基于偏微分方程的图像复原技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文综合运用泛函分析理论、凸分析理论、最优化理论、以及偏微分方程(PDE)基本理论等把已有的基于PDE的图像复原模型和算法进行了推广和改进.为快速求得所提出的变分模型的数值解,我们重点研究了两类数值算法:最速下降法和分裂Bregman迭代法.相关的数值试验明显地证明了改进的变分模型和数值算法的优越性.这些创新性的改进,显著地提高了图像恢复的质量,为图像处理和计算机视觉中图像的高层次处理,譬如图像分析和理解、模式识别等研究打下了良好的基础.全文的内容共分为四章.
     在第一章中,我们首先介绍了本论文的研究背景和实际意义,并回顾了基于PDE的图像复原算法的发展状况.接着又揭示了本论文所研究的主要内容和主要创新点.最后,我们还简要概括了本文的框架结构.
     在第二章中,我们简要回顾了与本文中的变分模型和数值算法紧密相关的一些实分析与泛函分析知识、变换域中一种常用的正交变换:傅立叶变换与反变换、以及数值模拟中常用的数值方法:有限差分法.
     在第三章中,我们重点研究了两类改进的变分PDE图像恢复模型:韦伯化的TV-L1模型,和自适应的四阶PDE滤波模型,以及其最速下降法的数值求解问题.其中韦伯化的TV-L1模型,则是在经典的TV-L1模型的基础上,结合物理学中的Weber定律而提出的变分模型.此模型由于充分考虑到了人类的视觉效应,因而由它复原出来的图像在直观上更能满足人类的要求.另一方面,经典的LLT模型虽在去噪的同时很好地克服了平滑区域的“阶梯效应”,但是却不可避免地造成了图像边缘的模糊.为了克服这种弊端,本章中我们所提出的自适应的四阶PDE图像滤波模型就能很好地解决这一矛盾.此模型中的边缘停止函数能根据图像中区域特征的差异性,灵活地调节扩散系数.从而使得新模型在有效去除噪声的同时不但能很好地避免“阶梯效应”的出现,而且还能很好地杜绝边缘模糊现象的发生.本章中相应的数值试验明显地验证了提出的新模型的优越性和鲁棒性.
     在第四章中,我们详细研究了快速数值算法:分裂Bregman迭代法,在基于PDE图像复原模型中的应用和推广.首先,我们回顾了与分裂Bregman迭代法紧密相关的Bregman迭代法和线性Bregman迭代法,以及分裂Bregman迭代法的基本理论.接着,我们采用全有界变差代替经典的全变差作为正则项,并提出了三个改进的变分PDE模型:基于全有界变差正则项L2保真项的图像去模糊模型、基于非局部全有界变差正则项L2保真项的图像去噪模型、以及基于全有界变差正则项泊松化图像复原模型.其中相比于全变差正则化的模型,采用全有界变差正则项L2保真项的图像去模糊模型和全有界变差正则项泊松化图像复原模型,则能明显加快分裂Bregman迭代法的收敛速度,具有无可比拟的优越性.至于非局部全有界变差正则化的图像去噪模型,为了体现其有效性,我们将之与全有界变差正则化的图像去噪模型相比,数值试验表明提出的新模型不但能有效地克服平滑区域“阶梯效应”的发生,而且还能显著地加快分裂Bregman迭代法的计算速度.最后,我们又将分裂Bregman迭代法进一步应用于基于H~(-1)保真项的图像分解和复原中.相比于原有的最速下降法,采用分裂Bregman迭代法则能明显地减少数值计算的迭代次数,并大幅度地缩短CPU的计算时间.
In this dissertation, we extend and improve the existing theory of partial differen-tial equation (PDE) based models and algorithms for image restoration, by syntheticallycombing functional analysis theory, theory of convex analysis, optimization theory, andthe basic theory of partial differential equations. To quickly obtain the numerical solutionsof the proposed variational models, we investigate two numerical algorithms in detail:steepest descent scheme, and split Bregman iteration. The corresponding numerical ex-perimentations obviously demonstrate the superiority of the improved variational modelsand numerical methods. All these innovatory improvements enhance the quality of therecovered images evidently, and ground for the higher level image processing in imageprocessing and computer vision well, such as image analysis and understanding, patternrecognition, etc. The content of this thesis comprises four chapters listed as follows.
     Firstly, in Chapter 1, we introduce the research background and the practical signif-icance, and review the development of PDE based schemes for image restoration. Then,we present the primary coverage and the innovation. Lastly, the framework of this work isdisplayed in this chapter also.
     In Chapter 2, some necessary real analysis and functional analysis knowledge, onefrequently-used orthogonal transform in transform domain: Fourier transformation andFourier inverse transformation, and the classical numerical method of numerical simula-tion: finite difference method are retrospected here in brief.
     Then, Chapter 3 focuses on two improved variational PDE models: Weberized TV-L1 model, and adaptive fourth-order PDE filter for image restoration, and adopting thesteepest descent scheme for obtaining their numerical solutions. As for the Weberized TV-L1 model, which is a variational model based on the noted TV-L1 model, and combinedwith Weber law closely. Adequately considered the in?uence of human vision psychol-ogy, the proposed model can accurately recover the degraded images, and satisfy humanrequirements well. On the other hand, the classical LLT model effectively overcomes the“staircasing effects”in ?at regions while removing noise, however it results in edge blurryfrequently. In order to conquer this drawback, our proposed adaptive fourth-order PDE fil-ter can do it excellently. According to the distinctiveness of the provincial characteristicsof the image, the edge-stopping function adaptively regulates the diffusivity coefficient.Thus our novel model not only surmounts the“staircasing effects”well while removing noise, but availably avoids the blurring effects. Synchronously, the related numerical re-sults distinctly show its superiority and robustness over the traditional method.
     Finally, in Chapter 4, the application and generalization of the fast numerical strat-egy: split Bregman iteration, in PDE based models for image restoration are investigateddetailedly. First of all, we reiterate the fundamental theory of the related computationalmethods, i.e. Bregman iteration, linearized Bregman iteration, and split Bregman itera-tion. Secondly, replacing total variation by total bounded variation for regularization, wepropose three improved variational PDE models: total bounded variation regularization L2fidelity based scheme for image deblurring, nonlocal total bounded variation regularizationL2 fidelity based model for image denoising, and total bounded variation regularizationtechnique based Poissonian images recovery. Compared with the total variation based ver-sions, the total bounded variation regularization L2 fidelity based image deblurring model,and total bounded variation regularization technique based Poissonian images recoverymodel markedly accelerate the convergence speed of split Bregman iteration, and have theunexampled superiority. As for the nonlocal total bounded variation regularization L2 fi-delity based model for image denoising, we also demonstrate the efficiency by comparingwith its corresponding total variation based one. Numerical simulations illustrate that ourproposed scheme not only overcomes the“staircasing effects”well, but effectively speedsup the calculating speed of split Bregman iteration. Lastly, we employ the fast split Breg-man iteration for solving the H?1 fidelity based image decomposition and restoration.Contrasted with the primary steepest descent scheme, experimental results demonstratethat the proposed algorithm can reduce the iterations drastically, and obviously shorten theCPU time for computing.
引文
[1] Gabor D. Information theory in electron microscopy. Laboratory Investigation,1965, 14: 801–807
    [2] Jain A K. Partial differential equations and finite-difference methods in image pro-cessing, part I: image representation. Journal of Optimization Theory and Applica-tions, 1977, 23: 65–91
    [3] Nagao M. Edge preserving smoothing. CGIP, 1979, 9: 394–407
    [4] Rudin L I. Image, numerical analysis of singularities and shock filter. Pasadena,California: PHD dissertation, Caltech, 1987
    [5] Perona P, Malk J. Scale-space and edge detection using anisotropic diffusion. IEEETransactions on Pattern Analysis and Machine Intelligence, 1990, 12: 629–639
    [6] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algo-rithms. Physica D, 1992, 60: 259–268
    [7] Li Y, Santosa F. An affine scaling algorithm for minimizing total variation in imageenhancement. Technical Report, Cornell University, USA, TR94–1470, 1994
    [8] Acar R, Vogel C R. Analysis of total variation penalty methods for ill-posed prob-lems. Inverse Problems, 1994, 10: 1217–1229
    [9] Chambolle A, Lions P L. Image recovery via total variational minimization andrelated problems. Numerische Mathematik, 1997, 76: 167–188
    [10] Chan T F, Mulet P. On the convergence of the lagged diffusivity fixed point methodin total variation image restoration. SIAM Journal on Numerical Analysis, 1999,36: 354–367
    [11] Vogel C, Oman M. Iteration methods for total variation denoising. SIAM Journalon Scientific Computing, 1996, 17: 227–238
    [12] Chan T F, Golub G H, Mulet P. A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing, 1999, 20: 1964–1977
    [13] Chambolle A. An algorithm for total variation minimization and application. Jour-nal of Mathematical Imaging and Vision, 2004, 20: 89–97
    [14] Boykov Y, Veksler O, Zabih R. Markov random fields with efficient approximations.IEEE Conference on Computer Vision and Pattern Recognition, 1998, 5: 648–655
    [15] Boykov Y, Veksler O, Zabih R. Fsat approximate energy minimization via graphcuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23:1222–1231
    [16] Raj A, Zabih R. A graph cut algorithm for generalized image deconvolution. TenthIEEE International Conference on Computer Vision, 2005, 2: 1048–1054
    [17] Esser E. Applications of Lagrangian-based alternating direction methods and con-nections to split Bregman. UCLA, CAM Report 09–31, 2009
    [18] Wen Z, Goldfarb D, Yin W. Alternating direction augmented Lagrangian methodsfor semidefinite programming. CAAM Technical Report, TR09-42, 2009
    [19] Wu C, Tai X-C. Augmented Lagrangian method, dual methods, and split Bregmaniteration for ROF, vectorial TV, and high order models. UCLA, CAM Report 09–76,2009
    [20] Wu C, Zhang J, Tai X-C. Augmented Lagrangian method for total variation restora-tion with non-quadratic fidelity. UCLA, CAM Report 09–82, 2009
    [21] Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for totalvariation-based image restoration. Multiscale Modeling and Simulation, 2005, 4:460–489
    [22] Wang Y, Yang J, Yin W, et al. A new alternating minimization algorithm for totalvariation image reconstruction. SIAM Journal on Imaging Sciences, 2008, 1: 248–272
    [23] Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for L1-minimization with applications to compressend sensing. SIAM Journal on ImagingSciences, 2008, 1: 143–168
    [24] Burger M, Osher S, Xu J, et al. Nonlinear inverse scale space methods for imagerestoration. Lecture Notes in Computer Science, 2005, 3752: 25–36
    [25] Burger M, Gilboa G, Osher S, et al. Nonlinear inverse scale space methods. Com-munications in Mathematical Sciences, 2006, 4: 179–212
    [26] Lysaker M, Osher S, Tai X-C. Noise removel using smoothed normals and surfacefitting. IEEE Transactions on Image Processing, 2004, 13: 1345–1357
    [27] Lie J, Nordbotten J M. Inverse scale spaces for nonlinear regularization. Journal ofMathematical Imaging and Vision, 2007, 27: 41–50
    [28] Cai J F, Osher S, Shen Z. Linearized Bregman iterations for frame-based imagedeblurring. SIAM Journal on Imaging Sciences, 2009, 2: 226–252
    [29] Cai J F, Osher S, Shen Z. Linearized Bregman iterations for compressed sensing.Mathematics of Computation, 2009, 78: 1515–1536
    [30] Cai J F, Osher S, Shen Z. Convergence of the linearized Bregman iteration forL1-norm minimization. Mathematics of Computation, 2009, 78: 2127–2136
    [31] Darbon J, Osher S. Fast discrete optimization for sparse approximations and decon-volutions. UCLA, 2007, preprint
    [32] Osher S, Mao Y, Dong B, et al. Fast linearized Bregman iterations for compressedsensing and sparse denoising. UCLA, CAM Report 08–37, 2008
    [33] Yin W. Analysis and generalizations of the linearized Bregman method. UCLA,CAM Report 09–42, 2009
    [34] Cai J F, Osher S, Shen Z. Split Bregman methods and frame based image restoration.UCLA, CAM Report 09–28, 2009
    [35] Goldstein T, Osher S. The Split Bregman algorithm for L1 regularized problems.SIAM Journal on Imaging Sciences, 2009, 2: 323–343
    [36] Wang Y, Yin W, Zhang Y. A fast algorithm for image deblurring with total variationregularization. CAAM Technical Report, TR07-10, 2007.
    [37] Marquina A, Osher S. Explicit algorithms for a new time dependent model basedon level set motion for nonlinear deblurring and noise removal. SIAM Journal onScientific Computing, 2000, 22: 387–405
    [38] Blomgren P, Mulet P, Chan T, et al. Total variation image restoration: numericalmethods and extensions. Santa Barbara: Proceedings IEEE ICIP, 1997, ICIP: 384–387
    [39] Greer J B, Bertozzi A L. Traveling wave solutions of fourth order PDEs for imageprocessing. SIAM Journal on Mathematical Analysis, 2004, 36: 38–68
    [40] You Y-L, Kaveh M. Fourth-order partial differential equations for noise removal.IEEE Transactions on Image Processing, 2000, 9: 1723–1730
    [41] Hajiaboli M R. A self-governing hybrid model for noise removal. Lecture notes incomputer science, 2009, 5414: 295–305
    [42] Hajiaboli M R. An anisotropic fourth-order partial differential equation for noiseremoval. Lecture notes in computer science, 2009, 5567: 356–367
    [43] Hajiaboli M R. A self-governing fourth-order nonlinear diffusion filter for imagenoise removal. IPSJ Transaction on Computer Vision and Applications, 2010, 2:94-103
    [44] Chan T, Marquina A, Mulet P. High-order total variation-based image restoration.SIAM Journal on Scientific Computing, 2000, 22: 503–516
    [45] Lysaker M, Lundervold A, Tai X-C. Noise removal using fourthorder partial dif-ferential equation with applications to medical magnetic resonance images in spaceand time. IEEE Transactions on Image Processing, 2003, 12: 1579–1590
    [46] Steidl G, Mannheim. A note on the dual treatment of higher-order regularizationfunctionals. Computing, 2006, 76: 135–148
    [47] Chen H Z, Song J P, Tai X-C. A dual algorithm for minimization of the LLT model.Advances in Computational Mathematics, 2009, 31: 115–130
    [48] Kim S, Lim H. Fourth-order partial differential equations for effective image denois-ing. Electronic Journal of Differential Equations, conference, 2009, 17: 107–121
    [49] Lysaker M, Tai X-C. Iterative image restoration combining total variation minimiza-tion and a second-order functional. International Journal of Computer Vision, 2006,66: 5–18
    [50] Li F, Shen C, Fan J, et al. Image restoration combining a total variational filter anda fourth-order filter. Journal of Visual Communication and Image Representation,2007, 18: 322–330
    [51] Kindermann S, Osher S, Jones P W. Deblurring and denoising of images by nonlocalfunctionals. Multiscale Modeling and Simulation, 2005, 4: 1091–1115
    [52] Gilboa G, Darbon J, Osher S, et al. Nonlocal convex functionals for image regular-ization. UCLA, CAM Report 06–57, 2006
    [53] Gilboa G, Osher S. Nonlocal operators with applications to image processing. Mul-tiscale Modeling and Simulation, 2007, 7: 1005–1028
    [54] Zhang X Q, Burger M, Bresson X, et al. Bregmanized nonlocal regularization fordeconvolution and sparse reconstruction. UCLA, CAM Report 09–03, 2009
    [55] Nikolova M. Minimizeers of cost-functions involving non-smooth data fidelityterms. Application to the processing of outliers. SIAM Journal on Numerical Anal-ysis, 2002, 40: 965–994
    [56] Nikolova M. A variational approach to remove outliers and impulse noise. Journalof Mathematical Imaging and Vision, 2004, 20: 99–120
    [57] Nikolova M. Weakly constrained minimization: Application to the estimation ofimages and signals involing constant regions. Journal of Mathematical Imaging andVision, 2004, 21: 155–175
    [58] Duval V, Aujol J-F, Gousseau Y. The TV-L1 model: A geometric point of view.Multiscale Modeling and Simulation, 2009, 8: 154–189
    [59] Guo X, Li F, Ng M K. A fast L1-TV algorithm for image restoration. SIAM Journalon Scientific Computing, 2009, 3: 2322–2341
    [60] Chan R, Hu C, Nikolova M. An iterative procedure for removing random-valuedimpulse noise. IEEE Signal Processing Letters, 2004, 11: 921–924
    [61] Chan R, Ho C W, Nikolova M. Salt-and-pepper noise removel by median-typenoise detector and detail-preserving regularization. IEEE Transactions on ImageProcessing, 2005, 14: 1479–1485
    [62] Chan T F, Esedoglu S. Aspects of total variation regularized L1 function approxi-mation. SIAM Journal on Applied Mathematics, 2005, 65: 1817–1837
    [63] Aujol J E, Gilboa G, Chan T, et al. Structure-texture image decomposition-modeling, algorithms, and parameter selection. International Journal of ComputerVision, 2006, 67: 111–136
    [64] Yin W, Goldfarb D, Osher S. The total variation regularized L1 model for multiscaledecomposition. Multiscale Modeling and Simulation, 2006, 6: 190–211
    [65] Cai J F, Chan R, Nikolova M. Two phase methods for deblurring image corruptedby impulse plus Gaussian noise. AIMS Journal on Inverse Problems and Imaging,2008, 2: 187–204
    [66] Yang J, Zhang Y, Yin W. An efficient TV-L1 algorithm for deblurring multichannelimages corrupted by impulsive noise. SIAM Journal on Scientific Computing, 2009,4: 2842–2865
    [67] Le T, Chartrand R, Asaki T. A variational approach to constructing images corruptedby Poisson noise. Journal of Mathematical Imaging and Vision, 2007, 27: 257–263
    [68] Setzer S, Steidl G, Teuber T. Deblurring Poissonian images by split Bregman tech-niques. Journal of Visual Communication and Image Representation, 2010, 21:193–199
    [69] Aubert G, Aujol J-F. A variational approach to remove multiplicative noise. SIAMJournal on Applied Mathematics, 2008, 68 (4): 925–946
    [70] Huang Y-M, Ng M K, Wen Y-W. A new total variation method for multiplicativenoise removal. SIAM Journal on Imaging Sciences, 2009, 2 (1): 20–40
    [71] Jin Z, Yang X. Analysis of a new variational model for multiplicative noise removal.Journal of Mathematical Analysis and Applications, 2010, 362: 415–426
    [72] Bioucas-Dias J, Figueiredo M . Multiplicative noise removal using variable splittingand constrained optimization. To appear in IEEE Transactions on Image Processing,2010
    [73] Kreyszig E. Introduction functional analysis with applications. New York: JohnWiley & Sons, 1989
    [74]王声望,郑维行.实变函数与泛函分析概要.北京:高等教育出版社, 2004
    [75]张恭庆,林源渠.泛函分析讲义.北京:北京大学出版社, 2006
    [76] Gardner, Richard J. The Brunn-Minkowski inequality. Bulletin of the AmericanMathematical Society, 2002, 39 (3): 355–405
    [77]阮秋琦.数字图像处理学.北京:电子工业出版社, 2001
    [78]贺兴华,周媛媛,王继阳等. MATLAB 7.x图像处理.北京:人民邮电出版社,2007
    [79]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法.北京:科学出版社, 2008
    [80] Aubert G, Kornprobst P. Mathematical Problems in Image Processing: Partial Dif-ferential Equations and Calculus of Variations. New York: Springer, 2002
    [81]张亶,陈刚.基于偏微分方程的图像处理.北京:高等教育出版社, 2005
    [82]杨新.图像偏微分方程的原理与应用.上海:上海交通大学出版社, 2003
    [83] Tikhonov A N, Arsenin V Y. Solutions of ill-posed problems. Washington, D. C.:Winston & Sons, 1977
    [84] Rudin L, Osher S. Total variation based image restoration with free local constraints.IEEE International Conference In Proceedings of 1st International Conference onImage Processing, 1994 (1): 31–35
    [85] Meyer Y. Oscillating patterns in image processing and in some nonlinear evolutionequations. Lewis Memorical Lectures, AMS, 2001
    [86] Vese L, Osher S. Modeling textures with total variation minimization and oscillatingpatterns in image processing. Journal of Scientific Computing, 2003, 19: 553–572
    [87] Osher S, Sole′A, Vese L. Image decomposition and restoration using total variationminimization and H?1 norm. Multiscale Modeling and Simulation, 2003, 1: 349–370
    [88] Alliney S. Digital filters as absolute norm regularizers. IEEE Transactions on SignalProcessing, 1992, 40: 1548–1562
    [89] Alliney S. Recursive median filters of increasing order: A variational approach.IEEE Transactions on Signal Processing, 1996, 44: 1346–1354
    [90] Alliney S. A property of the minimum vectors of a regularizing functional definedby means of the absolute norm. IEEE Transactions on Signal Processing, 1997, 45:913–917
    [91] Weber E H. De pulsu, resorptione, audita et tactu, Annotationes anatomicae etphysiologicae. Leipzig: Koehler, 1834
    [92] Shen J. On the foundations of vision modeling I. Weber’s law and Weberized TVrestoration. Physica D, 2003, 175: 241–251
    [93] Chan T F, Shen J. Image processing and analysis, variational, PDE, wavelet andstochastic methods. Philadelphia, Pennsylvania: SIAM, 2005
    [94] Giusti E. Minimal surfaces and functions of bounded variations. Birkh Monographsin Mathematics, 1984
    [95] Strong D M, Chan T F. Spatially and scale adaptive total variation based regular-ization and anisotropic diffusion in image processing. UCLA, CAM Report 96–46,1996
    [96] Strong D M. Adaptive total variation minimizing image restoration (Ph.D. Thesis).UCLA, CAM Report 97–38, 1997
    [97] Chen Y M, Wunderli T. Adaptive total variation for image restoration in BV space.Journal of Mathematical Analysis and Applications, 2002, 272: 117–137
    [98] Liu Q, Yao Z G, Ke Y. Entropy solutions for a fourth-order nonlinear degenerateproblem for noise removal. Nonlinear Analysis: Theory, Methods & Applications,2007, 67: 1908–1918
    [99] Bertsekas D P, Nedi′c A, Ozdaglar A E. Convex analysis and optimization. Beijing:Tsinghua University Press, 2006
    [100] Hajiaboli M R. An anisotropic fourth-order diffusion filter for image noise removal.International Journal of Computer Vision, 2011, 92: 177–191
    [101] Ekeland I, Temam R. Convex analysis and variational problems. Classics in AppliedMathematics, 28, SIAM, Philadelphia, 1999
    [102] Schopfer F, Louis A K, Schuster T. Nonlinear iterative methods for linear ill-posedproblems in Banach space. Iverse Problems, 2006, 22: 311–329
    [103] Combettes P L, Wajs V R. Signal recovery by proximal forward-backward splitting.Multiscale Modeling and Simulation, 2005, 4: 1168–1200
    [104] Tseng P. Applications of splitting algorithm to decomposition in convex program-ming and variational inequalities. SIAM Journal on Control and Optimization, 1991,29: 119–138
    [105] Donoho D. Compressed sensing. IEEE Transactions on Information Theory, 2006,52: 1289–1306
    [106] Cande`s E J, Recht B. Exact Matrix Completion via Convex Optimization. Founda-tions of Computational Mathematics, 2009, 9 (6): 717–772
    [107] Cande`s E J, Tao T. The power of convex relaxation: Near optimal matrix comple-tion. IEEE Transactions on Information Theory, 2010, 56 (5): 2053–2080
    [108] Cande`s E J, Plan Y. Matrix completion with noise. Proceedings of the IEEE, 2010,98 (6): 925–936
    [109] Jia R-Q, Zhao H, Zhao W. Convergence analysis of the Bregman method for thevariational model of image denoising. Applied and Computational Harmonic Anal-ysis, 2009, 27: 367–379
    [110] Szlam A, Guo Z, Osher S. A split Bregman method for non-negative sparsity pe-nalized least squares with applications to hyperspectral demixing. UCLA, CAMReport 10–06, 2010
    [111] Setzer S. Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage.Lecture Notes in Computer Science, 2009, 5567: 464–476
    [112] Setzer D M S. Splitting methods in image processing. University of Mannheim,PHD dissertation, 2009
    [113] Setzer S. Operator splittings, Bregman methods and frame shrinkage in image pro-cessing. DOI: 10.1007/s11263-010-0357-3, 2010
    [114] Chavent G, Kunisch K. Regularization of linear least squares problems by totalbounded variation. ESAIM: Control, Optimisation and Calculus of Variations, 1997,2: 359–376
    [115] Hintermu¨ller M, Kunisch K. Total bounded variation regularization as a bilaterallyconstrained optimization problem. SIAM Journal on Applied Mathematics, 2004,64: 1311–1333
    [116] Bresson X, Chan T F. Fast dual minimization of the vectorial total variation normand applications to color image processing. UCLA, CAM Report 07–25, 2007
    [117] Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces. New York:Springer, 2003
    [118] Bresson X. A short note for nonlocal TV minimization. 2009
    [119] Lou Y, Zhang X, Osher S, et al. Image recovery via nonlocal operators. Journal ofScientific Computing, 2010, 42: 185–197
    [120] Buades A, Coll B, Morel J-M. A review of image denoising algorithms, with a newone. Multiscale Modeling and Simulation, 2005, 4: 490–530
    [121] Peyr′e G. Image processing with nonlocal spectral bases. Multiscale Modeling andSimulation, 2008, 7: 703–730
    [122] Bratsolis E, Sigelle M. A spatial regularization method preserving local photometryfor Richardson-Lucy restoration. Astronomy & Astrophysics, 2001, 375: 1120–1128
    [123] Day N, Blanc-Feraud L, Zimmer C, et al. Richardson-Lucy algorithm with totalvariation regularization for 3D confocal microscope deconvolution. MicroscopyResearch and Technique, 2006, 69: 260–266
    [124] Kryvanos A, Hesser J, Steidl G. Nonlinear image restoration methods for markerextraction in 3D ?uorescent microscopy. Computational Imaging III (Proceedingsof SPIE), 2005, 5674: 432–443
    [125] Sawatzky A, Brune C, Wu¨bbeling F, et al. Accurate EM-TV algorithm in PET withlow SNR. IEEE Nuclear Science Symposium Conference Record, 2008, M10–342:5133–5137
    [126] Brune C, Sawatzky A, Ko¨sters T, et al. An analytical view on EM-TVbased methods for inverse problems with Poisson noise. http://www.math.uni-muenster.de/num/publications/2009/BSKWB09/emtv-paper.pdf
    [127] Meyer Y. Oscillating patterns in image processing and nonlinear evolution equa-tions: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. American Math-ematical Society, Boston, MA, USA, 2001
    [128]冯象初,王卫卫.图像处理的变分和偏微分方程方法.北京:科学出版社, 2009
    [129] Chan T F, Esedoglu S, Park F E. Image decomposition combining staircase reducingand texure extraction. Journal of Visual Communication and Image Representation,2007, 18: 464–486
    [130] Aujol J-F, Aubert G, Blanc-Fe′raud L, et al. Image decomposition into a boundedvariation component and an oscillating component. Journal of Mathematical Imag-ing and Vision, 2005, 22: 71–88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700