交替方向法和TGV正则在图像处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以变分方法和偏微分方程为代表的数学工具活跃在图像处理的各个研究领域,它们已经成为研究图像处理和计算机视觉的两大基本工具。本论文主要应用交替方向法和总广义变分(TGV)正则讨论图像处理中的一些数学模型和算法。主要做了以下几个方面的工作:
     1.针对加性噪声去除的ROF模型在去噪过程中易导致阶梯效应的缺陷,提出了两种新的图像去噪模型。一是基于交替迭代的变分去噪模型。该模型可以通过交替极小化方法化为两个简单的子模型,其中一个子模型被用于重构向量场,另一个被用于重构图像。在计算方法上,分别采用对偶方法和分裂Bregman方法对两个子模型进行交替求解。实验结果表明,提出的新算法不但收敛速度较快,而且在去噪过程中还能够减缓阶梯效应;二是基于二阶TGV的自适应图像去噪模型。该模型是在二阶TGV中引入边缘指示函数,并利用边缘指示函数引导扩散,使得新模型在去噪的同时不仅能够自适应地对图像的边缘和小结构进行有效的保护,而且还能避免阶梯效应。
     2.提出了两种新的图像修复模型。一是改进的TV-Stokes图像修复模型。该模型为包含两个变量的耦合模型,因此新算法首先采用交替迭代策略化原问题为两个去耦的次问题,然后再对两个次问题分别利用对偶方法和分裂Bregman方法进行数值求解。由于新模型对TV-Stokes模型中的两步从构成方式及计算方式上分别进行了改进,因此,新算法相比于TV-Stokes算法不但修复的效果较好,而且修复的速度较快;二是基于二阶TGV的图像修复模型。该模型是以二阶TGV为正则项,因此,新模型不仅能够在修复图像的同时去除噪声,而且还能避免阶梯效应,仿真实验表明,与经典的总变分(TV)图像修复模型相比,提出的新模型在修复结果上有更高的峰值信噪比和更好的视觉效果。
     3.围绕着当前图像分解模型中出现的不足,利用变分正则化方法提出了两种自适应的图像分解模型。在提出的新模型中,正则项都是通过一个自适应函数来自动地联立TV和Tikhnov二次TV,因此,两个新模型都具有滤波和变分方法的优点。模型的数值计算是通过交替方向法来实现的。实验结果表明,新模型不仅能够更好地保护卡通成分中的边缘等主要特征,而且还能从原图像中提取更多的纹理或噪声。
     4.针对TV正则易导致阶梯效应这一缺陷,利用最近提出的TGV,在变分的框架下提出了两种新的图像分解模型。由于TGV的诸多优点,使得两种新模型在有效进行卡通+纹理分解的同时还能避免阶梯效应的产生。在数值计算上,分别采用一阶原始-对偶算法、对偶方法和分裂Bregman方法对所提新模型进行求解。实验结果表明,所提出的算法无论是在视觉效果上还是峰值信噪比上都能获得较好的结果。
In recent years, variational method and partial differential equation play activeroles in many image processing fields. They have become two basic tools for imageprocessing and computer vision. This dissertation mainly uses alternating directionmethod and total generalized variation (TGV) regularization to study somemathematical models and algorithms in image processing. The main work can besummarized as follows:
     1. As the ROF model for additive noise removal tends to produce the staircaseeffect, two novel variational denoising models are proposed. The first is the variationaldenoising model based on alternate iteration. The model can be turned into two simplesubmodels by using the alternative minimization method, one is used to construct thevector field, and the other is used to reconstruct the image. In the numericalcomputation, the dual method and the split Bregman method are used to solve the twosubmodels alternately. The experimental results show that the new algorithm not onlyhas faster convergence rate, but also can alleviate the staircase effect. The second is theadaptive denoising model with the second order TGV. In the new model, an edgeindicator function is introduced in the regularization term of second order TGV toinduct diffusion, which makes the new model can adaptively preserve the edgeinformation while removing noise and avoid the staircase effect.
     2. Two image inpainting models are proposed. One is the improved TV-Stokesinpainting model. There are two variables in the new model, so it is firstly turned intotwo simple submodels by using alternating iteration method, and then the twosubproblems are solved by dual formulation and split Bregman method respectively.The new model has improved the TV-Stokes model from the way of its formation andcalculation, so the proposed algorithm can not only get the better inpainting effect, butalso get the faster inpainting speed than the TV-Stokes algorithm. The other is thevariational inpainting model based on the second order TGV. In the model, the secondorder TGV is taken as the regularization term, so the new model can not only repair theimage effectively while removing the noise, but also avoid the staircase effect, thesimulative experiments show that the proposed model is better than the classical totalvariation (TV) model in terms of both peak signal to noise ratio and visual effect.
     3. Aiming at the shortages of current image decomposition models, two adaptive image decomposition models are presented by using the method of variationalregularization. In the two new models, the regularization terms can automaticallycombine TV and Tikhnov quadratic TV by an adaptive function, so the proposedmodels can both possess the advantages of filter and the variational method. Thesolutions of the new models can be obtained by using the alternating direction method.Experimental results show that the proposed models can not only well preserve theedge in the cartoon part, but also extract more textures or noises from the originalimage.
     4. In order to overcome the drawback that TV tends to produce the staircase effect,two novel image decomposition models are proposed under the variational frameworkbased on the TGV introduced recently, TGV has many advantages, which make thenew models to be more effective for image decomposition while avoiding the staircaseeffect. In the numerical computation, the first-order primal-dual algorithm, the dualmethod and the split Bregman method are respectively used to solve the proposedmodels. The experimental results show that the proposed algorithms can get the betterresults from the visual effect and the peak signal to noise ratio.
引文
[1] Averintsev M. B. The description of Markov random fields by Gibbs distribution.Teor. Verojatrost. Primen,1972,17(1):21-35.
    [2] Besag J. E. Spatial interaction and the statistical analysis of lattice systems (withdisscussion). J. Roy. Statist. Soc. B.,1974,36(2):192-236.
    [3] Besag J. E. On the statistic analysis of dirty pictures. J. Roy. Statist. Soc. B.,1986,48(3):259-302.
    [4] Zhu S. C., Mumford D. Prior learning and Gibbs reaction-diffusion. IEEE Trans.on PAMI,1997,19:1236-1250.
    [5] Giordana N., Pieczynaki W. Estimation of generalized multisensor HiddenMarkov Chains and unsupervised image segmentation. IEEE Trans. on PAMI,1997,19(5):465-475.
    [6] Huber P. J. Robust statistics. New Yoke: Wiley,1981.
    [7] Geman S., Geman D. Stochastic relaxation, Gibbs distributions, and theBayesian restoration of images. IEEE Trans. PAMI,1984,6:721-741.
    [8] Meyer Y. Wavelets algorithms and applications. SIAM, Philadelphia,1993.
    [9] Calderon, Albert P. An atomic decomposition of distributions in parabolic HPspaces. Advances in Math.,1977,25(3):216-225.
    [10] Daubechies I. Orthonormal bases of compactly supported wavelets. Comm. OnPure and Appl. Math.,1988,41(7):909-996.
    [11] Mallat S. Multifrequency channel decomposition of images and wavelet models.IEEE Transaction in Acoustic Speech and Signal Processing,1989,37(12):2091-2110.
    [12] Mallat S. AWavelet Tour of Signal Processing2nd. Academic Press:1999.
    [13] Mallat S著,扬力华等译.信号处理的小波导引.北京:机械工业出版社,2002.
    [14] Perona P., Malik J. Scale space and edge detection using anisotropic diffusion.IEEE Trans. PatternAnalysis and Machine Intelligence,1990,12(7):629-639.
    [15] Meyer Y. Oscillating patterns in image processing and nonlinear evolutionequations. AMS, Providence, RI,2001.
    [16] Catte F., Lions P. L., Morel J. M., et al. Image selective smoothing and edgedetection by nonlinear diffusion. SIAM Journal of Numerical Analysis,1992,29(1):182-193.
    [17] Osher S., Rudin L. Feature-oriented image enhancement using shock filters.SIAM Journal of Numerical Analysis,1990,27(4):919-940.
    [18] Weickert J. Theoretical foundation of anisotropic diffusion in image processing.Computing Supplement,1996,11:221-236.
    [19] Weickert J. Anisotropic diffusion in image processing. Teubner-Verlag, Stuttgart,1998.
    [20] Weickert J. Coherence-enhancing diffusion filtering. International Journal ofComputer Vision,1999,31(2):111-127.
    [21] Fadili M., Peyré G. Total variation projection with first order schemes. IEEETransactions on Image Processing,2011,20(3):657-669.
    [22] Aubert G., Kornprobst P. Mathematical problems in image processing: Partialdifferential equations and the calculus of variations. Applied MathematicalSciences147, Springer-Verlag,2006.
    [23]章毓晋.图像处理和分析.北京:清华大学出版社,1999.
    [24]阮秋琦著.数字图像处理学.北京:电子工业出版社,2001.
    [25]李朝晖主编.数字图像处理及应用.北京:机械工业出版社,2004.
    [26] Mumford D. and Shah J. Optimal approximation by piecewise smooth functionsand associated variational problems. Comm. on Pure and Appl. Math.,1989,42(5):577-685.
    [27] Rudin L., Osher S., Fatemi E. Nonlinear total variation based noise removalalgorithms. Phys. D,1992,60:259-268.
    [28] Kass M., Witkin A., Terzopoulos D. Snakes: active contour models. Int. J. Comp.Vis.,1987,1(4):321-331.
    [29] Osher S., Sethian J. Fonts propagating with curvature dependent speed:algorithms based on Hamilton-jacobi formulation. Journal of ComputationalPhysics,1988,79:12-49.
    [30] Chan T. F., Shen J. Mathematical models for local nontexture inpaintings. SIAMJ. Appl. Math.,2002,62:1019-1043.
    [31] Shen J. Inapainting and the fundamental problem of image processing. SIAMNews,2003,36(5):1-4.
    [32] Chan T. F., Shen J., Vese L. Variational PDE models in image processing. Noticeof theAMS,2003,50(1):14-26.
    [33] Bertalmio M., Sapiro G., Caselles V., et al. Image inpainting. Proceedings ofACM SIGGRAPH, also ACM Transactions on Graphics,2000,19(3):417-424.
    [34] Sapiro G. Image inpainting. SIAM News,2002,35(4):1-2.
    [35] Rane S. D., Sapiro G., Bertalmio M. Structure and texture filling-in of missingimage blocks in wireless transmission and compression applications. IEEE Trans.Image Processing,2003,12(3):296-303.
    [36] Vese L., Osher S. Modeling textures with total variation minimization andoscillating patterns in image processing. Journal of Scientific Computing,2003,19(1-3):553-572.
    [37] Osher S., Sole A., Vese L. Image decomposition and restoration using totalvariation minimization and theH1norm. SIAM Journal on MultiscaleModeling and Simulation,2003,1-3:349-370.
    [38] Aujol J., Aubert G., Blanc-Feraud L., et al. Image decomposition into a boundedvariation component and an oscillating component. J. Math. Imaging andVision,2005,22(1):71-88.
    [39] Aujol J., Chambolle A. Dual norms and image decomposition models. Intl. J.Comp. Vis.,2005,63(1):85-104.
    [40] Daubechies I., Teschke G. Wavelet based image decomposition by variationalfunctionals. Proc. SPIE, Wavelet Applications in Industrial Processing,2004,5266:94-105.
    [41] Daubechies I., Teschke G. Variational image restoration by means of wavelets:simultaneous decomposition, deblurring and denoising. Journal on Applied andComputational Harmonic Analysis,2005,19(1):1-16.
    [42] Lieu L., Vese L. Image restoration and decompostion via bounded total variationand negative Hilbert-Sobolev spaces. Applied Mathematics and Optimization (inpress).
    [43] Le T., Vese L. Image decomposition using the total variation and div(BMO).Multiscale Modeling and Simulation,2005,4(2):390-423.
    [44] Starck J., Elad M., Donoho D. L. Image decomposition via the combination ofsparse representations and a variational approach. IEEE Trans. Image Processing,2005,14(10):1570-1582.
    [45] Aubert G., Aujol J. F. Modeling very oscillating signals. Application to imageprocessing. AMO,2005,51(2):163-182.
    [46] Kindermann S., Osher S., Xu J. Denoising by BV-Duality. Journal of ScientificComputing,2006,28(2-3):411-444.
    [47] Vese L. A study in the BV space of a denoising-deblurring variational problem.App. Math. Optm.,2001,44:131-161.
    [48] Burger M., Frick K., Osher S., et al. Inverse total variation flow. UCLA CAMReport06-24,2006.
    [49] Burger M., Gilboa G., Osher S., et al. Nonlinear inverse scale space methods.Comm. Math. Sci.,2006,4(1):175-208.
    [50] Burger M., Osher S., Xu J., et al. Nonlinear inverse scale space methods forimage restoration. Lecture Notes in Computer Science,2005,3752:25-36.
    [51] Chan T. F., Esedoglu S. Aspects of total variation regularized L1functionapproximation. SIAMAppl. Math.,2005,65(5):1817-1837.
    [52] Chan T. F., Esedoglu S., Park F. A fourth order dual method for staircasereduction in texture extraction and image restoration problems. UCLA CAMReport05-28,2005.
    [53] Chambolle A. An algorithm for total variation regularization and denoising.Journal of Mathematical Imaging and Vision,2004,20:89-97.
    [54] Bertalmio M., Vese L., Sapiro G., et al. Simultaneous structure and texture imageinpainting. IEEE Trans. Image. Process.,2003,12:882-889.
    [55] Elad M., Starck J., Querre P., et al. Simultaneous cartoon and texture imageinpainting using morphological component analysis (MCA). Journal on Appliedand Computational Harmonic Analysis,2005,19:340-358.
    [56] Chan T. F., Shen J. Variational image inpainting.2002, CAM02-63(pdf).
    [57] Chan T. F., Shen J. Non-texture inpainting by curvature-driven diffusion (CDD).Journal of Visual Communication and Image Representation,2001,12(4):436-449.
    [58] Chan T. F., Shen J., Kang S. Euler’s elastica and curvature-based imageinpainting. SIAM Journal on Applied Mathematics,2002,63(2):564-592.
    [59] Chan T. F., Shen J. Image processing and analysis. SIAM, Philadelphia,2005.
    [60] Caselles V., Kimmel R., Sapiro G. Geodesic active contours. InternationalJournal of Computer Vision,1997,22(1):61-79.
    [61] Han Y., Wang W. W., Feng X. C. A new fast multiphase image segmentationalgorithm based on nonconvex regularizer. Pattern Recognition,2012,45:363-372.
    [62] Blomgren P., Chan T. F. Color TV: total variation methods for restoration ofvector-valued images. IEEE Trans. Image Process.,1998,7(3):304-309.
    [63] Chan T. F., Marquina A., Mulet P. High-order total variation-based imagerestoration. SIAM J. Sci. Comput.,2000,22(2):503-516.
    [64] Chen Y. M., Levine S., Rao M. Variable exponent, linear growth functionals inimage restoration. SIAM J. Appl. Math.,2006,66(4):1383-1406.
    [65] Li F., Shen C., Fan J., et al. Image restoration combining a total variational filterand a fourth-order filter. J. Vis. Commun. Image R.,2007,18:322-330.
    [66]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法.北京:科学出版社,2008.
    [67]冯象初,王卫卫.图像处理的变分和偏微分方程方法.北京:科学出版社,2009.
    [68] Weickert J., Scharr H. Ascheme for coherence-enhancing diffusion filtering withoptimized rotation invariance. Journal of Visual Communication and ImageRepresentation,2002,13(2):103-118.
    [69] You Y., Kaveh M. Fourth-order partial differential equations for noise removal.IEEE Trans. Image Process.,2000,9(10):1723-1730.
    [70] Lysaker M., Lundervold A., Tai X. C. Noise removal using fourth order partialdifferential equation with applications to medical magnetic resonance images inspace and time. IEEE Trans. Image Process.,2003,12(12):1579-1590.
    [71] Hajiaboli M. An anisotropic fourth-order diffusion filter for image noise removal.Int. J. Comput. Vis.2011,92(2):177-191.
    [72] Guidotti P., Longo K. Two enhanced fourth order diffusion models for imagedenoising. J. Math. Imaging and Vis.,2011,40(2):188-198.
    [73] Lysaker M., Tai X. C. Iterative image restoration combining total variationminimization and a second order functional. Int. J. Comput. Vis.,2006,66(1):5-18.
    [74] Lysaker M., Osher S., Tai X. C. Noise removal using smoothed normals andsurface fitting. IEEE Trans. Image Process.,2004,13(10):1345-1357.
    [75] Rahman T., Tai X. C., Osher S. A TV-stokes denoising algorithm. SSVM,2007,473-483.
    [76] Hahn J, Wu C., Tai X. C. Augmented Lagrangian method for generalizedTV-Stokes model. Technical report, UCLACAM Report,2010,10-30.
    [77] Litvinov W, Rahman T, Tai X. C. A modifed TV-Stokes model for imageprocessing. SIAM J. Sci. Computing,2011,33(4):1574-1597.
    [78] Tai X. C., Osher S., Holm R. Image inpainting using a TV-Stokes equation//TaiX. C., Lie K., Chan T. F., et al. Image Processing Based on Partial DifferentialEquations. Heidelberg, Germany: Springer,2007,3-22.
    [79] Tsai A., Yezzi A., Willsky A.S. A PDE approach to image smoothing andmagnification using the Mumford-Shah functional. Proc. Conf. Record of theThirty-Fourth Asilomar Conf. Signals, Systems Comput., Pacific Grove, CA,USA,2000,1:473-477.
    [80] Shao W., Wei Z. Image magnification using geometric structure reconstruction.Proc. Int. Conf. Intell. Comput., Kunming, China,2000,345:925-931.
    [81] Tschumperle D., Deriche R. Vector-valued image regularization with PDE's: acommon framework for different applications. IEEE Trans. Pattern Anal. Mach.Intell.,2005,27(4):506-517.
    [82] Liu Z., Wang H., Peng S. Image magnification method using joint diffusion. J.Comput. Sci. Technol.,2004,19(5):698-707.
    [83]朱宁,吴静,王忠谦.图像放大的偏微分方程方法.计算机辅助设计与图形学学报,2005,17(9):1941-1945.
    [84] Morse B., Schwartzwald D. Isophote-based interpolation. Proc. IEEE Int. Conf.Image Process., Chicago, Illinois, USA,1998,3:227-231.
    [85] Morse B., Schwartzwald D. Image magnification using level-set reconstruction.Proc. Comput. Vis. Pattern Recogn., Hawaii, USA,2001,1:333-341.
    [86] Gilboa G., Zeevi Y. Y., Sochen N. Resolution enhancement by forward-and-backward nonlinear diffusion processes. Proc. Nonlinear Signal Image Process.,Baltimore, Maryland,2001.
    [87] Gabay D, Mercier B. A dual algorithm for the solution nonlinear variationalproblems via finite-element approximations. Comp. Math. Appl.,1976,2:17-40.
    [88] He B. S, Liao L. Z, Han D. R, Yang H. A new inexact alternating directionsmethod for monontone variational inequalities, Math. Program.,2002,92:103-118.
    [89] Sun J, Zhang S. A modied alternating direction method for convex quadraticallyconstrained quadratic semidenite programs, European J. Oper. Res.,2010,207:1210-1220.
    [90] Tao M, Yuan X.M. Recovering low-rank and sparse components of matricesfrom incomplete and noisy observations, SIAM J. Optim.,2011,21:57-81.
    [91]张军,韦志辉. SAR图像去噪的分数阶多尺度变分PDE模型及自适应算法.电子与信息学报,2010,32(7):1654-1659.
    [92]庞志峰,杨余飞.图像去噪LOT模型的分裂Bregman方法.湖南大学学报,2010,37(9):83-87.
    [93] Yang Y. F., Pang Z. F., Shi B. L., et al. Split Bregman method for the modifiedLOT model in image denoising. Applied Mathematics and Computation,2011,217(12):5392-5403.
    [94] Dong F. F., Liu Z., Kong D., et al. An improved LOT model for imagerestoration. Math. Imaging Vis.,2009,34(1):89-97.
    [95] Hahn J., Tai X. C., Borok S., et al. Orientation-matching minimization for imagedenoising and inpainting. Int. J. Computer Vision,2011,92(3):308-324
    [96] Goldstein T., Osher S. The split Bregman method for L1regularized problems.SIAM Journal on Imaging Sciences,2009,2(2):323-343.
    [97] Cai J. F., Osher S., Shen Z W. Split Bregman methods and frame based imagerestoration. Multiscale Modell. Simul.,2009,8(2):337-369.
    [98] Wu C. L., Tai X. C. Augmented Lagrangian method, dual methods and splitBregman iterations for ROF, vectorial TV and higher order models. SIAM J.Imaging Science,2010,3(3):300-339.
    [99] Goldstein T, Bresson X, Osher S. Geometric applications of the split Bregmanmethod: segmentation and surface reconstruction. Journal of ScientificComputing,2010,45(1-3):272-293
    [100]李亚峰,冯象初. L1投影问题的分裂Bregman方法.电子学报,2010,38(11):2471-2475.
    [101]孙玉宝,费选,韦志辉,等.稀疏性正则化的图像泊松恢复模型及分裂Bregman迭代算法.自动化学报,2010,36(11):1512-1519.
    [102] Setzer S, Steidl G, Teuber T. Deblurring poissonian images by split Bregmantechniques. J. Vis. Commun. Image R.,2010,21(3):193-199.
    [103] Setzer S. Operator splittings, Bregman methods and frame shrinkage in imageprocessing, Int. J. Comput. Vision,2011,92(3):265-280.
    [104] Afonso M, Bioucas-Dias J, Figueiredo M. An augmented lagrangian approach tothe constrained optimization formulation of imaging inverse problems, IEEETrans. Image Process.,2011,20(3):681-695.
    [105] Esser E. Applications of Lagrangian-based alternating direction methods andconnections to split Bregman. UCLACAM Reports,2009.
    [106] Tai X. C., Wu C. Augmented lagrangian method, dual methods and splitBregman iteration for ROF model. SSVM, LNCS,2009,5567:502-513.
    [107] Bredies K., Kunisch K., Pock T. Total generalized variation. SIAM Journal onImaging Sciences,2010,3(3):492-526.
    [108] Bredies K., Valkonen T. Inverse problems with second-order total generalizedvariation constraints. Proceedings of SampTA2011-9th international conferenceon sampling theory and applications, Singapore,2011.
    [109] Pock T., Zebedin L., Bischof H. TGV-Fusion. Lecture Notes in ComputerScience,2011,6570:245-258.
    [110] Knoll F., Bredies K., Pock T., et al. Second order total generalized variation(TGV) for MRI. Magnetic Resonance in Medicine,2011,65(2):480-491.
    [111] Bredies K, Dong Yiqiu, Hintermüller M. Spatially dependent regularizationparameter selection in total generalized variation models for image restoration.International Journal of Computer Mathematics,2012, DOI10.1080/00207160.2012.700400.
    [112] Bredies K, Kunisch K, Valkonen T. Properties ofL1TGV2: Theone-dimensional case. J. Math. Analysis and Appl.,2013,398(1):438-454.
    [113] Knoll F, Schultz G, Bredies K, et al. Reconstruction of undersampled radialPatLoc imaging using total generalized variation. Magnetic Resonance inMedicine,2012, DOI:10.1002/mrm.24426.
    [114] Valkonen T, Knoll F. Total generalized variation in diffusion tensor imaging.http://math.uni-graz.at/mobis/publications/SFB-Report-2012-003.pdf.
    [115] Bertsekas D., Nedi A., Ozdaglar A. Convex analysis and optimization.Tsinghua University Press,2006.
    [116] Chambolle A., Pock T. A first-order primal-dual algorithm for convex problemswith applications to imaging. Journal Mathematical Imaging Vision,2011,40(1):120-145.
    [117] Wang Z., Bovik A., Sheikh H., et al. Image quality assessment: from errorvisibility to structural similarity. IEEE Transactions on Image Processing,2004,13(4):1-14.
    [118] Criminisi A., Pérez P., Toyama K. Region filling and object removal byexemplar-based image inpainting. IEEE Transactions on Image Processing,2004,13(9):1200-1212.
    [119] Wu J. Y., Ruan Q. Q., An G. Y. Exemplar-based image completion modelemploying PDE corrections. INFORMATICA,2010,21(2):259-276.
    [120] Xu Z. B., Sun J. Image inpainting by patch propagation using patch sparsity.IEEE Transactions on Image Processing,2010,19(5):1153-1165.
    [121]陈利霞,冯象初,王卫卫,等.加权变分的图像去噪算法.系统工程与电子技术,2010,32(2):392-395.
    [122] El Hamidi A., Ménard M., Lugiez M., et al. Weighted and extended totalvariation for image restoration and decomposition. Pattern Recognition,2010,43(4):1564-1576.
    [123] Jiang L. L., Feng X. C., Yin H. Q. Variational image restoration anddecomposition with curvelet shrinkage. Journal Mathematical Imaging Vision,2008,30(2):125-132.
    [124] Esedoglu S., Shen J. Digital inpainting based on the mumford-shah-euler imagemodel. European J. Applied Mathematics,2002,13(4):353-370.
    [125] Qu L., Wei S., Liang D, et al. A fast inpainting model based on curvature-drivendiffusions. Chinese Journal of Electronics,2007,16(4):644-647.
    [126]仵冀颖,阮秋琦.亥姆霍兹涡量方程与偏微分方程耦合修复模型.光电子.激光,2008,19(8):1104-1107.
    [127]张伟斌,冯象初,王卫卫.图像恢复的小波域加速Landweber迭代阈值方法.电子与信息学报,2011,33(2):342-346.
    [128] Nikolova M., Ng M., Chi-Pan T. Fast nonconvex nonsmooth minimizationmethods for image restoration and reconstruction. IEEE Trans. Image Process.,2010,19(12):3073-3088.
    [129] Lu C W, Song G X. Image decomposition using adaptive regularization anddiv(BMO). J. Systems Engineering and Electronics,2011,22:358-364.
    [130] Jiang L L, Yin H Q, Feng X C. Adaptive variational models for imagedecomposition combining staircasing reduction and texture extraction. J SystemsEngineering and Electronics,2009,20:254-259.
    [131] Buades A, Le T M, Morel J M, et al. Fast cartoon+texture image filters. IEEETrans. Image Process.,2010,19:1978-1986.
    [132] Chan T F, Esedoglu S, Parky F. Image decomposition combining staircasingreduction and texture extraction. J. Vis. Commun Image R,2007,18:464–48.
    [133] Li Y F, Feng X C. Coupled dictionary learning method for image decomposition.SCI. CHINAInform. Sci., doi:10.1007/s11432-011-4365-x.
    [134] Li Y F, Feng X C. Image decomposition via learning the morphological diversity.Pattern Recognition Letters,2012,33(2):111-120.
    [135] Bai J., Feng X. Image denoising and decomposition using non-convex functional.Chinese Journal of Electronics.21(1),102-106,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700