几类全变差型图像恢复模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像处理技术是对获取的退化图像进行有效的分析和处理,是帮助人类更好地认知世界的重要途径,它已经被广泛应用于航空航天、生物医学工程、目标识别、地理测绘等重要领域.然而,由于获取方式的局限性经常导致获取的退化图像具有复杂的结构特征,这就给建立有效的数学模型和数值算法获取优质图像带来了极大的挑战.
     在众多的图像处理技术中,全变差型的图像处理模型虽然具有一定的局限性,但是由于具有良好的数学性质和高效的数值算法,因此在众多的图像处理领域内得到了广泛的关注.本学位论文拟从几类全变差型图像恢复模型出发,针对图像去噪、图像去模糊、图像修补、图像去乘性噪声等问题,提出新的模型和数值算法.主要创新点如下:
     (1)针对含有两个非光滑项的凸优化问题,我们通过变量代换将该问题转化为一个约束优化问题,提出交替方向乘子法,并从理论上分析了算法的收敛性和有效性.然而,交替方向乘子法在数值计算时需要求解多个方程,这大大降低了该算法的有效性.基于投影算子和压缩阈值算子的联系,我们提出了临近点算法来求解该凸优化问题,并给出了算法收敛所需要的条件.事实上,临近点算法是考虑初始凸优化问题的对偶问题,再引入简洁的投影算子,这样可以将对偶变量直接投影到一个凸单位球上,因此该算法高效稳定.
     (2)基于全变差函数空间的定义,我们给出自适应全变差函数空间的定义,并分析了该空间的数学性质.由于一阶全变差模型ROF模型在保持图像边缘的同时,会在图像的渐变区域产生模糊现象,而二阶全变差模型LLT模型在保持图像渐变区域的光滑性的同时,会引起图像边缘区域模糊,因此我们基于自适应全变差函数空间提出了凸结合这两个模型的混合模型,并将其应用于图像去噪、图像去模糊、图像修补等领域.另外,我们建议用交替方向乘子法和临近点方法分别求解该混合模型,同时对这两种算法的有效性进行了比较.特别地,我们通过变量替换将图像去模糊、图像修补、图像去乘性噪声等问题归结到去加性噪声问题的框架中,从而扩展了数值求解的应用范围.事实上,在所提出的混合模型中,我们引入边缘检测函数作为凸结合参数,这样就可以使得新模型在图像边缘区域ROF模型占优,而在图像的渐变区域LLT模型占优,因此该模型表现为局部性,从而具有自适应性和鲁棒性.
     (3)针对传统的LOT模型需要求解两个偏微分方程(PDE)的数值缺陷,基于分裂Bregman方法具有高效、稳定、需要内存小的数值优势,我们建议用该算法求解LOT模型的第二步,从而改进了数值实验结果.事实上,LOT模型的第一步是求解非凸优化问题的法向场问题,因此除了求解对应的PDE之外,很难找到有效的数值算法.为此,基于ROF模型的最优性条件中的单位法向量和其对偶问题中对偶变量的等价关系,我们提出用对偶变量来代替LOT模型第一步中的单位法向场,得到了一个基于对偶变量的两步模型,并通过数值实验验证了所提模型的有效性.
Image processing technology is the effective analysis and processing for de-graded images. It can help mankind to have a better understanding of the world and has been widely applied to many important fields, such as aerospace engineer-ing, biomedical, object identification and geographical mapping. However, since the acquirement strategies of image have some limitations, there usually exist com-plex structure features in the degraded images. This brings enormous challenges for constructing effective mathematical models and numerical algorithms in order to get superior image from the degraded image.
     Among the numerous image processing technology, although the models based on the total variation have some limitations, they have given rise to the exten-sive attention of researchers in many fields of image processing. That is because this class of models has good mathematical properties and efficient numerical al-gorithms. In this dissertation, we start with several types of restoration models based on the total variation and propose the new restoration models and numerical algorithms for image denoising, image deblurring, image inpainting, multiplicative noise removal and so on. Our main innovations are as follows:
     (1) For the convex optimization problem with two nonsmooth terms, we transform it into a unconstrained problem by using variable substitution and propose the alternating direction method of multipliers. What's more, we theoretically analyze the convergence and validity of this algorithm. However, when we nu-merically implement this algorithm, several equations need to be solved. This greatly reduces the efficiency of the proposed algorithm. Based on the relation of the projection operator and the shrinkage threshold operator, we provide a proximal point method to solve this convex optimization problem, and give the required conditions for the convergence of this method. In fact, the proximal point method means that the concise projection operator is introduced into the dual problem of the initial convex optimization problem. Hence, the dual variable can be projected into a convex unit ball. This makes the proximal point method effective and stable.
     (2) Based on the definition of the total variation function space, we give the weighted total variation function space and discuss the mathematical prop-erties of this space. The ROF model is known to keep edges well. But it has the undesirable staircase effect in the smooth regions. The LLT model can avoid this undesirable effect, but cause the edges blurring. In view of these facts, based on the weighted total variation function space, we suggest a hybrid model by using the convex combination of these two models. It has been used to image denoising, image deblurring, image inpainting and so on. Moreover, we solve this model by the alternating direction method of multipliers and the proximal point method respectively and compare the effectiveness of these two methods. Especially, with the help of variable substitution, we extend the solvable application range by converting the problem of image deblurring, image inpainting and multiplicative noise removal into the framework of the additive noise removal. In fact, we draw the edge indicator function into the hybrid model which can be seen as the convex combination parameter. Thus, the ROF model plays an important role at the edges and the LLT model does at the smooth region. That is to say, the hybrid model displays localization. Hence, it has adaptability and robustness.
     (3) The drawback of the conventional LOT model is that it needs to solve two partial differential equations (PDEs). Since the split Bregman method has the advantages of efficiency, stablility and small memory footprint, we extend this method to solve the second step of the LOT model. Therefore, the numerical results have been improved. Actually, it is difficult to look for other effective algorithms in order to solve the first step of the LOT model expect solving its corresponding PDE. That is because it is to seek the smoothed flow field of a nonconvex optimization problem. As a result of the equivalence relation between the unit normal vector in the optimality condition of the ROF model and the dual variable in its dual problem, we substitute the dual variable for the smoothed flow field in the first step of the LOT model. Consequently, we obtain a two step model based on the dual variable. In addition, we provide some examples to illustrate the efficiency of the proposed model.
引文
[1]姚敏等.数字图像处理.北京:机械工业出版社,2006
    [2]Gonzalez R. C, Woods R. E.阮秋琦,阮宇智(译).数字图像处理.北京:电子工业出版社,2005
    [3]Paragios N, Chen Y M, Faugeras O. Handbook of mathematical models in com-puter vision. Heidelberg: Springer,2005
    [4]Chan T. F, Shen J. H. Image processing and analysis. SIAM,2005
    [5]王大凯,侯瑜青等.图像处理的偏微分方程方法.北京:科学出版社,2008
    [6]冯象初,王卫卫.图像处理的变分和偏微分方程方法.北京:科学出版社,2009
    [7]Aubert G, Kornprobst P. Mathematical problems in image processing: partial differential equations and the calculus of variations. New York:Springer,2002
    [8]Witkin A.-P. Scale-space filtering. In 8th Int. Joint Conf. Artificial Intelligence, 1983,2:1019-1022
    [9]Perona P, Malik J. Scale-space and edge detection using anistropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639
    [10]Weickert J. Anisotropic Diffusion in Image Processing. Stuttgart:B.G. Teubner, 1998
    [11]Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algo-rithms. Physica D,1992,60:259-268
    [12]Chan T, Marquina A, Mulet P. High-order total variation-based image restoration. SIAM Journal on Scientific Computing,2000,22(2):503-516
    [13]Lysaker M, Lundervold A, Tai X.-C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on Image Processing,2003,12(12):1579-1590
    [14]Yi. D, Lee S. Fourth-order partial differential equations for image enhancement. Applied Mathematics and Computation,2006,175:430-440
    [15]Tikhonov A N, Arsenin V Y. Solutions of ill-posed problems. Washington:Winston and Sons,1977
    [16]Greer J B, Bertozzi A L. Traveling wave solutions of fourth-order PDEs for image processing. SIAM Journal on Mathematical Analysis,2004,36:38-68
    [17]Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion(II). SIAM Journal on Numerical Analysis,1992,29(3):845-866
    [18]You Y L, Kaveh M. Fourth-order partial differential equation for noise removal. IEEE Transactions on Image Processing,2000,9(10):1723-1730
    [19]Kim S, Lim H. Fourth-order parital differential equations for effecitve image de-noising. Electronic Journal of Differential Equations, conference,2009,17:107-121
    [20]Steidl G, Mannheim. A note on the dual treament of higher-order regularization functional. Computing,2006,76:135-148
    [21]Hajiaboli M R. An anisotropic fourth-order partial differential equation of noise removal. Lecture Notes in Computer Science,2009,5567:356-367
    [22]Hajiaboli M R. A self-governing fourth-order nonlinear diffusion filter for image noise removal. IPSJ Transaction on Computer Vision and Applications,2010,2: 94-103
    [23]Li F, Shen C M, et al. Image restoration combining a total variational filter and a fourth-order filter. Journal of Visual Communication and Image Representation, 2007,18(4):322-330
    [24]Lysaker M, Tai X.-C. Iterative image restoration combining total variation mini-mization and a second-order functional. International Journal of Computer Vision, 2006,66(1):5-18
    [25]Pang Z.-F, Yang Y.-F. A projected gradient algorithm based on the augmented La-grangian strategy for image restoration and texture extraction. Image and Vision Computing,2011,29(2-3):117-126
    [26]Lysaker M, Osher S, Tai X.-C. Noise removal using smoothed normals and surface fitting. IEEE Transactions on Image Processing,2004,13(10):1345-1357
    [27]Geman D, Yang C. Nonlinear image recovery with half-quadratic regularization. IEEE Transactions on Image Processing,1995,4(7):932-946
    [28]Nikolova M, Ng M. Analysis of half-quadratic minimization methods for signal and image recovery. SI AM Journal on Scientific Computing,2005,27(3):937-966
    [29]Nikolova M, Chan R. The equivalence of half-quadratic minimization and the gradient linearization iteration. IEEE Transactions on Image Processing,2007, 16(6):1623-1627
    [30]Nikolova M. A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and Vision,2004,12(1-2):99-120
    [31]Chan T, Esedoglu S. Aspect of total variation regularized L1 function approxima-tion. SIAM Journal on Applied Mathematics,2005,65(5):1817-1837
    [32]Bresson X, Esedoglu S, Vandergheynst P, Thiran J. P, Osher S. Fast global mini-mization of the active contour/snake model. Journal of Mathematical Imaging and Vision,2007,28(2):151-167
    [33]Yang J.-F, Zhang Y, Yin W-T. An efficient TV-L1 algorithm for deblurring mul-tichannel images corrupted by impulsive noise. SIAM Journal on Scientific Com-puting,2009,31(4):2842-2865
    [34]Dong Y-Q, Hintermuller M, Neri M. An efficient primal-dual method for Ll-TV image restoration. SIAM Journal on Imaging Sciences,2010,2(4):1168-1189
    [35]Yuan J, Shi J. Tai X.-C. A convex and exact approach to discrete constrained TV-L1 image approximation. East Asian Journal on Applied Mathematics,2011, 1(2):172-186
    [36]Vogel C, Oman M. Iterative methods for total variation denoising. SIAM Journal on Scientific Computing,1996,17(1):227-238
    [37]Scherzer O. Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing,1998,60:1-27
    [38]Chan T, Golub G, Mulet P. A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing,1999,20(6): 1964-1977
    [39]Chambolle A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision,2004,20(1-2):89-97
    [40]Yu G, Qi L, Dai Y. On nonmonotone Chambolle gradient projection algorithms for total variation image restoration. Journal of Mathematical Imaging and Vision, 2009,35:143-154
    [41]Chen H.-Z, Song J.-P, Tai X.-C. A dual algorithm for minimization of the LLT model. Advances in Computational Mathematics,2009,31(1-3):115-130
    [42]Chambolle A. Total variation minimization and a class of binary MRF models. In Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science,2005,3757:136-152
    [43]Combettes P. L., Wajs V. R. Signal recovery by proximal forward-backward split-ting. SIAM Journal on Multiscale Modeling and Simulation,2005,4(4):1168-1200
    [44]Ng M, Qi L, Yang Y, Huang Y. On semismooth Newton's methods for total vari-ation minimization. Journal of Mathematical Imaging and Vision,2007,27(3): 265-276
    [45]Pang Z.-F, Yang Y.-F. Semismooth Newton's methods for minimization of the LLT model. Inverse problems and Imaging,2009,3(4):677-691
    [46]Setzer S. Splitting methods in image processing: [PhD]. Mannheim:University of Mannheim,2009
    [47]Steidl G, Teuber T. Removing multiplicative noise by Douglas-Rachford splitting methods. Journal of Mathematical Imaging and Vision,2010,36(2):168-184
    [48]Combettes P. L, Pesquet J. C. A Douglas-Rachford splitting approach to non-smooth convex variational signal recovery. IEEE Journal of Selected Topics in Signal Processing,2007,1(4):564-574
    [49]Goldstein T, Osher S. The Split Bregman method for L1 regularized problem. SIAM Journal on Imaging Sciences,2009,2(2):323-343
    [50]Tai X.-C, Wu C. Augmented Lagrangian method, dual methods and split Breg-man iteration for ROF model. In International Conference on Scale Space and Variational Methods in Computer Vision,2009,5567:502-513
    [51]Tai X-C, Wu C L. Augmented Lagrangian method, dual methods and split Breg-man iteration for ROF, vectorial TV, and high order models. SIAM Journal on Imaging Sciences,2010,3(3):300-339
    [52]Adams R. Sobolev spaces. New York: Academic Press, Inc,1975
    [53]张恭庆,林源渠.泛函分析讲义.北京:北京大学出版社,2004
    [54]Evans L C, Gariepy R F. Measure theory and fine properties of functions. Boca Raton:CRC Press,1992
    [55]Guiusti E. Minimal surfaces and functions of bounded variation. Switzerland: Birkhauser Boston Inc.,1984
    [56]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,2005
    [57]李董辉,童小娇,万中.数值最优化.北京:科学出版社,2005
    [58]冯德兴.凸分析基础.北京:科学出版社,1995
    [59]Nocedal J, Wight S J. Numerical Optimization. New York:Springer,2006
    [60]Ekeland I, Temam R. Convex Analysis and Variational Problems. Oxford: North-Holland Publishing Company,1976
    [61]Bauschke H, Combettes P. L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. New York: Springer,2011
    [62]Charles L. B. Applied Iterative Methods. A K Peters, Ltd,2007
    [63]Rockafellar R. T. Convex analysis, Princeton, New Jersey:Princeton University Press,1970
    [64]Osher S, Burger M, Goldfarb D, Xu J, Yin W T. An iterative regularization method for total variation-based image restoration. SIAM Multiscale Modeling and Simulation,2005,4(2):460-489
    [65]Ito K, Kunisch K. An active set strategy based on the augmented Lagrangian for-mulation for image restoration. Mathematical Modelling and Numerical Analysis, 1999,33(1):1-21
    [66]Heitermuller M, Ito K, Kunisch K. The primal-dual active as a semismooth Newton method. SIAM Journal on Optimization,2003,13(3):865-888
    [67]Vogel C. R. Computational Methods for Inverse Problems. SIAM,2002
    [68]Scherzer O. Handbook of Mathematical Methods in Imaging. Springer,2011
    [69]Wang Y, Yang J, Yin W, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences,2008, 1(3):248-272
    [70]Setzer S. Split Bregman algorithm, Douglas-Rachford splitting and frame shrink-age. In International Conference on Scale Space and Variational Methods in Com-puter Vision,2009,5567:464-476
    [71]Marquina A, Osher S. Image super-resolution by TV-regularization and Bregman iteration. Journal of Scientific Computing,2008.37(3):367-382
    [72]Hestenes M R. Multiplier and gradient methods. Journal of Optimization Theory and Applications,1969,4(5):303-320
    [73]Powell M. J. D. A method for nonlinear constraints in minimization problems. In Optimization,1969,283-298
    [74]Glowinski R, Tallec P. L. Augemented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM,1989
    [75]Eckstein J., Bertsekas D. P. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Pro-gramming,1992,55(1-3):293-318
    [76]Rudin L, Lions P.-L, Osher S. Multiplicative denoising and deblurring:Theory and algorithms. In S. Osher and N. Paragios (Eds), Geometric Level Sets in Imaging, Vision and Graphics, Springer,2003,103-119
    [77]Krission K, Vosburgh K, Kikinis R, Westin C.-F. Anistropic diffusion of ultrasound constrained by speckled noise model. October 2004, Technical Report
    [78]Le T, Vese L. Additive and multiplicative piecewise-smooth setmentation models in a variational level set approach.2003, UCLA Cam Report 03-52
    [79]Ogier A, Hellier P. A modified total variation denoising method in the context of 3d ultrasound images. In Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science,2004,3216:70-77
    [80]Tadmor E, Nezzar S, Vese L. A multiscale image representation using hierarochical (BV,L2) decompositions. SIAM Journal on Multiscale Modeling and Simulation, 2004,2(4):554-579
    [81]Aubert G, J. Aujol J. A variational approach to remove multiplicative noise. SIAM Journal on Applied Mathematics,2008,68(4):925-946
    [82]Shi J, Osher S. A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM Journal on Imaging Sciences,2008,1(3):294-321
    [83]Huang Y, Ng M, Wen Y. A new total variation method for multiplicative noise removal, SIAM Journal on Imaging Sciences,2009,2(1):20-40
    [84]Yu Y, Acton S. T. Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing,2002,11(11):1260-1270
    [85]Jia R, Zhao H. A fast algorithm for the total variation model of image denoising. Advances in Computational Mathematics,2010,33(2):231-241
    [86]Optial Z. Weak convergence of the sequence of successive approximations for non-expansive mappings. Bulletin of the American Mathematical Society,1967,73(4): 591-597
    [87]Pang Z.-F, Yang Y.-F. A two-step model for image denoising using a duality strategy and surface fitting. Journal of Computational and Applied Mathematics, 2011,235(1):82-90
    [88]Yang Y.-F, Pang Z.-F, Shi B, Wang Z. Splitting Bregman method for the modi-fied LOT model in image denoising. Applied Mathematics and Computing,2011, 217(12):5392-5403
    [89]Rahman T, Tai X.-C, Osher S. A TV-Stokes denoising algorithm. In International Conference on Scale Space and Variational Methods in Computer Vision,2007, 4485,473-483
    [90]Dong F F, Liu Z, Kong D X, Liu K F. An improved LOT model for image restora-tion. Journal of Mathematical Imaging and Vision,2009,34(1):89-97
    [91]Hahn J, Tai X.-C, Borok S, Bruckstein A. Orientation-matching minimization for image denoising and inpainting. International Journal of Computer Vision,2011, 92(3):308-324
    [92]Litvinov W, Rahman T, Tai X.-C. A modified TV-Stokes model for image pro-cessing. SIAM Journal on Scientific Computing,2011,33(4):1574-1597
    [93]Kenney C, Langan J. A new image processing primitive: reconstructing images from modified flow fields. Santa Barbara CA; University California,1999,1-10
    [94]Tasdizen T, Whitaker R, Burchard P, Osher S. Geometric surface processing via normal maps. Journal ACM Transactions on Graphics,2003,22(4):1012-1033
    [95]Vese L, Osher S. Numerical methods for p-harmonic flows and applications to image processing. SIAM Journal on Numerical Analysis,2002,40(6):2085-2104
    [96]Cai J F, Osher S, Shen Z W. Split Bregman methods and frame based image restoration. Multiscale Modeling & Simulation,2009,8(2):337-369
    [97]Goldstein T, Bresson X, Osher S. Geometric applications of the split Bregman method:segmentation and surface reconstruction. Journal of Scientific Comput-ing,2010,45(1-3):272-293
    [98]Plonka G, Ma J. Curvelet-wavelet regularized split Bregman iteration for com-pressed sensing. International. Journal on Wavelet, Multiresolution, and Informa-tion Processing,2011,9(1):79-110
    [99]Candes E J. Recht B. Exact matrix completion via convex optimization. Foundaions of Computational Mathematics,2009,9(6):717-772
    [100]Gilles J, Osher S. Bregman implementation of Meyer's G-norm for cartoon + textures decomposition. UCLA Report 11-73
    [101]Cai J F, Osher S, Shen Z W. Linearized Bregman iterations for compressed sensing. Mathematics of Compution,2010,78(267):1515-1536
    [102]Osher S, Mao Y, Dong B, Yin W T. Fast linearized Bregman iteration for com-pressive sensing and sparse denoising. Communications in Mathematical Sciences, 2010,8(1):93-111
    [103]Yin W T, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for (?)1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences,2008,1(1):143-168
    [104]Burger M, Gilboa G, Osher S, Xu J J. Nonlinear inverse scale space methods. Communications in Mathematical Sciences,2006,4(1):179-212
    [105]Zosso D, Bresson X, Thiran J.-P. Fast geodesic active fields a splitting scheme for Geometric image registration. UCLA Report 11-76
    [106]Tai X.-C, Borok C, Hahn J. Image denoising using TV-Stokes equation with an orientation-matching minimization. In International Conference on Scale Space and Variational Methods in Computer Vision,2009,5567,490-501
    [107]Bermudez A, Moreno C. Duality methods for solving variational inequaties. Com-puters Mathematics with Applications,1981,7(1):43-58
    [108]Aujol J. F. Some first-order algorithms for total variation based image restoration. Journal of Mathematical Imaging and Vision,2009,34(3):307-327
    [109]Alliney S. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Transactions on Signal Processing,1997, 45(4):913-917
    [110]Alliney S. Digital filter as absolute norm regularizers. IEEE Transactions on Signal Processing,1992,40(6):1548-1562
    [111]Alliney S. Recursive median filter of increasing order:a variational approach. IEEE Transactions on Signal Processing,1996,44(6):1346-1354
    [112]Nikolova M. Mininizers of cost-functions involving nonsmooth data-fidelity terms: Application to the processing of outliers. SIAM Journal on Numerical Analysis, 2002,40(3):965-994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700