图像表示的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像表示是图像处理和计算机视觉领域的重要研究课题之一。有效的数学工具与图像表示紧密相连。目前稀疏表示、变分方法和偏微分方程(PDE)在图像处理的各个研究领域占据着主导地位,其理论已日趋成熟,但仍有很多未解决的问题和新的研究方向。本文以图像处理为背景,以图像表示的数学工具为主线(稀疏表示,Radon域表示,图像的局部与非局部刻画,四元数域刻画),对相关领域的若干关键问题进行了探讨。首先,探索了基于字典学习的稀疏表示方法,我们建立了多任务,多字典学习模型;其次,在一个一般的两步幂零Lie群上给出了逆Radon变换的一个特征子空间;第三,基于图像的局部与非局部刻画,提出了两种新的变分模型;最后,讨论了四元数小波理论(包括连续小波与离散小波)和四元数PDE及其在彩色图像处理中的应用。
     本文的主要创新性研究成果有以下几个方面:
     1.围绕多字典学习方法,系统地提出了多字典学习的图像处理和分解方法。具体包括空间引导的多字典学习,不相关约束的多字典学习,伴随字典的多字典学习。提出了多字典和结构稀疏表示的基因数据识别方法。
     2.第一类典型域的无界实现为Siegel域,其ilov边界是一般的两步幂零Lie群。我们在这个一般的两步幂零Lie群上,定义了一个特征子空间,证明了Radon变换在这个特征子空间上是双射;其次,定义了一个具有衰减性的函数子空间,证明了两个子空间的等价性,表明了特征子空间元素的衰减性。最后,结合小波变换,给出Radon变换在弱意义下的反演公式。
     3.基于图像的局部与非局部刻画,提出了两种新的变分模型和相应的算法。基于局部刻画,提出了一般的L1投影模型及分裂Bregman算法,从理论上证明了提出算法的收敛性。基于非局部刻画,从算子特征向量展开的观点分析了图像噪声的抑制原理,给出了新的模型和算法。一系列的实验结果验证了两个模型和提出算法的有效性。
     4.从平方可积群表示论的观点,在平方可积的四元数值函数空间L2(2,; dx)上,通过定义实值内积,给出容许条件的特征,建立了L2(2,; dx)上的连续小波变换的Parseval等式及反方程。与经典连续小波(复数域)不同,此时Parseval等式的成立需要附加条件。运用四元数与某类复矩阵的对应关系,给出四元数滤波器的构造,使用彩色图像的四元数表示,提出彩色图像的四元数小波分解和重构算法,并给出数值实验。
     5.基于四元数代数,提出了两类四元数扩散方程。先讨论了一般的彩色图像的四元数域扩散方程,在此基础上,给出了利用四元数运算性质的颜色依赖扩散方程。这些非线性方程及提出算法在彩色图像处理的应用中取得了很好的效果。
The effective mathematical tools, closely related to image representation, play a veryimportant role in the numerous areas of science and technology. Image representationis one of the important study fields in image processing and computer vision. Thoughsparse representation, variational method and partial differential equation (PDE) nowoccupy the dominant position in image processing, there are still many problems. Thisthesis takes the image processing as a background, the mathematical imagerepresentation as the main objects. We will study some key problems in the relateddomain including sparse representation, Radon domain representation, the local andnonlocal description, quaternion domain description. Firstly, we explore sparserepresentation method based on dictionary learning, and formulate the multi-tasks,multi-dictionaries learning model. Secondly, we give a characterization of the inverseRadon transform associated with classical domain of type one. Thirdly, based on thelocal and nonlocal description of image, we present two new variational models.Finally, by introducing a particular non-commutative algebra: quaternion, we studyquaternion wavelet (including continuous wavelet and discrete wavelet), quaternionPDE and their applications in color image processing.
     The main research results are as follows:
     1. We propose multi-dictionaries learning (M-DL) models and a series of imagedecomposition methods. Specifically, space guided M-DL, non-coherence constrainedM-DL,“joint dictionary” based multi-task image processing method, andmulti-dictionaries and structure sparse based gene recognition method are presented.
     2. The unbounded realization of the classical domain of type one is Siegel domain oftype two. Its ilov boundary is a nilpotent Lie group of step two in general. Wecharacterize a subspace on which the Radon transform is a bijection. We also give aninversion formula of the Radon transform on the boundary by using continuouswavelet transform.
     3. Based on the local and nonlocal description of image, we propose two novelvariational models. Based on the local description, we present alternated split BregmanL1projection algorithm. The convergence of the iteration scheme is analyzed. Basedon the nonlocal description, we give a higher-oder nonlocal model. Numericalexperiments are presented to demonstrate the performance of the proposed models.
     4. Quaternion is a special hyper complex number. From the view of the squareintegrable representation of groups, using real valued inner product on quaternion set
     , we decompose L~2(2,; dx) into the direct sum of the irreducible invariantsubspaces and give the characterization of the admissibility condition. On quaterniondomain, we establish the wavelet Parseval’s formula which holds on an additionalcondition compared with the corresponding formula on complex domain. By using theequivalence of quaternion and complex duplex matrix, we design severalquaternion-valued filters and fast algorithms. Finally, the experiments are given toverify our theory.
     5. We propose two quaternion diffusion equations. Firstly, we extend the usualcomplex diffusion equation to quaternion domain. Based on this, another equation byusing the algebraic operations of quaternion as color filters is presented. We applythese two non-linear diffusion equations in color image processing and obtainpreliminary results.
引文
[1] Averintsev M. B. The description of Markov random fields by Gibbs distribution.Teor. Verojatrost. Primen,1972,17(1):21-35.
    [2] Besag J. E. Spatial interaction and the statistical analysis of lattice systems (withdisscussion). J. Roy. Statist. Soc., B.1974,36(2):192-236.
    [3] Besag J. E. On the statistic analysis of dirty pictures. J. Roy. Statist. Soc., B.1986,48(3):259-302.
    [4] Zhu S. C., Mumford D. Prior learning and Gibbs reaction-diffusion. IEEE Trans.On PAMI,1997,19:1236-1250.
    [5] Giordana N., Pieczynaki W. Estimation of generalized multisensor HiddenMarkov Chains and unsupervised image segmentation. IEEE Trans. On PAMI,1997,19(5):465-475.
    [6] Huber P. J. Robust statistics. New Yoke: Wiley,1981.
    [7] Geman S., Geman D. Stochastic relaxation, Gibbs distributions, and theBayesian restoration of images. IEEE Trans. PAMI,1984,6:721-741.
    [8] Meyer Y. Wavelets algorithms and applications. SIAM, Philadelphia,1993.
    [9] Calderon, Albert P. An atomic decomposition of distributions in parabolic HPspaces. Advances in Math.,1977,25(3):216-225.
    [10] Daubechies I. Orthonormal bases of compactly supported wavelets. Comm. OnPure and Appl. Math.,1988,41(7):909-996.
    [11] Mallat S. Multifrequency channel decomposition of images and wavelet models.IEEE Tran. On Acoustic, Speech and Signal Processing,1989,37(12):2091-2110.
    [12] Mallat S. A Wavelet Tour of Signal Processing2nd. Academic Press:1999.
    [13] Mallat S著,扬力华等译.信号处理的小波导引.北京:机械工业出版社,2002.
    [14] Perona P., Malic J. Scale space and edge detection using anisotropic diffusion.IEEE Trans. On PAMI,1999,12(7):629-639.
    [15] Meyer Y. Oscillating patterns in image processing and nonlinear evolutionequations, AMS, Providence, RI,2001.
    [16] Catte F., Lions P. L., Morel J. M., Coll T. Image selective smoothing and edgedetection by nonlinear diffusion. SIAM Journal of Numerical Analysis,1992,29(1):182-193.
    [17] Osher S., Rudin L. Feature-oriented image enhancement using shock filters.SIAM Journal of Numerical Analysis,1990,27(4):919-940.
    [18] Weickert J. Theoretical foundation of anisotropic diffusion in image processing.Computing Supplement,1996,11:221-236.
    [19] Weickert J. Anisotropic diffusion in image processing. Teubner-Verlag, Stuttgart,1998.
    [20] Weickert J. Coherence-enhancing diffusion filtering. The international Journal ofComputer Vision,1999,31(2/3):111-127.
    [21] Alvarez L., Mazorra L. Signal and image restoration using shock filter andanisotropic diffusion. SIAM Journal of Numerical Analysis,1994,31(2):590-605.
    [22] Aubert G., Kornprobst P. Mathematical problems in image processing: Partialdifferential equations and the calculus of variations. Applied MathematicalSciences147, Springer-Verlag,2006.
    [23] Devore R. A. Nonlinear approximation. Acaa Numerical, Combridge UniversityPress,1998:51-150.
    [24] Candes E. J. Ridgelets: Theory and applications. USA: Department of Statistics,Stanford University,1998.
    [25] Donoho D. L. Orthonormal ridgelets and linear singularities. SIAM Journal onMathematical Analysis,2000,31(5):143-179.
    [26] Candes E. J. Monoscale ridgelets for the representation of images with edges.Technical Report, Department of Statistics, Standford University,1999.
    [27] Candes E. J., Donoho D. L. Curvelets–a surprising effective nonadaptiverepresentation for objects with edges. Curve and Surface Fitting, Nashville:Vanderbilt University Press,2000:105-120.
    [28] Donoho D. L. Wedgelets: nearly minimax estimation of edges. Annals ofstatistics,1999,27(3):859-897.
    [29] Pennec E. L., Mallat S. Bandelet image approximation and compression. SIAMJournal of Multiscale Modeling and Simulation,2005,4(3):992-1039.
    [30] Candes E. J., Donoho D. L. New tight frames of curvelets and optimalrepresentations of objects with C2singularities. Communications on Pure andApplied Mathematics,2004,57(2):219-266.
    [31] Donoho D. L., Huo X. Beamlets and multiscale image analysis. SpringerLecture Notes in Computational Science and Engineering,2002,20:149-196.
    [32] Do M. N., Vetterli M. The contourlet transform: an efficient directionalmultiresolution image representation. IEEE Transactions on Image Processing,2005,14(12):2091-2106.
    [33] Demanet L., Ying L. X. Wave atoms and sparsity of oscillatory patterns. Appliedand Computational Harmonic Analysis,2007,23(3):368-387.
    [34] Guo K., Labate D. Optimally sparse multidimensional representation usingshearlets. SIAM Journal on Mathematical Analysis,2007,39(1):298-318.
    [35] Mairal J., Sapiro G., Elad M. Learning multiscale sparse representations forimage and video restoration. SIAM Multiscale Modeling and Simulation,2008,7(1):214-241.
    [36] Mairal J., Elad M., Sapiro G. Sparse representation for color image restoration.IEEE Trans. on Image Processing,2008,17(1):53-69.
    [37] Mairal J., Bach F., Ponce J., Sapiro G., Zisserman A. Non-local sparse modelsfor image restoration. International Conference on Computer Vision, Tokyo,Japan,2009.
    [38] Rubinstein R., Zibulevsky M., Elad M. Double Sparsity: Learning SparseDictionaries for Sparse Signal Approximation. IEEE Transactions on SignalProcessing,2010,58(3):1553-1564.
    [39] Aubert G., Aujol J. F. Modeling very oscillating signals. Application to imageprocessing, AMO,2005,51(2):163-182.
    [40] Kindermann S., Osher S., Xu J. J. Denoising by BV-Duality. Journal ofScientific Computing,2006,28(2-3):411-444.
    [41] Vese L. A. A study in the BV space of a denoising-deblurring variationalproblem. App. Math. Optm,2001,44:131-161.
    [42] Burger M., Frick K., Osher S., and et.al. Inverse total variation flow. UCLACAM Report06-24,2006.
    [43] Burger M., Gilboa G., Osher S., and et.al. Nonlinear inverse scale space methods.Comm. Math. Sci.,2006,4(1):175-208.
    [44] Burger M., Osher S., Xu J. J., and et.al. Nonlinear inverse scale space methodsfor image restoration. Lecture Notes in Computer Science,2005,3752:25-36.
    [45] Chan T. F., Esedoglu S. Aspects of total variation regularizedL1functionapproximation. SIAM.Appl. Math.,2005,65(5):1817-1837.
    [46] Chan T. F., Esedoglu S., Park F. A fourth order dual method for staircasereduction in texture extraction and image restoration problems. UCLA CAMReport,05-28,2005.
    [47] Chambolle A. An algorithm for total variation regularization and denoising.Journal of Mathematical Imaging and Vision,2004,20:89-97.
    [48] Kass M., Witkin A., Terzopoulos D. Snakes: Active contour models. In FirstInternational Conference on Computer Vision, London,259-268,1987.
    [49] Chen T. F., Vese L. A. Active contours without edges. IEEE Trans. on ImageProcessing,2001,10(2):266-277.
    [50] Cohen L. D. Finite-element methods for active contour models and balloons for2-D and3-Dimages. IEEE Trans. PAMI,1993,15(11):1131-1147.
    [51] Cohen L. D. Note on active contour models balloons. CVGIP: Imageunderstanding,1991,53(2):211-218.
    [52] Xu C.Y., Prince J. L. Generalized gradient vector flow externa force for activecontours. Signal Processing,1998,71:131-139.
    [53] Arnold V. Polymathematics: is mathematics a single science or a set of arts? inMathematics: Frontiers and Perspectives, V. Arnold, M. L. P. Atiyah and B.Mazur Eds.,2000.
    [54] Johnson N. W., Weiss A. I. Quaternionic modular groups, Linear Alg. Appl.,1999,295:159-189.
    [55] Alesker S. Quaternionic Monge-Ampere Equations. J. Geometric Analysis,2003,13:205-238.
    [56] Alesker S. Non-commutative linear algebra and plurisubharmonic functions ofquaternionic variables. Bull. Sci. Math.,2003,127:1-35.
    [57] Gursey F., Tze H. C. Complex and quaternionic analyticity in chiral and gaugetheories. I, Ann. Physics,1980,128:29-130.
    [58] Palamodov V. A. Holomorphic synthesis of monogenic function of severalquaternionic variables. J. Anal. Math.,1999,78:177-204.
    [59] Bulow T., Sommer G. Hypercomplex signals-a novel extension of the analyticsignal to the multidimensional case. IEEE Transactions On Signal Processing,2001,49:2844-2852.
    [60] Bulow T., Felsberg M., Sommer G. Non-commutative hypercomplex Fouriertransform of multidimensional signals. Geometric Computing with Cliffordalgebra, Springer Series in information Sciences, Springer-Verlag Berlin,2001.
    [61] Ell T. A. Quaternion Fourier transforms for analysis of2-dimensional lineartime-invariant partial-differential systems. Proc.32nd IEEE Conf. On Decisionand Control, San Antonio, TX, USA,1830-1841, Dec.1993.
    [62] Pei S. C., Ding J. J., Chang J. H. Efficient implementation of quaternion Fouriertransform, convolution, and correlation by2-D complex FFT. IEEE Trans.Signal Process,2001,49(11):2783-2797.
    [63] Felsberg M., Sommer G. The monogenic scale-space: A unifying approach tophase-based image processing in scale-space. J. Mathematical Imaging andVision,2004,21:5-26.
    [64] Donoho D. L. De-noising by soft thresholding. IEEE Trans. Information Theory,1995,41:613-627.
    [65] Chang S. G., Yu B., Vetterli M. Spatially adaptive wavelet thresholding withcontext modeling for image denoising. IEEE Trans. on Image Processing,2000,9(9):1522-1531.
    [66] Pizurica A., Philips W., Lamachieu I., Acheroy M. A joint inter-and intrascalestatistical model for Bayesian wavelet based image denoising. IEEE Trans. onImage Processing,2002,11(5):545-557.
    [67] Portilla J., Strela V., Wainwright M.J., et al., Image denoising using scalemixtures of Gaussian in the wavelet domain. IEEE Transactions on ImageProcessing,2003,15(3):654-665.
    [68] Daubechies I., Defriese M., DeMol C. An iterative thresholding algorithm forlinear inverse problems with a sparsity constraint. Commun. Pure Appl. Math.,2004,57:1413-1457.
    [69] Combettes P., Wajs V. Signal recovery by proximal forward-backward splitting.SIAM J.Multiscale Model.Simul.,2005,4:1168-1200.
    [70] Donoho D. Compressed sensing. IEEE Trans. on Information Theory,2006,52(4):1289-1306.
    [71] Candès E., Tao T. Near optimal signal recovery from random projections:Universal encoding strategies? IEEE Trans. on Information Theory,2006,52(12):5406-5425.
    [72] Candès E., Romberg J., Tao T. Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information. IEEE Trans. onInformation Theory,2006,52(2):489-509.
    [73] Osher S., Mao Y., Dong B., Yin W. Fast linearized Bregman iterations forcompressed sensing and sparse denoising. Comm. in Math. Sciences,2010,8(1):93-111.
    [74] Yin W., Osher S., Goldfarb D., Darbon J. Bregman iterative algorithms forl1-minimization with applications to compressed sensing. SIAM Jnoural onImaging Sciences,2008,1(1):143-168.
    [75] Elad M., Figueiredo M. A. T., Ma Y. On the role of sparse and redundantrepresentations in image processing. Proceedings of IEEE, Special Issue onApplications of Compressive Sensing&Sparse Representation,2010,98(6):972-982.
    [76] Wright J., Ma Y., Mairal J., Sapiro G., Huang T., Yan S. C. Sparse representationfor computer vision and pattern recognition. Proceedings of IEEE, Special Issueon Applications of Compressive Sensing&Sparse Representation,2010,98(6):1031-1044.
    [77] Candès E., Tao T. Decoding by linear programming. IEEE Trans. on InformationTheory,2005,51(12):4203-4215.
    [78] Donoho D. For most large underdetermined systems of linear equations theminimal l1-norm solution is also the sparsest solution. Comm. Pure and AppliedMath.,2006,59(6):797-829.
    [79] Boyd S., Vandenberghe L. Convex Optimization, Cambridge University Press,2004.
    [80] Donoho D., Elad M. Optimal sparse representation in general (nonorthogoinal)dictionaries via L1minimization. Nat. Aca. Sci.,2003,100:2197-2202.
    [81] Bruckstein A., Donoho D., Elad M. From sparse solutions of systems ofequations to sparse modeling of signals and images. SIAM Review,2009,51(1):34-81.
    [82] Candes E., Romberg J. l1-Magic: recovery of sparse signals via convexprogramming. http://www.acm.caltech.edu/l1magic/,2005.
    [83] Starck J., Elad M., Donoho D. Redundant multiscale transforms and theirapplication for morphological component analysis. Journal of Advances inImaging and Electron Physics,2004,132:287-348.
    [84] Elad M., Starck J., Querre P., Donoho D. Simultaneous cartoon and textureimage inpainting using morphological component analysis (MCA). Journal onApplied and Computational Harmonic Analysis,2005,19:340-358.
    [85] Starck J., Elad M., Donoho D. Image decomposition via the combination ofsparse representations and a variational approach. IEEE Trans. On ImageProcessing,2005,14(10):1570-1582.
    [86] Bobin J., Starck J., Fadili J., Moudden Y., Donoho D. Morphological componentanalysis: an adaptive thresholding strategy. IEEE Trans. Image processing,2007,16(11):2675-2681.
    [87] Fadili J., Starck J. L., Elad M., Donoho D. L. MCALab: Reproducible researchin signal and image decomposition and inpainting. IEEE computing in ScienceEngineering,2010,12(1):44-62.
    [88] Bobin J., Starck J. L., Fadili M. J., Moudden Y. Sparsity and morphologicaldiversityin blind source separation. IEEE Transactions on Image Processing,2007,16,2662–2674.
    [89] Wright J., Yang A., Ganesh A., Sastry S., Ma Y. Robust face recognition viasparse representation. IEEE Transactions on Pattern Analysis and MachineIntelligence,2009,31(2):210–227.
    [90]焦李成,侯彪,王爽等.图像多尺度几何分析理论与应用–后小波分析理论与应用.西安:西安电子科大出版社,2008.
    [91] Rubinstein R., Bruckstein A. M., Elad M. Dictionaries for sparse representationmodeling. Proceedings of IEEE, Special Issue on Applications of CompressiveSensing&Sparse Representation,2010,98(6):1045-1057.
    [92] Olshausen B. A., Field D. J. Emergence of simple-cell receptive field propertiesby learning a sparse code for natural images. Nature,1996,381:607–609.
    [93] Engan K., Aase S. O., Husoy J. H. Method of optimal directions for framedesign. Proceedings ICASSP’99–IEEE International Conference on Acoustics,Speech, and Signal Processing,5:2443–2446,1999.
    [94] Engan K., Rao B. D., Kreutz-Delgado K. Frame design using FOCUSS withmethod of optimal directions (MOD). Proceedings NORSIG’99–NorwegianSignal Processing Symposium,65–69,1999.
    [95] Lesage S., Gribonval R., Bimbot F., Benaroya L. Learning unions oforthonormal bases with thresholded singular value decomposition. ProceedingsICASSP’05–IEEE International Conference on Acoustics, Speech, and SignalProcessing,5:293–296,2005.
    [96] Vidal R., Ma Y., Sastry S. Generalized principal component analysis (GPCA).IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(12):1945-1959.
    [97] Aharon M., Elad M., Bruckstein A. M. The K-SVD: An algorithm for designingof overcomplete dictionaries for sparse representation. IEEE Trans. On SignalProcessing,2006,54(11):4311-4322.
    [98] Elad M., Aharon M. Image denoising via sparse and redundant representationover learned dictionaries. IEEE Trans. Image processing,2006,15(12):3736-3745.
    [99] Lee H., Battle A., Raina R., Ng A. Y. Efficient sparse coding algorithms.Proceedings of the Neural Information Processing Systems (NIPS)19,2007.
    [100] Protter M., Elad M. Image sequence denoising via sparse and redundantrepresentations. IEEE Trans. on Image Processing,2009,18(1):27-36.
    [101] Yang J. C., Wright J., Huang T., Ma Y. Image super-resolution via sparserepresentation. IEEE Transactions on Image Processing,2010,19(11):2861-2873.
    [102] John F. Plane waves and spherical means. Wiley-interscience, New York,1955.
    [103] Helgason S. The Radon transforms, Second Edition. Birkhauser Boston BasselBerlin,1999.
    [104] Solmon D. C. The X-ray transforms, J. Math. Anal. Appl.1976,56:61-83.
    [105] Zuidwijk R. A. Directional and time-scale wavelet analysis. SIAM J. Math.Anal.,2000,31:416-430.
    [106] Holschneider M. Inverse Radon transforms through inverse wavelet transforms.Inverse Problems,1991,7:853-861.
    [107] Rubin B. The Calderon reproducing formula, windowed X-ray transforms, andRadon transforms in Lp-spaces. J. Fourier Anal. Appl.1998,4:173-197.
    [108] Rubin B. Inversion of k-plane transforms via continuous wavelet transforms. J.Math. Anal. Appl.1998,220:187-203.
    [109] Nessebi M. M., Trimeche K. Inversion of the Radon transform on the Laguerrehypergroup by using generalized wavelets. J. Math. Anal. Appl.,1997,207:337-363.
    [110] Stein E. M. Harmonic Analysis. Princeton University Press,1993.
    [111] Muller D., Peloso M., Ricci F. On local solvability for complex coefficientdifferential operators on the Heisenberg group. J. Reine Angew Math.1999,513:181-234.
    [112] Liu H. P., Peng L. Z. Admissible wavelets associated with the Heisenberg group,Pacific J. Math.1997,180:101-123.
    [113] Strichartz R. S. Lpharmonic analysis and Radon transforms on the Heisenberggroup. J. Funct. Anal.1991,96:350-406.
    [114] He J. X. An Inversion Formula of the Radon Transform on the HeisenbergGroup. Canadian Math. Bulletin,2004,47(3):389-397.
    [115] He J. X., Liu H. P. An Inversion Formula of the Radon Transform AssociatedWith the Classical Domain of Type One. Int. J. Math.,2005,16:875-887.
    [116] Bai L. L., He J. X. Generalized wavelets and Inversion of the Radon Transformson the Laguerre Hypergroup. Approx. Th. Appl.,2002,18(4):55-69.
    [117] He J. X. A characterization of inverse Radon transform on the Laguerrehypergroup. J. Math. Anal. Appl.,2006,318:387-395.
    [118] Liu P., He J. X. Inversion of the Radon transform on the Product Laguerrehypergroup by using generalized wavelets. Int. Journal of ComputerMathematics,2007,84(3):287-295.
    [119] Rudin L., Osher S., Fatemi E. Nonlinear total variation based noise removalalgorithms. Physica D,1992,60(124):259-268.
    [120] Sapiro G. Geometric Partial Differential Equations and Image Analysis,Cambridge University Press,2001.
    [121] Gilboa G., Zeevi Y. Y., Sochen N. Image enhancement and denoising by complexdiffusion processes. IEEE Trans. Pattern Analysis and Machine Intelligence,2004,8(26):1020-1036.
    [122] Coulon O., Arridge S. R. Dual echo MR image processing using multi-spectralprobabilistic diffusion coupled with shock filters. MIUA’2000, BritishConference on Medical Image Understanding and Analysis, London,United-Kingdom,2000.
    [123] Kornprobst P., Deriche R., Aubert G. Image coupling, restoration andenhancement via PDE’s. Proc. Int. Conf. on Image Processing,458–461,Santa-Barbara (USA),1997.
    [124] Rougon N., Preteux F. Controlled anisotropic diffusion. Proc. SPIE Conf. onNonlinear Image Processing VI-IS&T/SPIE Symp. on Electronic Imaging,Science and Technology’95, San Jose, CA, Vol.2424,329-340,1995.
    [125] Liu Z. X., Lian S. G., Ren Z. Quaternion Diffusion for color Image Filtering.J.comput. Sci.&Technol,2004,21(1):159-189.
    [126] Shoemake K. Animating Rotation with Quaternion Curves. ACM ComputerGraphics (SIGGRAPH’85Proceedings),245–254,1985.
    [127] Bihan N. L., Mars J. Singular value decomposition of quaternion matrices: anew tool for vector-sensor signal processing. Signal Processing,2004,84:1177-1199.
    [128] Pei S. C., Chang J. H., Ding J.J. Quaternion matrix singular value decompositionand its applications for color mage processing. IEEE International Conferenceon Image Processing (ICIP), I,805-808,2003.
    [129] Bihan N. L., Sangwine S. J. Quaternion principal component analysis of colourimages. IEEE International Conference on Image Processing (ICIP), I,809-812,2003.
    [130] Sangwine S. J., Ell T. A. Hypercomplex Fourier transforms of colour images.IEEE International Conference on Image Processing (ICIP2001), Thessaloniki,Greece, I,137-140,2001.
    [131] Sangwine S. J., Ell T. A. Hypercomplex auto-and cross-correlation of colorimages. IEEE International Conference on Image Processing (ICIP’99), Kobe,Japan, number IV, pp.319-322,1999.
    [132] Sangwine S. J., Ell T. A. Colour image filters based on hypercomplexconvolution. IEE Proceedings Vision, Image and Signal Processing,2000,147(2):89-93.
    [133] Sangwine S. J. Colour image edge detector based on quaternion convolution.Electronics Letters,1998,34(10):969-971.
    [134] Sangwine S. J., Evans C. J., Ell T. A. Colour-sensitive edge detection usinghypercomplex filters. Proceedings of the tenth European Signal ProcessingConference (EUSIPCO), Tampere, Finland, I,107-110,2000.
    [135] Sangwine S. J., Gatsheni B. N., Ell T. A. Linear colour-dependent image filteringbased on vector decomposition. Proceedings of EUSIPCO2002, XI EuropeanSignal Processing Conference, European Association for Signal Processing,Toulouse, France, II,274-277,2002.
    [136] Sangwine S. J., Ell T. A., Gatsheni B. N. Colour-dependent linear vector imagefiltering. EUSIPCO2004, Twelfth European Signal Processing Conference,Vienna, Austria, I,585-588,2004.
    [137] Sangwine S. J., Gatsheni B. N., Ell T. A. Vector amplification forcolor-dependent image filtering. IEEE International Conference on ImageProcessing (ICIP2003), Institute of Electrical and Electronics Engineers,Barcelona, Spain,2,129-132,14-17,2003.
    [138] Ell T. A., Sangwine S. J. Hypercomplex wiener-khintchine theorem withapplication to color image correlation. IEEE International Conference on ImageProcessing (ICIP), II,792-795,2000.
    [139] Hamilton W. R. On quaternions. Proceeding of the Royal Irish Academy,1844.
    [140] Sudbery A. Quaternionic analysis. Math. Proc. Camb. Phil. Soc.,1979,85:199-228.
    [141] Kantor I. L., Solodovnikov A. S. Hypercomplex numbers: an elementaryintroduction to algebras. Springer-Verlag,1989.
    [142] Baylis W. E., ed. Clifford (Geometric) Algebras with Applications in Physics,Mathematics, and Engineering. Birkh user Boston, Inc,1996.
    [143] Olariu S. Complex numbers in n dimensions, Elsevier Science, North Holland,2002.
    [144] Vese L., Osher S. Modeling textures with total variation minimization andoscillating patterns in image processing. Journal of Scientific Computing,2003,19(1/3):553-572.
    [145] Osher S., Sole A., Vese L. Image decomposition and restoration using totalvariation minimization and the H-1Norm. Multiscale Modeling and Simulation,2003,1(3):349-370.
    [146] Jiang L. L., Feng X. C., Yin H. Q. Variational image restoration anddecomposition with curvelet shrinkage. Journal of Mathematical Imaging andVision,2008,30(2):125-132.
    [147] Jiang L. L., Feng X. C. Structure and texture image inpainting using sparserepresentations and an iterative curvelet thresholding approach. InternationalJournal of Wavelets, Multiresolution and Information Processing,2005,6(5):691-705.
    [148] Li M., Feng X. C. A variational model for image decomposition based onwavelet method. Acta Electronica Sinica,2008,36(1):184-187.(李敏,冯象初.基于小波空间的图像分解变分模型.电子学报,2008,36(1):184-187.)
    [149] Pati Y. C., Rezaiifar R., Krishnaprasad P. S. Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decomposition.The27th Annu, Asilomar Conf. Signals, Systems, and Computers,1993.
    [150] Shoham N., Elad M. Alternating KSVD-Denoising for Texture Separation. TheIEEE25-th Convention of Electrical and Electronics Engineers in Israel, EilatIsrael,3-5,2008.
    [151] Alon U., Barkai N., Notterman D. A., Gish K., Ybarra S., Mack D., Levine A. J.Broad patterns of gene expression revealed by clustering analysis of tumor andnormal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. SciUSA,1999,96:6745–6750.
    [152] Golub T. R., Slonim D. K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J. P.,et al. Molecular classification of cancer: class discovery and class prediction bygene expression monitoring. Science,1999,286:531–537.
    [153] Bittner M., Meltzer P. S. J., Chen Y. D., Jiang Y., Seftor E., Hendrix M., et al.Molecular classification of cutaneous malignant melanoma by gene expressionprofiling. Nature,2000,406:536–540.
    [154] Brunet J. P., Tamayo P., Golun T. R., Mesirov J. P. Metagenes and molecularpattern discovery using matrix factorization. Proc Natl Acad Sci USA,2004,101(12):4164-4168.
    [155] Zhu Q., Cui H., Cao K., Chan W. C. Algorithmic fusion of gene expressionprofiling for diffuse large b-cell lymphoma outcome prediction. IEEE Trans.Information Technology in Biomedicine,2004,8(2):79-88.
    [156] Saeys Y., Inza I., Larranaga P. A review of feature selection techniques inbioinformatics. Bioinformatics,2007,23(19):2507–2517.
    [157] Dudoit S., Fridlyand J., Speed T. P. Comparison of discrimination methods forthe classification of tumors using gene expression data. Journal of the AmericanStatistical Association,2002,97(457):77–87.
    [158] Hang X. Y., Wu F. X. Sparse representation for classification of tumors usinggeneexpression data.Journal of Biomedicine and Biotechnology,2009,2009:1-6.
    [159] Rosasco L., Mosci S. F., Santoro M., Verri A., Villa A. Iterative projectionmethods for structured sparsity regularization. Computer Science and ArtificialIntelligence Laboratory Technical Report, MIT-CSAIL-TR-2009-050CBCL-282October14,2009.
    [160] Statnikov A., Aliferis C. F., Tsamardinos I., Hardin D., Levy S. A comprehensiveevaluation of multicategory classification methods for microarray geneexpression cancer diagnosis. Bioinformatics,2005,21(5):631–643.
    [161] Kaneyeki S. Homogenous bounded domains and Siegel domains. Lecture Notesin Math.,241, Springer-Verlag, Berlin-New York,1971.
    [162] V′agi S. Harmonic analysis on Cartan and Siegel domains, Studies in harmonicanalysis (Proc. Conf., DePaul Univ., Chicago, Ill.,1974) ed. J. M. Ash, Math.Assoc. Amer. Washington, D.C.,257-309,1976.
    [163] Terras A. Harmonic analysis on symmetric spaces and applications II.Springer-Verlag, New York Inc.,1987.
    [164] Ogden R. D., V′agi S. Harmonic analysis of a nilpotent group and functiontheory on Siegel domains of type II. Adv. in Math.,1979,33:31-92.
    [165] Bernier D., Taylor K. F. Wavelets from square-integrable representations. SIAMJ. Math. Anal.,1996,27:594-608.
    [166] Grossmann A., Morlet J., Paul T. Transforms associated to square integrablegroup representations I: General results. J. Math. Phys.,1985,26:2473-2479.
    [167] He J. X., Liu H. P. Admissible wavelets associated with the classical domain oftype one. Approx. Th. Appl.,1998,14:89-105.
    [168] Gindikin S. G. Analysis on homogeneous domains. Uspekhi Math. Nauk,3-92,1964.
    [169] Buades A.,Coll B.,Morel J. M. A review of image denoising algorithms, with anew one. SIAM Multiscale Modeling and Simulation,2005,4:490–530.
    [170] Fadili M. J., Peyré G. Total variation projection with first order schemes.200916th IEEE International Conference on Image Processing (ICIP). Cairo, Egypt:IEEE Signal Processing Society,2009.1325-1328.
    [171] Goldstein T., Osher S. The split Bregman method for l1regularized problems.SIAM Journal on Imaging Sciences,2009,2(2):323-343.
    [172] Douglas J., Rachford H. On the numerical solution of heat conduction problemsin two and three space variables. Trans. Americ. Math. Soc.,1956,82(2):421–439.
    [173] Setzer S. Split Bregman algorithm, Douglas-Rachford splitting and frameshrinkage. Heidelberg, Germany: Springer Berlin,2009.1611-3349.
    [174] Combettes P., Pesquet J. A Douglas-Rachford splitting approach to nonsmoothconvex variational signal recovery. IEEE Journal of Selected Topics in SignalProcessing,2007,1(4):564-574.
    [175] Yaroslavsky L. P. Digital picture processing—An introduction. Berlin: SpringerVerlag,1985.
    [176] Kindermann S., Osher S., Jones P. Deblurring and denoising of images bynonlocal functionals. SIAM Multiscale Modeling and Simulation,2005,4(4):1091–1115.
    [177] Gilboa G., Osher S. Nonlocal linear image regularization and supervisedsegmentation. SIAM Multiscale Modeling and Simulation,2007,6(2):595–630.
    [178] Singer A., Shkolnisky Y., Nadler B. Diffusion interpretation of nonlocalneighborhood filters for signal denoising. SIAM J. Imaging Sciences,2009,2(1):118–139.
    [179] He J. X., Yu B. Continuous wavelet transforms on the space L2(R,H,dx).Applied Math. Letters,2004,17(1):111-121.
    [180]李亚峰. L2(,;dx)上以复值内积定义的连续小波变换.广州大学学报.2007,6(2):10-13.
    [181] Walden A. T., Serroukh A. Wavelet analysis of matrix-valued time-series. Proc.R. Soc. Lond,2002, A458,157-179.
    [182] He J. X., Yu B. Wavelet analysis of quaternion-valued time-series. InternationalJournal of Wavelets, Multiresolution and Information Processing,2005,3(2):233-246.
    [183]何建勋,李亚峰.四元数尺度函数与小波的构造.广州大学学报,2007,6(5):17-22.
    [184] Xia X. G., Suter W. Vector-valued wavelets and vector filter banks. IEEE Trans.Signal Processing,1996,44:508-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700