变分正则化与Euler-Lagrange方程在图像处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以变分方法、偏微分方程(PDE)和稀疏表示为代表的数学工具活跃在图像处理的各个研究领域,它们已经成为研究图像处理和计算机视觉的三大基本工具。本论文主要围绕三者在图像处理中的应用进行建模和算法研究。主要做了以下几个方面的工作:
     1.提出了两种新的图像修复模型。一是基于非局部扩散的图像修复模型。该模型能够在扩散的过程中充分利用图像的全局信息对损坏的区域进行修复,克服了变分和偏微分方程方法在修复图像时易产生模糊以及不能保持图像纹理信息的不足;二是基于交替迭代的变分修复模型。该模型由于耦合了两个变量,因此新算法中首先采用交替极小化方法对其进行解耦,其次对解耦的两个子模型分别利用分裂Bregman方法进行数值求解。由于分裂Bregman方法的快速收敛性质,使得新算法的修复速度加快,提高了算法的运算效率。实验结果表明,这两种修复模型均能够获得较好的修复效果。
     2.针对加性噪声去除的ROF模型在去噪过程中易导致阶梯效应(StaircaseEffect)的缺陷,在研究LOT模型的基础上,提出了一种新的变分去噪模型。该模型可以通过交替极小化方法化为两个简单的子模型,其中一个子模型被用于重构角,另一个被用于重构图像。在计算方法上,我们分别采用分裂Bregman方法对两个子模型进行交替求解。实验结果表明,提出的新算法不但收敛速度较快,而且在去噪过程中能够减缓阶梯效应并能较好地保持图像的边缘信息。
     3.针对乘性噪声去除问题,结合变分方法、偏微分方程、稀疏表示以及字典学习这几个数学工具,在对数域提出了一种去除乘性噪声的稀疏正则化方法。该方法主要包括三步:首先,采用稀疏表示和字典学习的方法获得一个较优的log图;其次,对获得的log图利用总变分(TV)模型进行校正;最后,将校正后的结果用一个指数函数和偏差纠正从对数域变回到真实的图像。实验结果表明,新方法在能有效去除乘性噪声的同时还能较好地保持图像的纹理特征。
     4. TV正则虽然具有良好的保边性能,但它在去噪过程中容易导致阶梯效应,针对这一缺陷,利用最近提出的总广义变分(TGV),在对数域建立了一种新的去除乘性噪声的正则化模型,并从数学上证明了该模型解的存在唯一性。由于TGV的诸多优点,使得新模型在有效去除乘性噪声的同时既避免了阶梯效应的产生又较好地保持了图像的细节特征。在数值计算上,我们采用一阶原始-对偶算法和牛顿迭代方法对新模型进行求解。实验结果表明,所提出的算法无论是在视觉效果上还是峰值信噪比(PSNR)上都能获得较好的结果。
     5.乘性噪声去除在相干成像系统以及各种各样的图像处理应用中具有十分重要的意义。目前去除乘性噪声的大部分数学模型都是基于正则化方法的,求解这类模型一般都需要知道噪声强度的先验信息,然而,这些信息在某些情况下并不能获得,针对这个缺陷,提出了两种去除乘性噪声的投影方法,并通过利用对偶方法和变量分裂技巧给出了三种快速的数值算法。实验结果表明,所提出的去噪算法不仅收敛速度快,而且在噪声强度先验信息未知的情况下也能有效地滤除乘性噪声。
In recent years, variational method、partial differential equation (PDE) and sparsereprensentations play active roles in many image processing fields. They have becomethree basic tools for image processing and computer vision. This dissertation mainlystudies the models and applications of variation、PDE and sparse reprensentations inimage processing. The main work can be summarized as follows:
     1. Two image inpainting models are proposed. One is the image inpainting modelbased on nonlocal diffusion. This model can inpaint the damaged domains by using theglobal information of the image in the diffusion process, it can overcome theshortcomings that the PDE-based models tend to produce some blur and cannotpreserve the texture. The other is the variational inpainting model based on alternateiteration. There are two variables in the new model, so it is firstly turned into twosimple submodels by using the alternative minimization method in the new algorithm,and then the two submodels are solved using split Bregman method respectively. Dueto the fast convergence property of the split Bregman method, the new algorithm canimprove the inpainting speed, thus reducing the runtime. The experimental resultsshow that the two image inpainting models can both obtain the better inpainting effect.
     2. As the ROF model for additive noise removal tends to produce the staircaseeffect, a novel variational denoising model is proposed based on the study of the LOTmodel. The model can be turned into two simple submodels by using the alternativeminimization method, one is used to construct an angle, and the other is used toreconstruct the image. In the numerical computation, we apply the split Bregmanmethod to solve the two submodels alternately. The experimental results show that thenew algorithm not only has faster convergence rate, but also can alleviate the staircaseeffect and preserve the edge information better.
     3. Aiming at the problem of multiplicative noise removal, combining thevariational method、PDE、sparse reprensentations and dictionary learning, a sparsityregularization method for multiplicative noise removal is proposed in log-domain. Theproposed method mainly contains three steps. Firstly, a better log-image is obtained byusing the sparse representation based on the dictionary learning. Secondly, the totalvariation (TV) model is used to amend the log-image. Finally, via an exponentialfunction and bias correction, the result is transformed back from the log-image domain to the real one. The experimental results show that the new method is more effective tofilter out the multiplicative noise while well preserving the texture.
     4. TV can preserve the edge information better, but it tends to produce the staircaseeffect. In order to overcome the drawback, a novel variational regularization model formultiplicative noise removal is proposed in log-domain based on the total generalizedvariation (TGV) introduced recently, and the existence and uniqueness of a minimizerfor the proposed model are proven. TGV has many advantages, which make the newmodel to be more effective for multiplicative noise removal while avoiding thestaircase effect and well preserving the feature and details. In the numericalcomputation, we use the first-order primal-dual algorithm and the Newton method tosolve the new model. The experimental results show that the proposed algorithm canget the better results from the visual effect and the peak signal to noise ratio (PSNR).
     5. Multiplicative noise removal is of momentous significance in coherent imagingsystems and various image processing applications. So far, most multiplicative noiseremoval models focus on the regularization method, these models require knowing theprior level of noise beforehand, however, the information isn't obtained in some case,to overcome the drawback, two projection methods for multiplicative noise removalmodels are presented, and three fast numerical algorithms are given by using theduality technique and the variable-splitting. The experimental results show that theproposed algorithms not only have faster convergence rate, but also can effectivelyfilter out the multiplicative noise when the prior of noise is unknown.
引文
[1] Averintsev M. B. The description of Markov random fields by Gibbs distribution.Teor. Verojatrost. Primen,1972,17(1):21-35.
    [2] Besag J. E. Spatial interaction and the statistical analysis of lattice systems (withdisscussion). J. Roy. Statist. Soc. B.,1974,36(2):192-236.
    [3] Besag J. E. On the statistic analysis of dirty pictures. J. Roy. Statist. Soc. B.,1986,48(3):259-302.
    [4] Zhu S. C., Mumford D. Prior learning and Gibbs reaction-diffusion. IEEE Trans.on PAMI,1997,19:1236-1250.
    [5] Giordana N., Pieczynaki W. Estimation of generalized multisensor HiddenMarkov Chains and unsupervised image segmentation. IEEE Trans. on PAMI,1997,19(5):465-475.
    [6] Huber P. J. Robust statistics. New Yoke: Wiley,1981.
    [7] Geman S., Geman D. Stochastic relaxation, Gibbs distributions, and theBayesian restoration of images. IEEE Trans. PAMI,1984,6:721-741.
    [8] Meyer Y. Wavelets algorithms and applications. SIAM, Philadelphia,1993.
    [9] Calderon, Albert P. An atomic decomposition of distributions in parabolic HPspaces. Advances in Math.,1977,25(3):216-225.
    [10] Daubechies I. Orthonormal bases of compactly supported wavelets. Comm. OnPure and Appl. Math.,1988,41(7):909-996.
    [11] Mallat S. Multifrequency channel decomposition of images and wavelet models.IEEE Transaction in Acoustic Speech and Signal Processing,1989,37(12):2091-2110.
    [12] Mallat S. AWavelet Tour of Signal Processing2nd. Academic Press:1999.
    [13] Mallat S著,扬力华等译.信号处理的小波导引.北京:机械工业出版社,2002.
    [14] Perona P., Malik J. Scale space and edge detection using anisotropic diffusion.IEEE Trans. on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
    [15] Meyer Y. Oscillating patterns in image processing and nonlinear evolutionequations. AMS, Providence, RI,2001.
    [16] Catte F., Lions P. L., Morel J. M., et al. Image selective smoothing and edgedetection by nonlinear diffusion. SIAM Journal of Numerical Analysis,1992,29(1):182-193.
    [17] Osher S., Rudin L. Feature-oriented image enhancement using shock filters.SIAM Journal of Numerical Analysis,1990,27(4):919-940.
    [18] Weickert J. Theoretical foundation of anisotropic diffusion in image processing.Computing Supplement,1996,11:221-236.
    [19] Weickert J. Anisotropic diffusion in image processing. Teubner-Verlag, Stuttgart,1998.
    [20] Weickert J. Coherence-enhancing diffusion filtering. International Journal ofComputer Vision,1999,31(2):111-127.
    [21] Alvarez L., Mazorra L. Signal and image restoration using shock filter andanisotropic diffusion. SIAM Journal of Numerical Analysis,1994,31(2):590-605.
    [22] Aubert G., Kornprobst P. Mathematical problems in image processing: Partialdifferential equations and the calculus of variations. Applied MathematicalSciences147, Springer-Verlag,2006.
    [23]章毓晋.图像处理和分析.北京:清华大学出版社,1999.
    [24]阮秋琦著.数字图像处理学.北京:电子工业出版社,2001.
    [25]李朝晖主编.数字图像处理及应用.北京:机械工业出版社,2004.
    [26] Mumford D. and Shah J. Optimal approximation by piecewise smooth functionsand associated variational problems. Comm. on Pure and Appl. Math.,1989,42(5):577-685.
    [27] Rudin L., Osher S., Fatemi E. Total variation based image restoration with freelocal constrains. Proc. IEEE Int. Conf. Image Proc.,1994,1:31-35.
    [28] Kass M., Witkin A., Terzopoulos D. Snakes: active contour models. Int. J. Comp.Vis.,1987,1(4):321-331.
    [29] Osher S., Sethian J. Fonts propagating with curvature dependent speed:algorithms based on Hamilton-jacobi formulation. Journal of ComputationalPhysics,1988,79:12-49.
    [30] Rudin L., Osher S., Fatemi E. Nonlinear total variation based noise removalalgorithms. Phys. D: Nonlinear Phenom.,1992,60:259-268.
    [31] Chan T. F., Shen J. Mathematical models for local nontexture inpaintings. SIAMJournal on Applied Mathematics,2002,62:1019-1043.
    [32] Shen J. Inapainting and the fundamental problem of image processing. SIAMNews,2003,36(5):1-4.
    [33] Chan T. F., Shen J., Vese L. Variational PDE models in image processing. Noticeof theAMS,2003,50(1):14-26.
    [34] Bertalmio M., Sapiro G., Caselles V., et al. Image inpainting. Proceedings ofACM SIGGRAPH, also ACM Transactions on Graphics,2000,19(3):417-424.
    [35] Sapiro G. Image inpainting. SIAM News,2002,35(4):1-2.
    [36] Rane S. D., Sapiro G., Bertalmio M. Structure and texture filling-in of missingimage blocks in wireless transmission and compression applications. IEEETransactions on Image Processing,2003,12(3):296-303.
    [37] Vese L. A., Osher S. Modeling textures with total variation minimization andoscillating patterns in image processing. Journal of Scientific Computing,2003,19(1-3):553-572.
    [38] Osher S., Sole A., Vese L. Image decomposition and restoration using totalvariation minimization and theH1norm. SIAM Journal on MultiscaleModeling and Simulation,2003,1-3:349-370.
    [39] Aujol J., Aubert G., Blanc-Feraud L., et al. Image decomposition: application totextured images and SAR images. Technical Report ISRN I3S/RR-2003-01-FR,INRIA-Project ARIANA, Sophia Antipolis,2003.
    [40] Aujol J., Chambolle A. Dual norms and image decomposition models. Intl. J.Comp. Vis.,2005,63(1):85-104.
    [41] Daubechies I., Teschke G. Wavelet based image decomposition by variationalfunctionals. Proc. SPIE, Wavelet Applications in Industrial Processing,2004,5266:94-105.
    [42] Daubechies I., Teschke G. Variational image restoration by means of wavelets:simultaneous decomposition, deblurring and denoising. Journal on Applied andComputational Harmonic Analysis,2005,19(1):1-16.
    [43] Lieu L., Vese L. Image restoration and decompostion via bounded total variationand negative Hilbert-Sobolev spaces. Applied Mathematics and Optimization (inpress).
    [44] Le T., Vese L. Image decomposition using the total variation and div(BMO).Multiscale Modeling and Simulation,2005,4(2):390-423.
    [45] Starck J., Elad M., Donoho D. L. Image decomposition via the combination ofsparse representations and a variational approach. IEEE Trans. Image Processing2005,14(10):1570-1582.
    [46] Aubert G., Aujol J. F. Modeling very oscillating signals. Application to imageprocessing. AMO,2005,51(2):163-182.
    [47] Kindermann S., Osher S., Xu J. Denoising by BV-Duality. Journal of ScientificComputing,2006,28(2-3):411-444.
    [48] Vese L. A study in the BV space of a denoising-deblurring variational problem.App. Math. Optm.,2001,44:131-161.
    [49] Burger M., Frick K., Osher S., et al. Inverse total variation flow. UCLA CAMReport06-24,2006.
    [50] Burger M., Gilboa G., Osher S., et al. Nonlinear inverse scale space methods.Comm. Math. Sci.,2006,4(1):175-208.
    [51] Burger M., Osher S., Xu J., et al. Nonlinear inverse scale space methods forimage restoration. Lecture Notes in Computer Science,2005,3752:25-36.
    [52] Chan T. F., Esedoglu S. Aspects of total variation regularized L1functionapproximation. SIAMAppl. Math.,2005,65(5):1817-1837.
    [53] Chan T. F., Esedoglu S., Park F. A fourth order dual method for staircasereduction in texture extraction and image restoration problems. UCLA CAMReport05-28,2005.
    [54] Chambolle A. An algorithm for total variation regularization and denoising.Journal of Mathematical Imaging and Vision,2004,20:89-97.
    [55] Bertalmio M., Vese L., Sapiro G., et al. Simultaneous structure and texture imageinpainting. IEEE Trans. Image. Process.,2003,12:882-889.
    [56] Elad M., Starck J., Querre P., et al. Simultaneous cartoon and texture imageinpainting using morphological component analysis (MCA). Journal on Appliedand Computational Harmonic Analysis,2005,19:340-358.
    [57] Chan T. F., Shen J. Variational image inpainting.2002, CAM02-63(pdf).
    [58] Chan T. F., Shen J. Non-texture inpainting by curvature-driven diffusion (CDD).Journal of Visual Communication and Image Representation,2001,12(4):436-449.
    [59] Chan T. F., Shen J., Kang S. Euler’s elastica and curvature-based imageinpainting. SIAM Journal on Applied Mathematics,2002,63(2):564-592.
    [60] Chan T. F., Shen J. Image processing and analysis. SIAM, Philadelphia,2005.
    [61] Caselles V., Kimmel R., Sapiro G. Geodesic active contours. InternationalJournal of Computer Vision,1997,22(1):61-79.
    [62] Han Y., Wang W. W., Feng X. C. A new fast multiphase image segmentationalgorithm based on nonconvex regularizer. Pattern Recognition,2012,45:363-372.
    [63] Blomgren P., Chan T. F. Color TV: total variation methods for restoration ofvector-valued images. IEEE Trans. Image Process.,1998,7(3):304-309.
    [64] Chan T. F., Marquina A., Mulet P. High-order total variation-based imagerestoration. SIAM J. Sci. Comput.,2000,22(2):503-516.
    [65] Chen Y. M., Levine S., Rao M. Variable exponent, linear growth functionals inimage restoration. SIAM J. Appl. Math.,2006,66(4):1383-1406.
    [66] Li F., Shen C., Fan J., et al. Image restoration combining a total variational filterand a fourth-order filter. J. Vis. Commun. Image R.,2007,18:322-330.
    [67]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法.北京:科学出版社,2008.
    [68]冯象初,王卫卫.图像处理的变分和偏微分方程方法.北京:科学出版社,2009.
    [69] Weickert J., Scharr H. Ascheme for coherence-enhancing diffusion filtering withoptimized rotation invariance. Journal of Visual Communication and ImageRepresentation,2002,13(2):103-118.
    [70] You Y., Kaveh M. Fourth-order partial differential equations for noise removal.IEEE Trans. Image Process.,2000,9(10):1723-1730.
    [71] Lysaker M., Lundervold A., Tai X. C. Noise removal using fourth order partialdifferential equation with applications to medical magnetic resonance images inspace and time. IEEE Trans. Image Process.,2003,12(12):1579-1590.
    [72] Mohammad R. H. An anisotropic fourth-order diffusion filter for image noiseremoval. Int. J. Comput. Vis.,2011,92(2):177-191.
    [73] Guidotti P., Longo K. Two enhanced fourth order diffusion models for imagedenoising. J. Math. Imaging and Vis.,2011,40(2):188-198.
    [74] Lysaker M., Tai X. C. Iterative image restoration combining total variationminimization and a second order functional. Int. J. Comput. Vis.,2006,66(1):5-18.
    [75] Lysaker M., Osher S., Tai X. C. Noise removal using smoothed normals andsurface fitting. IEEE Trans. Image Process.,2004,13(10):1345-1357.
    [76] Rahman T., Tai X. C., Osher S. A TV-stokes denoising algorithm. SSVM,2007,473-483.
    [77] Loupas T., McDicken W., Allan P. An adaptive weighted median filter forspeckle suppression in medical ultrasound image. IEEE Trans. Circ. Syst.,1989,36:129-135.
    [78] Coupe P., Hellier P., Kervrann C., et al. Nonlocal means-based speckle filteringfor ultrasound images. IEEE Trans. Image Process.,2009,18(10):2221-2229.
    [79] Yu Y., Acton S. T. Speckle reducing anisotropic diffusion. IEEE Trans. ImageProcess.,2002,11(11):1260-1270.
    [80] Li F., Ng M. K., Shen C. Multiplicative noise removal with spatially varyingregularization parameters. SIAM J. Imaging Sci.,2010,3(1):1-20.
    [81] Rudin L., Lions P., Osher S. Multiplicative denoising and deblurring: Theoryand algorithms. In Geometric Level Sets in Imaging, Vision, and Graphics,Osher S. and Paragios N.(editors), Springer,2003,103-120.
    [82] Aubet G., Aujol J. F. A variational approach to removing multiplicative noise.SIAM J. Appl. Math.,2008,68(4):925-946.
    [83] Shi J., Osher S. A nonlinear inverse scale space method for a convexmultiplicative noise model. SIAM Journal on Imaging Sciences,2008,1(3):294-321.
    [84] Tai X. C., Osher S., Holm R. Image inpainting using a TV-Stokes equation//TaiX. C., Lie K., Chan T. F., et al. Image Processing Based on Partial DifferentialEquations. Heidelberg, Germany: Springer,2007,3-22.
    [85] Tsai A., Yezzi A., Willsky A.S. A PDE approach to image smoothing andmagnification using the Mumford-Shah functional. Proc. Conf. Record of theThirty-Fourth Asilomar Conf. Signals, Systems Comput., Pacific Grove, CA,USA,2000,1:473-477.
    [86] Shao W., Wei Z. Image magnification using geometric structure reconstruction.Proc. Int. Conf. Intell. Comput., Kunming, China,2000,345:925-931.
    [87] Tschumperle D., Deriche R. Vector-valued image regularization with PDE's: acommon framework for different applications. IEEE Trans. Pattern Anal. Mach.Intell.,2005,27(4):506-517.
    [88] Liu Z., Wang H., Peng S. Image magnification method using joint diffusion. J.Comput. Sci. Technol.,2004,19(5):698-707.
    [89]朱宁,吴静,王忠谦.图像放大的偏微分方程方法.计算机辅助设计与图形学学报,2005,17(9):1941-1945.
    [90] Morse B., Schwartzwald D. Isophote-based interpolation. Proc. IEEE Int. Conf.Image Process., Chicago, Illinois, USA,1998,3:227-231.
    [91] Morse B., Schwartzwald D. Image magnification using level-set reconstruction.Proc. Comput. Vis. Pattern Recogn., Hawaii, USA,2001,1:333-341.
    [92] Gilboa G., Zeevi Y. Y., Sochen N. Resolution enhancement by forward-and-backward nonlinear diffusion processes. Proc. Nonlinear Signal Image Process.,Baltimore, Maryland,2001.
    [93]杨新.图像偏微分方程的原理与应用.上海:上海交通大学出版社,2003.
    [94] Osher S., Fedkiw R. P. Level set methods and dynamic implicit surfaces. NewYork: Springer-Verlag,2002.
    [95] Crandall M. G., Ishii H., Lions P. L. User's guide to viscosity solutions of secondorder partial linear differential equations. Bulletin of American MathematicalSociety,1992,27(1):1-67.
    [96]杜小勇.稀疏成分分析及在雷达成像处理中的应用.博士论文,长沙:国防科学技术大学,2005.
    [97] Donoho D. L., Elad M. Maximal sparsity representation via L1minimization.Proc. Nat. Aca. Sci.,2003,100(5):2197-2202.
    [98] Gribonval R., Nielsen M. Sparse decompositions in unions of bases. IEEE Trans.Inform. Theory,2003,49(12):3320-3325.
    [99]孙玉宝.图像稀疏表示模型及其在图像处理反问题中的应用.博士论文,南京:南京理工大学,2010.
    [100] Mallat S. A theory for multiresolution signal decomposition: the waveletrepresentation. IEEE Transaction on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [101]焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报,2003,31(12A):1975-1981.
    [102]焦李成,侯彪,王爽等.图像多尺度几何分析理论与应用-后小波分析理论与应用.西安:西安电子科大出版社,2008.
    [103] Olshausen B. A., Field D. J. Emergence of simple-cell receptive field propertiesby learning a sparse code for natural images. Nature,1996,381:607-609.
    [104] Engan K., Aase S. O., Husoy J. H. Method of optimal directions for framedesign. Proceedings ICASSP’99–IEEE International Conference on Acoustics,Speech, and Signal Processing,1999,5:2443-2446.
    [105] Engan K., Rao B. D., Kreutz-Delgado K. Frame design using FOCUSS withmethod of optimal directions (MOD). Proceedings NORSIG’99–NorwegianSignal Processing Symposium,1999,65-69.
    [106] Lesage S., Gribonval R., Bimbot F., et al. Learning unions of orthonormal baseswith thresholded singular value decomposition. Proceedings ICASSP’05–IEEEInternational Conference on Acoustics, Speech, and Signal Processing,2005,5:293-296.
    [107] Vidal R., Ma Y., Sastry S. Generalized principal component analysis (GPCA).IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(12):1945-1959.
    [108] Aharon M., Elad M., Bruckstein A. M. The K-SVD: An algorithm for designingof overcomplete dictionaries for sparse representation. IEEE Transactions onSignal Processing,2006,54(11):4311-4322.
    [109] Elad M., Aharon M. Image denoising via sparse and redundant representationover learned dictionaries. IEEE Transactions on Image processing,2006,15(12):3736-3745.
    [110] Lee H., Battle A., Raina R., et al. Efficient sparse coding algorithms. Advancesin Neural Information Processing Systems (NIPS)19,2007.
    [111] Mairal J., Sapiro G., Elad M. Learning multiscale sparse representations forimage and video restoration. SIAM Multiscale Modeling and Simulation,2008,7(1):214-241.
    [112] Mairal J., Elad M., Sapiro G. Sparse representation for color image restoration.IEEE Transactions on Image Processing,2008,17(1):53-69.
    [113] Mairal J., Bach F., Ponce J., et al. Non-local sparse models for image restoration.International Conference on Computer Vision, Tokyo, Japan,2009.
    [114] Rubinstein R., Zibulevsky M., Elad M. Double Sparsity: Learning SparseDictionaries for Sparse Signal Approximation. IEEE Transactions on SignalProcessing,2010,58(3):1553-1564.
    [115] Protter M., Elad M. Image sequence denoising via sparse and redundantrepresentations. IEEE Transactions on Image Processing,2009,18(1):27-36.
    [116] Yang J. C., Wright J., Huang T., et al. Image super-resolution via sparserepresentation. IEEE Transactions on Image Processing,2010,19(11):2861-2873.
    [117] Criminisi A., Pérez P., Toyama K. Region filling and object removal byexemplar-based image inpainting. IEEE Transactions on Image Processing,2004,13(9):1200-1212.
    [118] Wu J. Y., Ruan Q. Q., An G. Y. Exemplar-based image completion modelemploying PDE corrections. INFORMATICA,2010,21(2):259-276.
    [119] Xu Z. B., Sun J. Image inpainting by patch propagation using patch sparsity.IEEE Transactions on Image Processing,2010,19(5):1153-1165.
    [120] Esedoglu S., Shen J. Digital inpainting based on the mumford-shah-euler imagemodel. European Journal onApplied Mathematics,2002,13(4):353-370.
    [121] Qu L., Wei S., Liang D, et al. A fast inpainting model based on curvature-drivendiffusions. Chinese Journal of Electronics,2007,16(4):644-647.
    [122]仵冀颖,阮秋琦.亥姆霍兹涡量方程与偏微分方程耦合修复模型.光电子.激光,2008,19(8):1104-1107.
    [123]陈利霞,冯象初,王卫卫,等.加权变分的图像去噪算法.系统工程与电子技术,2010,32(2):392-395.
    [124] El Hamidi A., Ménard M., Lugiez M., et al. Weighted and extended totalvariation for image restoration and decomposition. Pattern Recognition,2010,43(4):1564-1576.
    [125] Jiang L. L., Feng X. C., Yin H. Q. Variational image restoration anddecomposition with curvelet shrinkage. Journal Mathematical Imaging Vision,2008,30(2):125-132.
    [126]祝轩,周明全,耿国华,等.非纹理图像修复的非线性扩散方法.西北大学学报,2008,38(3):383-386.
    [127] Gilboa G., Osher S. Nonlocal operators ith applications to image processing.CAM Report07-23, UCLA, July2007.
    [128] Lou Y., Zhang X., Osher S., et al. Image recovery via nonlocal operators. CAMReport08-35, UCLA, May2008.
    [129] Goldstein T., Osher S. The split Bregman method for L1regularized problems.SIAM Journal on Imaging Sciences,2009,2(2):323-343.
    [130] Cai J. F., Osher S., Shen Z W. Split Bregman methods and frame based imagerestoration. Multiscale Modell. Simul.,2009,8(2):337-369.
    [131] Wu C. L., Tai X. C. Augmented Lagrangian method, dual methods and splitBregman iterations for ROF, vectorial TV and higher order models. SIAM J.Imaging Science,2010,3(3):300-339.
    [132]庞志峰,杨余飞.图像去噪LOT模型的分裂Bregman方法.湖南大学学报,2010,37(9):83-87.
    [133]李亚峰,冯象初. L1投影问题的分裂Bregman方法.电子学报,2010,38(11):2471-2475.
    [134]孙玉宝,费选,韦志辉,等.稀疏性正则化的图像泊松恢复模型及分裂Bregman迭代算法.自动化学报,2010,36(11):1512-1519.
    [135] Yang Y. F., Pang Z. F., Shi B. L., et al. Split Bregman method for the modifiedLOT model in image denoising. Applied Mathematics and Computation,2011,217(12):5392-5403.
    [136] Dong F. F., Liu Z., Kong D., et al. An improved LOT model for imagerestoration. Math. Imaging Vis.,2009,34(1):89-97.
    [137]张伟斌,冯象初,王卫卫.图像恢复的小波域加速Landweber迭代阈值方法.电子与信息学报,2011,33(2):342-346.
    [138]武晓玥,郭宝龙,李雷达.一种新的结合非下采样Contourlet与自适应全变差的图像去噪方法.电子与信息学报,2010,32(2):360-365.
    [139]张军,韦志辉. SAR图像去噪的分数阶多尺度变分PDE模型及自适应算法.电子与信息学报,2010,32(7):1654-1659.
    [140] Hahn J., Tai X. C., Borok S., et al. Orientation-matching minimization for imagedenoising and inpainting. International Journal of Computer Vision,2011,92(3):308-324.
    [141] Wang Z., Bovik A., Sheikh H., et al. Image quality assessment: from errorvisibility to structural similarity. IEEE Transactions on Image Processing,2004,13(4):1-14.
    [142] Lee J. S. Digital enhancement and noise filtering by using of local statistics.IEEE Transactions on Pattern Analysis and Machine Intelligence,1980,2(2):165-168.
    [143] Achim A., Bezerianos A., Tsakalides P. Novel bayesian multiscale method forspeckle removal in medical ultrasound images. IEEE Trans. on Medical Imag.,2001,20(8):772-783.
    [144] Xie H., Pierce L. E., Ulaby F. T. SAR speckle reduction using wavelet denoisingand markov random field modeling. IEEE Trans. Geos. Remote Sensing,2002,40(10):2196-2212.
    [145] Achim A., Tsakalides P., Bezerianos A. SAR image denoising via bayesianwavelet shringkage based on heavy-tailed modeling. IEEE Trans. Geos. RemoteSensing,2003,41(8):1773-1784.
    [146] Achim A., Kuruoglu E., Zerubia J. SAR image filtering based on theheavy-tailed rayleigh Model. IEEE Transactions on Image Processing,2006,15(9):2686-2693.
    [147] Steidl G., Teuber T. Removing multiplicative noise by Douglas-Rachfordsplitting methods. Journal of Mathematical Imaging and Vision,2010,36(2):168-184.
    [148] Chesneau C., Fadili J., Starck J. L. Stein block thresholding for image denoising.Applied and Computational Harmonic Analysis,2010,28(1):67-88.
    [149] Xiao L., Huang L. L., Wei Z. H. Aweberized total variation regularization basedimage multiplicative noise removal algorithm. Eurasip Journal on advances inSignal Processing,2010,1-11.
    [150] Huang Y. M., Ng M. K., Wen Y. W. A new total variation method formultiplicative noise removal. SIAM Journal on Imaging Sciences,2009,2(1):20-40.
    [151] Krissian K., Westin C., Kikinis R., et al. Oriented speckle reducing anisotropicdiffusion. IEEE Transactions on Image Processing,2007,16(5):1412-1424.
    [152] Bioucas-Dias J., Figueiredo M. Multiplicative noise removal using variablesplitting and constrained optimization. IEEE Transactions on Image Processing,2010,19(7):1720-1730.
    [153] Durand S., Fadili J., Nikolova M. Multiplicative noise removal using L1fidelityon frame coefficients. Journal of Mathematical Imaging and Vision,2010,36(3):201-226.
    [154] Aharon M., Elad M. Sparse and redundant modeling of image content using animage-signature-dictionary. SIAM J. Imag. Sciences,2008,1(3):228-247.
    [155] Xiao Y., Zeng T., Yu J., et al. Restoration of images corrupted by mixedGaussian-Impulse noise vial1l0minimization. Pattern Recognition,2011,44(8):1708-1720.
    [156] Donoho D. L. Denoising by soft thresholding. IEEE Trans. Inf.Theory,1995,41(3):613-627.
    [157] Coifman R., Donoho D. L. Translation invariant denoising, Wavelets andStatistics, Lecture Notes in Statistics. New York: Springer-Verlag,1995.
    [158] Pati Y., Rezaiifar R., Krishnaprasad P. Orthogonal matching pursuit: Recursivefunction approximation with application to wavelet decomposition. Presented atthe27thAnnu. Asilomar Conf. Signals Systems and Computers,1993.
    [159] Chambolle A. An algorithm for total variation minimization and applications.Journal of Mathematical Imaging and Vision,2004,20(1-2):89-97.
    [160] Setzer S. Operator splittings, Bregman methods and frame shrinkage in imageprocessing. International J. Computer Vision,2011,92(3):265-280.
    [161] Dempster A., Laird N., Rubin D. Maximum likelihood estimation fromincomplete data via the EM algorithm. J. R. Statist. Soc. B.,1977,39:1-38.
    [162] Oliveira J., Bioucas-Dias J., Figueiredo M. Adaptive total variation imagedeblurring: A majorization-minimization approach. Signal Processing,2009,89:1683-1693.
    [163] Andrieu C., Freias N., Doucet A., et al. An introduction to MCMC for machineLearning. Machine Learning,2003,50:5-43.
    [164] Wong A., Mishra A., Zhang W., et al. Stochastic image denoising based onMarkov-chain Mont Carlo sampling. Signal Processing,2011,91:2112-2120.
    [165] Bredies K., Kunisch K., Pock T. Total generalized variation. SIAM Journal onImaging Sciences,2010,3(3):492-526.
    [166] Bredies K., Valkonen T. Inverse problems with second-order total generalizedvariation constraints. Proceedings of SampTA2011-9th international conferenceon sampling theory and applications, Singapore,2011.
    [167] Pock T., Zebedin L., Bischof H. TGV-Fusion. Lecture Notes in ComputerScience,2011,6570:245-258.
    [168] Knoll F., Bredies K., Pock T., et al. Second order total generalized variation(TGV) for MRI. Magnetic Resonance in Medicine,2011,65(2):480-491.
    [169] Bredies K., Kunisch K., Valkonen T. Properties ofL1-TGV2: The onedimensional case. http://www.uni-graz.at/~bredies/publications.html#articles,2011.
    [170] Bertsekas D., Nedi A., Ozdaglar A. Convex analysis and optimization.Tsinghua University Press,2006.
    [171] Chambolle A., Pock T. A first-order primal-dual algorithm for convex problemswith applications to imaging. Journal Mathematical Imaging Vision,2011,40(1):120-145.
    [172] Fadili J. M., Peyré G. Total variation projection with first order schemes. IEEETrans. Image Process.,2011,20(3):657-669.
    [173] Gabay D., Mercier B. A dual algorithm for the solution of nonlinear variationalproblems via finite-element approximations. Comp. Math. Appl.,1976,2:17-40.
    [174] Afonso M., Bioucas-Dias J., Figueiredo M. An augmented lagrangian approachto the constrained optimization formulation of imaging inverse problems. IEEETrans. Image Process.,2011,20(3):681-695.
    [175] Nocedal J., Wright S. J. Numerical optimization (2nd Edition). Springer,2006.
    [176] Esser E. Applications of Lagrangian-based alternating direction methods andconnections to split Bregman. UCLACAM Reports,2009.
    [177] Tai X. C., Wu C. Augmented lagrangian method, dual methods and splitBregman iteration for ROF model. SSVM, LNCS,2009,5567:502-513.
    [178] Setzer S., Steidl G., Teuber T. Deblurring poissonian images by split Bregmantechniques. J. Vis. Commun. Image R.,2010,21(3):193-199.
    [179] Yin W., Osher S., Goldfarb D., et al. Bregman iterative algorithms for L1minimization with applications to compressed sensing. SIAM J. Imaging Sci.,2008,1:143-168.
    [180] Eckstein J., Bertsekas D. On the Douglas-Rachford splitting method and theproximal point algorithm for maximal monotone operators. Math. Program,1992,5:293-318.
    [181] Figueiredo M., Bioucas-Dias J. Restoration of poissonian images usingalternating direction optimization. IEEE Transactions on Image Processing,2010,19(12):3133-3145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700