations on ion-molecule reactions. Chem. Phys. 1995, 191: 247-260.
    8. I. Last, M. Gilibert, M. Baer, A three-dimensional quantum mechanical study of the H + H2+→ H2 + H + system: Competition between chemical exchange and inelastic processes. J. Chem. Phys. 1997, 107: 1451-1459.
    9. V. G. Ushakov, K. Nobusada, V. I. Osherov, Electronically nonadiabatic transitions in a collinear H2+H+ system: Quantum mechanical understanding and comparison with a trajectory surface hopping method. Phys. Chem. Chem.Phys. 2001, 3: 63-69.
    10. T. Takayanagi, Y. Kurosaki, A. Ichihara, Three-dimensional quantum reactive scattering calculations for the nonadiabatic (D + H2) + reaction system. J. Chem. Phys. 2000, 112: 2615-2622.
    11. H. Kamisaka, W. Bian, K. Nobusada, H. Nakamura, Accurate quantum dynamics of electronically nonadiabatic chemical reactions in the DH2+ system. J. Chem. Phys. 2002, 116: 654-665.
    12. A. Ichihara, K. Yokoyama, Ab initio potential energy surfaces for the two lowest 1A’ states of H3+. J. Chem. Phys. 1995, 103: 2109-2112.
    13. L. P. Viegas, M. Cernei, A. Alijah, A. J. C. Varandas, Accurate double many-body expansion potential energy surface for triplet H3+. II. The upper adiabatic sheet (2 3A’). J. Chem. Phys. 2004, 120: 253-259.
    14. O. Friedrich, A. Alijah, Z. R. Xu, A. J. C. Varandas, Bound ro-vibronic states of triplet H3+. Phys. Rev. Lett. 2001, 86: 1183-1186.
    15. J. C. Tully, Collisions of F(2P1/2) with H2. J. Chem. Phys. 1974, 60: 3042-3050.
    16. P. Honvault, J. M. Launay, Effect of spin–orbit corrections on the F+D2 → DF+D reaction. Chem. Phys. Lett. 1999, 303: 657-663.
    17. M. H. Alexander, D. E. Manolopoulos, H. J. Werner, An investigation of the F + H2 reaction based on a full ab initio description of the open-shell character of the F(2P) atom. J. Chem. Phys. 2000, 113: 11084-11100.
    18. Y. Zhang, T. X. Xie, K. L. Han, Reactivity of the ground and excited spin-orbit states for the reaction of the F(2P3/2,2P1/2) with D2. J. Phys. Chem. A 2003, 107: 10893-10896.
    19. G. C. Schatz, Influence of atomic fine structure on bimolecular rate constants: The Cl(2P) + HCl reaction. J. Phys. Chem. 1995, 99: 7522-7529.
    20. G. C. Schatz, P. McCabe, J. N. L. Connor, Quantum scattering studies ofspin-orbit effects in the C1(2P)+HCl→ ClH+Cl(2P) reaction. Faraday Discuss. 1998, 110: 139-157.
    21. M. R. Hoffmann, G. C. Schatz, Theoretical studies of intersystem crossing effects in the O + H2 reaction. J. Chem. Phys. 2000, 113: 9456-9465.
    22. B. Maiti, G. C. Schatz, Theoretical studies of intersystem crossing effects in the O(3P, 1D) + H2 reaction. J. Chem. Phys. 2003, 119: 12360-12371.
    23. S. K. Gray, E. M. Goldfield, G. C. Schatz, G. G. Balint-Kurti, Helicity decoupled quantum dynamics and capture model cross sections and rate constants for O(1D)+H2 → OH+H. Phys. Chem. Chem. Phys. 1999, 1: 1141-1148.
    24. G. G. Balint-Kurti, A. I. Gonzalez, E. M. Goldfield, S. K. Gray, Quantum reactive scattering of O(1D)+H2 and O(1D)+HD. Faraday Discuss. 1998, 110: 169-183.
    25. H. Zhang, S. C. Smith, Iterative quantum computations of HO2 bound states and resonances for J=4 and 5. Phys. Chem. Chem. Phys. 2004, 6: 4240-4246.
    26. H. Zhang, S. C. Smith, Converged quantum calculations of HO2 bound states and resonances for J = 6 and 10. J. Chem. Phys. 2004, 120: 9583-9593.
    27. S. Y. Lin, H. Guo, Reactions of C(1D) with H2 and its deuterated isotopomers, a wave packet study. J. Chem. Phys. 2004, 121: 1285-1292.
    28. S. Y. Lin, H. Guo, Quantum wave packet studies of the C(1D) + H2 CH + H reaction: integral cross section and rate constant. J. Phys. Chem. A 2004, 108: 2141-2148.
    29. T. X. Xie, Y. Zhang, M. Y. Zhao, K. L. Han, Claulations of the F+HD reaction on three potential energy surfaces. Phys. Chem. Chem. Phys. 2003, 5: 2034-2038.
    30. A. J. C. Varandas, H. G. Yu, Theoretical 3D study of transition state resonances for the H + H2 reaction using two coupled diabatic potentialenergy surfaces. Chem. Phys. Lett. 1996, 259: 336-341.
    31. D. H. Zhang, S. Y. Lee, Fully converged integral cross sections of diatom-diatom reactions and the accuracy of the centrifugal sudden approximation in the H2 + OH reaction. J. Chem. Phys. 1999, 110: 4435-4444.
    32. R. T. Pack, Space-fixed vs body-fixed axes in atom-diatomic molecule scattering. sudden approximations. J. Chem. Phys. 1974, 60: 633-639.
    33. P. McGuire, D. J. Kouri, Quantum mechanical close coupling approach to molecular collisions. jz -conserving coupled states approximation. J. Chem. Phys. 1974, 60: 2488-2499.
    34. M. H. Alexander, A. P. DePristo, Symmetry considerations in the quantum treatment of collisions between two diatomic molecules. J. Chem. Phys. 1977, 66: 2166-2172.
    35. D. H. Zhang, J. Z. H. Zhang, Photofragmentation of HF dimer: Quantum dynamics studies on ab initio potential energy surfaces. J. Chem. Phys. 1993, 99: 6624-6633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700