变分和非凸正则在图像处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,变分、偏微分方程等数学工具被广泛地应用于图像处理、计算机视觉等领域。这些工具一方面为模型的建立提供了有力的理论依据,另一方面方便了人们讨论模型的性能。本论文针对图像处理中的去噪、分割、配准等问题,给出了一些新的基于变分和偏微分方程的图像处理模型,并设计了新模型的快速求解算法。主要包括如下几个方面的工作:
     1.提出一个新的加性噪声去除模型和一个新的乘性噪声去除模型。在加性噪声去除模型中,我们利用空间非局部梯度构造了图像的非局部结构张量,通过对非局部结构张量的特征分解得到图像的一个特征空间,依据特征空间的特性设计了非局部扩散张量,建立了基于非局部扩散张量的各向异性扩散模型。该模型和局部各向异性扩散模型的本质不同在于,它在扩散的过程中充分利用了图像的全局信息。数值实验表明:所提的加性噪声去除模型在去噪的同时,能够更好地保护图像的边缘,尤其是纹理等重要细节特征。在乘性噪声去除模型中,我们采用非凸形式的正则项度量恢复图像的光滑性。与经典的总变差正则项相比,该非凸正则项具有更稀疏的性质,并且能够更好地保持恢复图像的边缘几何结构。为了快速求解新的乘性噪声去除模型,原始无约束的模型首先被转化为含约束的等价模型,然后采用分裂Bregman算法进行求解。为了克服模型中正则项的非凸性,分裂Bregman算法中还嵌入了一个迭代重加权过程。新算法不仅可以输出恢复图像,而且可以获得图像的边缘指示子。数值实验表明:所提乘性噪声去除模型无论在视觉效果上还是在量化指标上都能获得较好的去噪效果。
     2.将图像分割技术引入图像颜色迁移过程中,提出一种基于图像分割和颜色主题的织物图像颜色迁移新方法。该方法包括三个过程。第一个过程是分割彩色织物图像,通过引入图像局部偏场的概念,该过程不仅能够较好地解决亮度不一致的彩色图像分割问题,而且能够估计出给定织物图像各个区域的颜色均值,这些颜色均值的组合被定义为该织物图像的颜色主题。第二个过程是在颜色主题数据库上检索和原始织物图像颜色主题相似的并且分值较高的颜色主题。第三个过程是将检索到的颜色主题迁移到原始织物图像上。上述三个过程中,图像分割过程是所提颜色迁移方法的关键和主要创新部分。数值实验表明:所提颜色迁移方法能够为设计师们提供一种有效的织物设计工具。
     3.对多区域模糊区域竞争(MFRC)图像分割模型进行改进,得到一类新的图像分割模型,其中包括灰度图像分割和自然(彩色-纹理)图像分割两个模型。两个模型的共同点是采用非凸形式的正则项代替MFRC模型中的总变差正则项度量模糊隶属度函数的光滑性,较好地保持了各个隶属度函数的边缘几何结构。在灰度图像分割模型中,各个同性区域的亮度分布并非假定为MFRC模型中的固定形式的高斯分布,而是采用核估计的方法估计得到,从而能够分割更复杂的图像。在彩色图像分割模型中,针对原始MFRC模型很难分割自然图像的问题,通过引入PCA描述子的方法,使自然图像分割问题能够被合理地纳入到模糊区域竞争框架下讨论。数值实验表明:所提的两个新分割模型与经典的水平集模型和MFRC模型相比,能够获得更好的分割结果。所提的第二个分割模型与当前最好的基于图割的自然图像分割模型相比,具有更高的运算效率。
     4.提出一类基于变分方法的非刚性图像配准模型,其中包括单模态和多模态两个模型。在单模态模型中,正则项采用加权的L2范数度量,一方面克服了迭代收敛不同步的问题,另一方面使新模型既能保持图像的边缘几何结构,又能避免块效应的产生。在多模态模型中,不同模态的图像被转化为同一模态进行处理,提高了配准的效率。在模型求解方面,利用算子分裂和交替迭代的方法,原问题被转化为阈值和加性算子分裂的迭代格式进行求解。数值实验表明:所提配准方法对含噪以及变形较大的图像都能实现较好的配准。
     5.针对传统的多模态配准中平均互信息不能很好地配准局部非刚性形变以及位移场在迭代过程中被过度磨光的问题,我们给出了一个新的配准模型。新模型采用局部联合熵作为数据项来度量浮动图像和模板图像之间的相似性,以及采用加权的Horn型正则项来避免位移场被过度磨光。数值实验表明:所提模型与经典的配准模型相比,能够更好地配准局部形变。
In recent years, some mathematical tools such as variational calculus (VC) andpartial differential equation (PDE) are widely used in the fields of image processingand computer vision. These tools not only provide very theoretial supports for aproposed model, but also facilitate the discussion on the performance of the model. Inthis thesis, we do some research on some basic but important problems in imageprocessing, including denoising, segmentation, and registration. Some novel models aswell as their corresponding efficient algorithms are proposed. The main work issummarized as follows.
     1. A new additive noise removal model and a new multiplicative noise removalmodel are proposed. In the additive noise removal model, the nonlocal structure tensorof images is defined by using the nonlocal spatial gradients. The eigenvectors of thenonlocal structure tensor consist in a characteristic space for the image, based on whichthe nonlocal diffusion tensor is constructed. Using the nonlocal diffusion tensor, wepropose the nonlocal anisotropic diffusion model for image denoising. This model isdifferent from the local anisotropic diffusion in that, not only neighboring pixels butalso pixels faraway with similar intensities are concerned in our model. The mainadvantage of taking those pixels faraway but with similar intensities into considerationis that that model protects edges and textures much better than the local model. In themultiplicative noise removal model a nonconvex regularization term is used tomeasure the smoothness of the restored image. Different from the classical totalvariation (TV) regularization term, the proposed nonconvex regularization term has amuch sparser property, and it can preserve the geometrical structure of the image better.In order to obtain a more efficient algorithm to solve the model, we first take use of thesplitting technology to convert the original model into an equivalent one. Then, thesplit Bregman algorithm is used to solve the equivalent model. To overcome thenonconvexity of our model, an iteratively reweighting process is incorporated into thesplit Bregman algorithm. From the well-designed algorithm, we can obtain the restoredimage as well as the edge indicator of the image. Comprehensive experiments areconducted to measure the performance of the proposed denoising methods in terms ofvisual evaluation and a variety of quantitative indices.
     2. Image segmentation is introduced into the process of color transfer, and a new image-segmentation and color-theme-based color transfer method for textile images isproposed. The method contains three phases. The first phase is to segment the inputtextile image into several regions. As the introduction of a bias field function, thisphase can not only partition images with nonhomogeneous illumination, but alsooutput color means of different regions of the image. The combination of these colormeans is considered as the color theme of the input image. The second phase is toretrieve the relevant color themes from a database of color themes. The third phase isto reconstruct new images with different appearances from the input image by usingthe retrieved color themes. In the three phases mentioned above, the most importantphase is the image segmentation phase which is the main innovation of the proposedcolor transfer method. Numerical results indicate that the proposed color transfermethod can provide a powerful tool for designers to generate textile patterns.
     3. To improve the segmentation performance of the so called multiphase fuzzyregion competition (MFRC) model, we propose two new image segmentation models,one for gray-scale images, and the other one for color-scale images. In both of the twomodels, we introduce a nonconvex regularization term on the fuzzy membershipfunctions. This regularization term performs better than the usual convex TV used inthe MFRC model in that it can protect edges of the fuzzy membership functions fromover-smoothing. In addition, in the gray-scale image segmentation model, the intensitydistribution of each homogeneous region is not assumed to be the Gaussian distributionas in the MFRC model, but estimated from the kernal estimation method. For thisreason, our model can be used to partition more complicated images. In the color-scaleimage segmentation model, to overcome the difficulty that the classical MFRC modelcannot be simply used to partition natural (color-texture) images, we introduce thePCA descriptors so that the natural image segmentation problem can be discussed inthe framework of region competition. Numerical results demonstrate that the proposedtwo models achieve better segmentation results compared with some other well-knownmodels, such as the level-set (LS) model and the MFRC model, while the algorithm ofour natural image segmentation model is much more efficient than the state-of-the-artgraph cut-based algorithm.
     4. Two variational calculus-based nongird registration models are proposed, one ofwhich is the one-modality model, and the other is the multi-modality model. In theone-modality model, the weighted L2norm is used as the regularization term, whichbrings out two advantages. Firstly, it avoids the imbalance problem of the convergingspeed in different regions. Secondly, it preserves the important geometric structures of an image while restrains the staircase effect. In the multi-modality model, imagesobtained from different modalities are converted into the one-modality ones. Then themethods which are used to handle the one-modality problems can be used to deal withthe multi-modality problems. By exploiting the techniques of the operator splitting andthe alternative iteration minimization, we solve the models by shrinking and additiveoperator splitting (AOS). Numerical results demonstrate that the proposed registrationmethods perform well for noisy images and images with large deformation.
     5. To overcome the problem that local deformation are not aligned well by mutualinformation, we propose a new registration model in which local joint entropy is usedto measure the similarity between the moving image and the template image. In themodel, the weighted Horn-type regularizer is used to protect the displacement fieldfrom over-smoothing. Numerical results demonstrate that the proposed model has theadvantage of aligning local edges of the images better than classical models.
引文
[1]章琉晋.图像处理和分析[M].北京:清华大学出版社,1999.
    [2] Wagner TH, Yi T, Meeks SL, et al. Ageometrically based method for automatedradiosurgery planning[J]. International Journal of Radiation Oncology BiologyPhysics,2000,48(5):1599-1611.
    [3] Rueckert D, Sonoda LI, Hayes C, et al. Nonrigid registration using free-formdeformations: application to breast MR images[J]. Medical Imaging, IEEETransactions on,1999,18(8):712-721.
    [4] Rohlfing T, Maurer CR, Bluemke DA, et al. Volume-preserving nonrigidregistration of MR breast images using free-form deformation with anincompressibility constraint[J]. Medical Imaging, IEEE Transactions on,2003,22(6):730-741.
    [5]张红颖,张加万,孙济洲.改进Demons算法的非刚性医学图像配准[J].光学精密工程,2007,15(1):145-150.
    [6] Hahn DA, Daum V, Hornegger J. Automatic parameter selection for multimodalimage registration[J]. Medical Imaging, IEEE Transactions on,2010,29(5):1140-1155.
    [7] Datcu M, Daschiel H, Pelizzari A, et al. Information mining in remote sensingimage archives: system concepts[J]. Geoscience and Remote Sensing, IEEETransactions on,2003,41(12):2923-2936.
    [8] Hebar M, Gleich D, Cucej Z. Autobinomial model for SAR image despecklingand information extraction[J]. Geoscience and Remote Sensing, IEEETransactions on,2009,47(8):2818-2835.
    [9] Molina DE, Gleich D, Datcu M. Gibbs random field models for model-baseddespeckling of SAR images[J]. Geoscience and Remote Sensing Letters, IEEE,2010,7(1):73-77.
    [10] Park M, Brocklehurst K, Collins RT, et al. Deformed lattice detection inreal-world images using mean-shift belief propagation[J]. Pattern Analysis andMachine Intelligence, IEEE Transactions on,2009,31(10):1804-1816.
    [11] Xin B, Hu J, Baciu G, et al. Investigation on the classification of weave patternbased on an active grid model[J]. Textile Research Journal,2009,79(12):1123-1134.
    [12] Orjuela S, Vansteenkiste E, Rooms F, et al. Evaluation of the wear labeldescription in carpets by using local binary pattern techniques[J]. TextileResearch Journal,2010,80(20):2132-2143.
    [13] Ning J, Zhang L, Zhang D, et al. Robust mean-shift tracking with correctedbackground-weighted histogram[J]. Computer Vision, IET,2012,6(1):62-69.
    [14] Zhao W, Chellappa R, Phillips PJ, et al. Face recognition: A literature survey[J].Acm Computing Surveys (CSUR),2003,35(4):399-458.
    [15] Yang J, Zhang D, Frangi AF, et al. Two-dimensional PCA: a new approach toappearance-based face representation and recognition[J]. Pattern Analysis andMachine Intelligence, IEEE Transactions on,2004,26(1):131-137.
    [16] Wang L, Dunson DB. Fast Bayesian inference in Dirichlet process mixturemodels[J]. Journal of Computational and Graphical Statistics,2011,20(1):196-216.
    [17] Andrieu C, De Freitas N, Doucet A, et al. An introduction to MCMC formachine learning[J]. Machine Learning,2003,50(1):5-43.
    [18] Li SZ. Markov random field modeling in computer vision[M]. Springer-VerlagNew York,1995.
    [19] Mallat S,杨力华.信号处理的小波导引[M].北京:机械工业出版社,2002.
    [20] Burrus CS, Gopinath RA, Guo H. Introduction to Wavelets and WaveletTransforms: a primer[M]. Prentice Hall Upper Saddle River NJ,1998.
    [21] Starck J-L, Candès EJ, Donoho DL. The curvelet transform for imagedenoising[J]. Image Processing, IEEE Transactions on,2002,11(6):670-684.
    [22]焦李成,侯彪,王爽.图像多尺度几何分析理论与应用:后小波分析理论与应用[M].西安:西安电子科技大学出版社,2008.
    [23]焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(Z1):1975-1981.
    [24]冯象初,王卫卫.图像处理的变分和偏微分方程方法[M].北京:科学出版社,2009.
    [25] Chan T, Shen J. Image Processing and Analysis: Variational, PDE, Wavelet, andStochastic Methods[M]. Society for Industrial Mathematics,2005.
    [26]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社,2008.
    [27] Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removalalgorithms[J]. Physica D: Nonlinear Phenomena,1992,60(1):259-268.
    [28] Li M, Hao B, Feng X. Iterative regularization and nonlinear inverse scale spacebased on translation invariant wavelet shrinkage[J]. International Journal ofWavelets, Multiresolution and Information Processing,2008,6(1):83-95.
    [29] Jiang L, Feng X, Yin H. Variational image restoration and decomposition withcurvelet shrinkage[J]. Journal of Mathematical Imaging and Vision,2008,30(2):125-132.
    [30] Tai X-C, Wu C. Augmented Lagrangian method, dual methods and splitBregman iteration for ROF model[J]. Scale Space and Variational Methods inComputer Vision,2009:502-513.
    [31] Aubert G, Kornprobst P. Mathematical Problems in Image Processing: PartialDifferential Equations and the Calculus of Variations[M]. Springer,2006.
    [32]陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,2004.
    [33] Romeny BMH. Geometry-driven Diffusion in Computer Vision[M]. KluwerAcademic,1994.
    [34] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J].Pattern Analysis and Machine Intelligence, IEEE Transactions on,1990,12(7):629-639.
    [35] Catté F, Lions P-L, Morel J-M, et al. Image selective smoothing and edgedetection by nonlinear diffusion[J]. SIAM Journal on Numerical Analysis,1992,29(1):182-193.
    [36] Weickert J. Anisotropic Diffusion in Image Processing[M]. Teubner Stuttgart,1998.
    [37] Bettahar S, Stambouli AB. Shock filter coupled to curvature diffusion for imagedenoising and sharpening[J]. Image and Vision Computing,2008,26(11):1481-1489.
    [38] Wang WW, Feng XC. Anisotropic diffusion with nonlinear structure tensor[J].Multiscale Modeling&Simulation,2008,7(2):963-977.
    [39] Bai J, Feng XC. Fractional-order anisotropic diffusion for image denoising[J].Image Processing, IEEE Transactions on,2007,16(10):2492-2502.
    [40] Rudin L, Lions PL, Osher S. Multiplicative denoising and deblurring: theory andalgorithms[J]. Geometric Level Set Methods in Imaging, Vision, and Graphics,2003:103-119.
    [41] Aubert G, Aujol JF. A variational approach to removing multiplicative noise[J].SIAM Journal on Applied Mathematics,2008,68(4):925-946.
    [42] Shi J, Osher S. A nonlinear inverse scale space method for a convexmultiplicative noise model[J]. SIAM Journal on Imaging Sciences,2008,1(3):294-321.
    [43] Bioucas-Dias JM, Figueiredo MA. Multiplicative noise removal using variablesplitting and constrained optimization[J]. Image Processing, IEEE Transactionson,2010,19(7):1720-1730.
    [44] Huang YM, Ng MK, Wen YW. A new total variation method for multiplicativenoise removal[J]. SIAM Journal on Imaging Sciences,2009,2(1):20-40.
    [45] Durand S, Fadili J, Nikolova M. Multiplicative noise removal using L1fidelityon frame coefficients[J]. Journal of Mathematical Imaging and Vision,2010,36(3):201-226.
    [46] Steidl G, Teuber T. Removing multiplicative noise by Douglas-Rachford splittingmethods[J]. Journal of Mathematical Imaging and Vision,2010,36(2):168-184.
    [47] Jin Z, Yang X. A variational model to remove the multiplicative noise inultrasound images[J]. Journal of Mathematical Imaging and Vision,2011,39(1):62-74.
    [48] Kokkinos I, Maragos P. Synergy between object recognition and imagesegmentation using the expectation-maximization algorithm[J]. Pattern Analysisand Machine Intelligence, IEEE Transactions on,2009,31(8):1486-1501.
    [49] Wang B, Yu Y, Xu YQ. Example-based image color and tone styleenhancement[J]. ACM Transactions on Graphics (TOG),2011,30(4):1-12.
    [50] Kang Y, Yamaguchi K, Naito T, et al. Multiband image segmentation and objectrecognition for understanding road scenes[J]. Intelligent Transportation Systems,IEEE Transactions on,2011,12(4):1423-1433.
    [51] Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models[J].International Journal of Computer Vision,1988,1(4):321-331.
    [52] Caselles V, Kimmel R, Sapiro G. Geodesic active contours[J]. InternationalJournal of Computer Vision,1997,22(1):61-79.
    [53] Mumford D, Shah J. Optimal approximations by piecewise smooth functionsand associated variational problems[J]. Communications on Pure and AppliedMathematics,2006,42(5):577-685.
    [54] Chan TF, Vese LA. Active contours without edges[J]. Image Processing, IEEETransactions on,2001,10(2):266-277.
    [55] Zhu SC, Yuille A. Region competition: Unifying snakes, region growing, andBayes/MDL for multiband image segmentation[J]. Pattern Analysis and MachineIntelligence, IEEE Transactions on,1996,18(9):884-900.
    [56] Li F, Ng MK, Zeng TY, et al. A multiphase image segmentation method basedon fuzzy region competition[J]. SIAM Journal on Imaging Sciences,2010,3(3):277-299.
    [57] Mory B, Ardon R. Fuzzy region competition: A convex two-phase segmentationframework[J]. Scale Space and Variational Methods in Computer Vision,2007:214-226.
    [58] Li C, Kao CY, Gore JC, et al. Implicit active contours driven by local binaryfitting energy: proceedings of the Computer Vision and Pattern Recognition,2007CVPR'07IEEE Conference on,2007[C]. IEEE.
    [59] Wang L, He L, Mishra A, et al. Active contours driven by local Gaussiandistribution fitting energy[J]. Signal Processing,2009,89(12):2435-2447.
    [60] Li C, Huang R, Ding Z, et al. A variational level set approach to segmentationand bias correction of images with intensity inhomogeneity[J]. Medical ImageComputing and Computer-Assisted Intervention,2008,11(Pt2):1083-1091.
    [61] Solli M, Lenz R. Color Emotions for Multi-Colored Images[J]. Color Researchand Application,2011,36(3):210-221.
    [62] Xu C, Prince JL. Snakes, shapes, and gradient vector flow[J]. Image Processing,IEEE Transactions on,1998,7(3):359-369.
    [63] Wang B, Gao X, Tao D, et al. A unified tensor level set for imagesegmentation[J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEETransactions on,2010,40(3):857-867.
    [64] Wang Y, Tao D, Gao X, et al. Mammographic mass segmentation: Embeddingmultiple features in vector-valued level set in ambiguous regions[J]. PatternRecognition,2011,44(9):1903-1915.
    [65] Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces[M].Springer,2002.
    [66] Li C, Xu C, Gui C, et al. Level set evolution without re-initialization: A newvariational formulation: proceedings of the Computer Vision and PatternRecognition,2005CVPR2005IEEE Computer Society Conference on,2005[C].IEEE.
    [67] Vese LA, Chan TF. A multiphase level set framework for image segmentationusing the Mumford and Shah model[J]. International Journal of ComputerVision,2002,50(3):271-293.
    [68]刘纯平,龚声蓉,崔志明,等.基于相变和似然性的多相图像分割方法[J].计算机学报,2012,35(2):375-385.
    [69] Shen JJ. A stochastic-variational model for soft Mumford-Shah segmentation[J].International Journal of Biomedical Imaging,2006.
    [70] Jung YM, Kang SH, Shen J. Multiphase image segmentation viaModica-Mortola phase transition[J]. SIAM Journal on Applied Mathematics,2007,67(5):1213-1232.
    [71] Chambolle A. An algorithm for total variation minimization and applications[J].Journal of Mathematical Imaging and Vision,2004,20(1):89-97.
    [72] Zitova B, Flusser J. Image registration methods: a survey[J]. Image and VisionComputing,2003,21(11):977-1000.
    [73] Yi Z, Zhiguo C, Yang X. Multi-spectral remote image registration based onSIFT[J]. Electronics Letters,2008,44(2):107-108.
    [74] Zheng J, Tian J, Deng K, et al. Salient feature region: a new method for retinalimage registration[J]. Information Technology in Biomedicine, IEEETransactions on,2011,15(2):221-232.
    [75]白小晶,陈允杰,孙怀江,等.基于改进光流场模型的大脑图像配准[J].计算机辅助设计与图形学学报,2008,20(3):349-355.
    [76]张锐娟.图像配准理论及算法研究[D]:西安电子科技大学,2009.
    [77]廖斌.基于特征点的图像配准技术研究[D]:国防科学技术大学,2008.
    [78] Modersitzki J. Numerical Methods for Image Registration[M]. Oxforduniversity press,2004.
    [79] Viola P, Wells III WM. Alignment by maximization of mutual information[J].International Journal of Computer Vision,1997,24(2):137-154.
    [80]陈昱,庄天戈,王合.直方图估计互信息在非刚性图像配准中的应用[J].计算机学报,2000,23(4):444-447.
    [81] Maes F, Collignon A, Vandermeulen D, et al. Multimodality image registrationby maximization of mutual information[J]. Medical Imaging, IEEE Transactionson,1997,16(2):187-198.
    [82] Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registrationof medical images: a survey[J]. Medical Imaging, IEEE Transactions on,2003,22(8):986-1004.
    [83]卢振泰,陈武凡.基于共生互信息量的医学图像配准[J].计算机学报,2007,30(6):1022-1027.
    [84] Loeckx D, Slagmolen P, Maes F, et al. Nonrigid image registration usingconditional mutual information[J]. Medical Imaging, IEEE Transactions on,2010,29(1):19-29.
    [85]牛力丕,毛士艺,陈炜.基于Hausdorff距离的图像配准研究[J].电子与信息学报,2007,29(1):35-38.
    [86]王安娜,张新华,谷召伟,等.基于改进Hausdorff测度的医学图像配准算法[J].电子学报,2008,36(11):2247-2250.
    [87] Woods RP, Mazziotta JC, Cherry SR. MRI-PET registration with automatedalgorithm[J]. Journal of Computer Assisted Tomography,1993,17(4):536.
    [88] Du J, Tang S, Jiang T, et al. Intensity-based robust similarity for multimodalimage registration[J]. International Journal of Computer Mathematics,2006,83(1):49-57.
    [89] Tsai CL, Li CY, Yang G, et al. The edge-driven dual-bootstrap iterative closestpoint algorithm for registration of multimodal fluorescein angiogramsequence[J]. Medical Imaging, IEEE Transactions on,2010,29(3):636-649.
    [90] Horn BK, Schunck BG. Determining optical flow[J]. Artificial Intelligence,1981,17(1):185-203.
    [91] Luong HQ, Goossens B, Pi urica A, et al. Joint photometric and geometricimage registration in the total least square sense[J]. Pattern Recognition Letters,2011,32(15):2061-2067.
    [92] Pock T, Urschler M, Zach C, et al. A duality based algorithm forTV-L1-optical-flow image registration[J]. Medical Image Computing andComputer-Assisted Intervention,2007:511-518.
    [93] Thirion JP. Image matching as a diffusion process: an analogy with Maxwell'sdemons[J]. Medical Image Analysis,1998,2(3):243-260.
    [94]杨金宝.基于灰度相似性测度的医学图像配准技术研究[D]:山东大学,2008.
    [95]李登旺.医学图像配准和分割技术研究及在图像引导放射治疗系统中的应用[D]:山东大学,2011.
    [96]杨帆,张汗灵.遗传算法和Powell法结合的多分辨率三维图像配准[J].光电子·激光,2006,17(6):755-758.
    [97] Tustison NJ, Avants BB, Gee JC. Directly manipulated free-form deformationimage registration[J]. Image Processing, IEEE Transactions on,2009,18(3):624-635.
    [98] Mattes D, Haynor DR, Vesselle H, et al. PET-CT image registration in the chestusing free-form deformations[J]. Medical Imaging, IEEE Transactions on,2003,22(1):120-128.
    [99] Staring M, Klein S, Pluim JP. Arigidity penalty term for nonrigid registration[J].Medical Physics,2007,34:4098.
    [100]吴国瑶,马立勇.基于B样条FFD模型配准的虹膜图像融合方法[J].山东大学学报(工学版),2010,40(5):24-27.
    [101]徐丽燕,陈允杰,邱军,等.基于B样条的云图非刚性配准方法[J].测绘学报,2011,40(3):326-331.
    [102] Guo X, Li F, Ng MK. A fast L1-TV algorithm for image restoration[J]. SIAMJournal on Scientific Computing,2009,31(3):2322-2341.
    [103] Chambolle A, Pock T. A first-order primal-dual algorithm for convex problemswith applications to imaging[J]. Journal of Mathematical Imaging and Vision,2011,40(1):120-145.
    [104] Goldstein T, Osher S. The split Bregman method for L1-regularized problems[J].SIAM Journal on Imaging Sciences,2009,2(2):323-343.
    [105] Setzer S. Split Bregman algorithm, Douglas-Rachford splitting and frameshrinkage[J]. Scale Space and Variational Methods in Computer Vision,2009:464-476.
    [106]郝岩,冯象初,许建楼.交替迭代的变分修复模型及其分裂Bregman算法[J].系统工程与电子技术,2011,33(12):2749-2754.
    [107]郝岩,冯象初,许建楼.一种新的去噪模型的分裂Bregman算法[J].电子与信息学报,2012,34(3):557-563.
    [108]李亚峰,冯象初. L1投影问题的分裂Bregman方法[J].电子学报,2010,38(11):2471-2475.
    [109]庞志峰,杨余飞,林玲.图像去噪LOT模型的分裂Bregman方法[J].湖南大学学报(自然科学版),2010,37(9):83-87.
    [110]王静,吕科,何宁,等.基于分裂Bregman方法的全变差图像去模糊[J].电子学报,2012,40(8):1503-1508.
    [111] Cai JF, Osher S, Shen Z. Split Bregman methods and frame based imagerestoration[J]. Multiscale Modeling&Simulation,2009,8(2):337-369.
    [112] Cai JF, Osher S, Shen Z. Convergence of the linearized Bregman iteration forl1-norm minimization[J]. Mathematics of Computation,2009,78(268):2127-2136.
    [113]白俊奇,陈钱.基于各向异性扩散的红外图像噪声滤波算法[J].光学学报,2008,28(5):866-869.
    [114] Gilboa G, Osher S. Nonlocal operators with applications to image processing[J].Multiscale Modeling&Simulation,2008,7(3):1005-1028.
    [115] Kindermann S, Osher S, Jones PW. Deblurring and denoising of images bynonlocal functionals[J]. Multiscale Modeling&Simulation,2005,4(4):1091-1115.
    [116] Elmoataz A, Lezoray O, Bougleux S. Nonlocal discrete regularization onweighted graphs: a framework for image and manifold processing[J]. ImageProcessing, IEEE Transactions on,2008,17(7):1047-1060.
    [117] Buades A, Coll B, Morel JM. Image denoising methods: a new nonlocalprinciple[J]. SIAM Review,2010,52(1):113-147.
    [118] Grewenig S, Zimmer S, Weickert J. Rotationally invariant similarity measuresfor nonlocal image denoising[J]. Journal of Visual Communication and ImageRepresentation,2011,22(2):117-130.
    [119]刘德连,张建奇.基于纹理分割的遥感图像的变化探测[J].光学学报,2006,26(8):1177-1181.
    [120]刘泓,莫玉龙.改进的多分辨纹理图像分割算法[J].光学学报,2000,20(6):781-786.
    [121] Zhang Y, Cheng H, Tian J, et al. Fractional subpixel diffusion and fuzzy logicapproach for ultrasound speckle reduction[J]. Pattern Recognition,2010,43(8):2962-2970.
    [122] Goodman JW. Speckle Phenomena in Optics: Theory and Applications[M].Roberts&Co,2007.
    [123] Nikolova M, Ng MK, Tam CP. Fast nonconvex nonsmooth minimizationmethods for image restoration and reconstruction[J]. Image Processing, IEEETransactions on,2010,19(12):3073-3088.
    [124] Kreutz-Delgado K, Murray JF, Rao BD, et al. Dictionary learning algorithms forsparse representation[J]. Neural Computation,2003,15(2):349-396.
    [125] Nikolova M, Ng MK, Zhang S, et al. Efficient reconstruction of piecewiseconstant images using nonsmooth nonconvex minimization[J]. SIAM Journal onImaging Sciences,2008,1(1):2-25.
    [126] Grasmair M. Generalized Bregman distances and convergence rates fornon-convex regularization methods[J]. Inverse Problems,2010,26(11), Articlenumber:115014.
    [127] Teboul S, Blanc-Feraud L, Aubert G, et al. Variational approach foredge-preserving regularization using coupled PDEs[J]. Image Processing, IEEETransactions on,1998,7(3):387-397.
    [128]杨静,胡顺波,刘常春,等.基于简单Schur凹函数的图像配准测度研究[J].电子学报,2008,36(12):2328-2332.
    [129] Cui Y, Zhou G, Yang J, et al. Unsupervised Estimation of the Equivalent Numberof Looks in SAR Images[J]. Geoscience and Remote Sensing Letters, IEEE,2011,8(4):710-714.
    [130] Shen J, Jung YM. Weberized mumford-shah model with bose-einstein photonnoise[J]. Applied Mathematics&Optimization,2006,53(3):331-358.
    [131] Daubechies I, DeVore R, Fornasier M, et al. Iteratively reweighted least squaresminimization for sparse recovery[J]. Communications on Pure and Appliedmathematics,2009,63(1):1-38.
    [132] Candes EJ, Wakin MB, Boyd SP. Enhancing sparsity by reweighted l1minimization[J]. Journal of Fourier Analysis and Applications,2008,14(5):877-905.
    [133] Wipf D, Nagarajan S. Iterative reweighted l1and l2methods for finding sparsesolutions[J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2):317-329.
    [134] Xu L, Lu C, Xu Y, et al. Image smoothing via L0gradient minimization[J]. ACMTransactions on Graphics (TOG),2011,30(6):1-12.
    [135] Bresson X, Esedoglu S, Vandergheynst P, et al. Fast global minimization of theactive contour/snake model[J]. Journal of Mathematical Imaging and Vision,2007,28(2):151-167.
    [136] Baldi A. Weighted BV functions[J]. Houston Journal of Mathematics,2001,27(3):683-705.
    [137] Camfield CS. Comparison of BV norms in weighted Euclidean spaces andmetric measure spaces[D]: University of Cincinnati,2008.
    [138] Li F, Shen C, Fan J, et al. Image restoration combining a total variational filterand a fourth-order filter[J]. Journal of Visual Communication and ImageRepresentation,2007,18(4):322-330.
    [139] Chen Y, Rao M. Minimization problems and associated flows related toweighted p energy and total variation[J]. SIAM Journal on MathematicalAnalysis,2003,34(5):1084-1104.
    [140] Ou LC, Luo MR, Woodcock A, et al. A study of colour emotion and colourpreference. Part I: Colour emotions for single colours[J]. Color Research&Application,2004,29(3):232-240.
    [141] Solli M, Lenz R. Color emotions for multi-colored images[J]. Color Research&Application,2010,36(3):210-221.
    [142] Chang Y, Saito S, Uchikawa K, et al. Example-based color stylization ofimages[J]. ACM Transactions onApplied Perception,2006,2(3):322-345.
    [143] O'Donovan P, Agarwala A, Hertzmann A. Color compatibility from largedatasets[J].ACM Transactions on Graphics (TOG),2011,30(4):1-12.
    [144] Wang B, Yu Y, Wong TT, et al. Data-driven image color theme enhancement[J].ACM Transactions on Graphics (TOG),2010,29(6):1-12.
    [145] Celebi ME. Effective initialization of K-means for color quantization:proceedings of the Image Processing (ICIP),200916th IEEE InternationalConference on,2009[C]. IEEE.
    [146] Hu Y, Su B. Accelerated K-means clustering algorithm for colour imagequantization[J]. Imaging Science Journal,2008,56(1):29-40.
    [147] Gath I, Geva AB. Unsupervised optimal fuzzy clustering[J]. Pattern Analysisand Machine Intelligence, IEEE Transactions on,1989,11(7):773-780.
    [148] Reinhard E, Adhikhmin M, Gooch B, et al. Color transfer between images[J].Computer Graphics and Applications, IEEE,2001,21(5):34-41.
    [149] Chen S, Cao L, Wang Y, et al. Image segmentation by MAP-ML estimations[J].Image Processing, IEEE Transactions on,2010,19(9):2254-2264.
    [150] Li C, Huang R, Ding Z, et al. A level set method for image segmentation in thepresence of intensity inhomogeneities with application to MRI[J]. ImageProcessing, IEEE Transactions on,2011,20(7):2007-2016.
    [151] Kang SH, March R. Variational models for image colorization via chromaticityand brightness decomposition[J]. Image Processing, IEEE Transactions on,2007,16(9):2251-2261.
    [152] Lagodzinski P, Smolka B. Digital image colorization based on probabilisticdistance transform[J]. Progress in Pattern Recognition, Image Analysis andApplications,2008:626-634.
    [153] Rabin J, Peyré G. Wasserstein regularization of imaging problem: proceedings ofthe Image Processing (ICIP),201118th IEEE International Conference on,2011[C]. IEEE.
    [154] Papadakis N, Provenzi E, Caselles V. A variational model for histogram transferof color images[J]. Image Processing, IEEE Transactions on,2011,20(6):1682-1695.
    [155] Lischinski D, Farbman Z, Uyttendaele M, et al. Interactive local adjustment oftonal values. ACM Transactions on Graphics (TOG),2006,25(3):646-653.
    [156] Rao S, Mobahi H, Yang A, et al. Natural image segmentation with adaptivetexture and boundary encoding[J]. Computer Vision–ACCV2009,2010:135-146.
    [157] Cheng B, Liu G, Wang J, et al. Multi-task low-rank affinity pursuit for imagesegmentation: proceedings of the Computer Vision (ICCV),2011IEEEInternational Conference on,2011[C]. IEEE.
    [158] Lecellier F, Fadili J, Jehan-Besson S, et al. Region-based active contours andsparse representations for texture segmentation: proceedings of the PatternRecognition,2008ICPR200819th International Conference on,2008[C]. IEEE.
    [159] Rousson M, Brox T, Deriche R. Active unsupervised texture segmentation on adiffusion based feature space: proceedings of the Computer vision and patternrecognition,2003Proceedings2003IEEE computer society conference on,2003[C]. IEEE.
    [160] Guo Z, Zhang L, Zhang D. Rotation invariant texture classification using LBPvariance (LBPV) with global matching[J]. Pattern Recognition,2010,43(3):706-719.
    [161] Liu G, Yan S. Latent low-rank representation for subspace segmentation andfeature extraction: proceedings of the Computer Vision (ICCV),2011IEEEInternational Conference on,2011[C]. IEEE.
    [162] Ju Z, Liu H. Fuzzy Gaussian mixture models[J]. Pattern Recognition,2012,45(3):1146-1158.
    [163] Reynolds D. Gaussian mixture models[J]. Encyclopedia of BiometricRecognition,2008:12-17.
    [164] Shental N, Bar-Hillel A, Hertz T, et al. Computing Gaussian mixture modelswith EM using equivalence constraints[J]. Advances in neural informationprocessing systems,2004,16(8):465-472.
    [165] Posirca I, Chen Y, Barcelos CZ. Anew stochastic variational PDE model for softMumford–Shah segmentation[J]. Journal of Mathematical Analysis andApplications,2011,384(1):104-114.
    [166] Weickert J, Romeny BTH, Viergever MA. Efficient and reliable schemes fornonlinear diffusion filtering[J]. Image Processing, IEEE Transactions on,1998,7(3):398-410.
    [167] Goldstein T, Bresson X, Osher S. Geometric applications of the split bregmanmethod: Segmentation and surface reconstruction[J]. Journal of ScientificComputing,2010,45(1):272-293.
    [168]时永刚,邹谋炎.图像配准中统计型相似性测度的比较与分析[J].计算机学报,2004,27(9):1278-1283.
    [169] Kroon DJ, Slump CH. MRI modalitiy transformation in demon registration:proceedings of the Biomedical Imaging: From Nano to Macro,2009ISBI'09IEEE International Symposium on,2009[C]. IEEE.
    [170] Baker S, Scharstein D, Lewis J, et al. A database and evaluation methodologyfor optical flow[J]. International Journal of Computer Vision,2011,92(1):1-31.
    [171]张少敏,支力佳,赵大哲,等.基于Rényi熵的互补尺度空间关键点医学图像配准[J].仪器仪表学报,2010,31(11):2528-2533.
    [172]林相波,邱天爽,阮素,等. Demons非刚性配准算法拓扑保持性的研究[J].自动化学报,2010,36(1):179-183.
    [173] Rogelj P, Kova i S, Gee JC. Point similarity measures for non-rigid registrationof multi-modal data[J]. Computer Vision and Image Understanding,2003,92(1):112-140.
    [174] Arias P, Caselles V, Sapiro G. A variational framework for non-local imageinpainting: proceedings of the Energy Minimization Methods in ComputerVision and Pattern Recognition,2009[C]. Springer.
    [175] Yang M, Zhang L, Zhang D, et al. Relaxed collaborative representation forpattern classification: proceedings of the Computer Vision and PatternRecognition (CVPR),2012IEEE Conference on,2012[C]. IEEE.
    [176] Zosso D, Bresson X, Thiran JP. Geodesic active fields—a geometric frameworkfor image registration[J]. Image Processing, IEEE Transactions on,2011,20(5):1300-1312.
    [177] Le T, Chartrand R, Asaki TJ. A variational approach to reconstructing imagescorrupted by Poisson noise[J]. Journal of Mathematical Imaging and Vision,2007,27(3):257-263.
    [178]白键,冯象初.一种基于积分微分方程的泊松噪声去除算法[J].电子与信息学报,2013,35(2):451-456.
    [179] Ding L, Yilmaz A, Yan R. Interactive image segmentation using Dirichletprocess multiple-view learning[J]. Image Processing, IEEE Transactions on,2012,21(4):2119-2129.
    [180] Blei DM, Jordan MI. Variational inference for Dirichlet process mixtures[J].Bayesian Analysis,2006,1(1):121-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700