天然气水合物藏降压开发方案基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物(Natural Gas Hydrates,NGH)是一种潜力巨大的优质、清洁替代能源,其商业性开采已经被逐渐提上日程。NGH藏开发方案基础研究是NGH藏商业开采的基础和前提,是一项前瞻性(超前)工作。其中涉及NGH藏品质评价、不同品质NGH藏开发动态分析、不同品质NGH藏开发方案经济评价前沿课题。目前,尚未有相关课题研究。因此,NGH藏开发方案基础研究具有重要的理论价值和现实意义。
     鉴于NGH藏目前研究现状,降压法是NGH藏开采的基本方法,本研究从理论分析、室内实验和数值模拟三个方面出发,对NGH藏降压开发方案进行了以下几个方面的研究:
     建立了NGH藏品质评价模型。该评价模型综合分析了NGH藏含气系统,采用数值模拟方法计算了NGH藏参数的敏感性,确定NGH藏开发敏感性较大的12个参数为NGH藏品质评价的因素集,同时参考油田评价分数的确定方法,建立了NGH藏品质评价的评语集,然后对每个因素进行评分区间划分,即对应评语集对每个因素进行区间划分。对因素集进行层次划分,利用层次分析法确定权重,最终建立两级NGH藏储层品质评价模型,并利用该模型研究分析了四种典型NGH藏的品质等级。
     以相似理论为指导设计了一套拟三维NGH藏开发比例物理模拟平台,进行了不同品质NGH藏降压开发室内实验研究。从开采NGH藏的数学模型出发,应用检验分析方法和量纲分析方法推导了NGH藏开发的39个相似准则数,为物理模型相似提供了设计原则。通过对NGH藏降压开发实验数据进行模型和原型之间的相似转化得到不同品质NGH藏的降压开发动态规律。实验结果表明NGH藏降压开发过程分为自由气产气、NGH分解产气、NGH分解气和自由气共同产气三个阶段,三个阶段产气速度逐级降低;NGH分解产气量占总产气量的比例随着NGH藏品质提高而逐级增加;累积产气量和开采时间随着NGH藏品质的降低而逐级减少。
     建立NGH藏开发数学模型并编制相应的数值模拟计算程序。利用所编制的NGH藏开采数值模拟程序模拟了不同品质NGH藏的降压开发过程,分析了不同品质NGH藏降压开发特征,讨论了井底流压对不同品质NGH藏降压开发动态参数的影响。数值模拟研究结果表明产水速率、累计产水量与井底流压的敏感性较强,随井底流压的降低而迅速增加;产气速率、累计产气量随井底流压的降低而增加,但是对井底流压的敏感性相对较弱。
     提供了一套较为完整的NGH藏开发经济评价方法。在数值模拟研究的基础上,利用内部收益率法计算了NGH藏极限经济产量。采用净差额现金流量分析方法对不同品质NGH藏进行经济评价。经济评价结果表明一、二、三级NGH藏降压开发具备商业开采价值,四级NGH藏降压开发在经济上是不可行的。
As an alternative energy resource with huge potential, natural gas hydrates (NGH), commercial exploitation of NGH has been paid much attention to in recent years. The fundamental studies on NGH reservoir development is the premise and foundation to commercial exploration of NGH reservoir and is a very advancing step in NGH development, involving in many challenging issues such as NGH quality evaluation, production performance analysis for NGH reservoir of different quality as well as project economic evaluation for NGH reservoir of different quality. At present, there is no relevant research. Therefore, the study of NGH reservoir development is of great theoretical and practical value.
     Focusing on the challenges mentioned above, the NGH reservoir depressurization development as an important way for NGH exploration is studied through theoretical research, laboratory experiment and numerical simulation in this paper. The following research is conducted:
     The quality evaluation model of NGH reservoir is built, which analyzed comprehensively the gas-bearing NGH reservoir. Based on numerical simulation, the sensitivities of all parameters are analyzed, and 12 parameters with great impact are determined as the factor set of NGH reservoir quality. With reference to oil field evaluation criteria, the comment sets of NGH reservoir quality evaluation are ascertained, and interval division of each factor is defined for corresponding comment sets. With the multi-layered division of main controlling factors set that influence development effect, the weights for the factors are determined with the the analytic hierarchy process analysis. The two-stage quality evaluation model of NGH reservoir is finally established, and quality grades of 4 typical NGH reservoirs are obtained using this model.
     Guided by similarity theory, a set of quasi-3-D scale physical simulation model for NGH is designed, and the NGH reservoir development experiments of different qualities were conducted. By means of dimensional analysis and check analysis, 39 similarity criteria of NGH reservoir development are derived based on the NGH reservoir mathematical model, therefore providing design principle for the model similarity. Based on the similarity transformed data between the model and the prime type, the dynamic laws of depressurization development for different quality NGH reservoir are obtained. The experiments results showed that the NGH reservoir depressurization development could be divided into three stages: the free NGH gas production, dissolved NGH gas production and free & dissolved NGH gas production, the gas production decreased step by step. The dissolved NGH gas production occupied a higher proportion of the total gas production as the quality of NGH reservoir increased. The accumulative gas production and the production time decreased as the quality of NGH reservoir decreased.
     The mathematical model for NGH reservoir development is built, and the corresponding simulation calculation program is compiled. By using the program, depressurization development characteristics of different quality NGH were analyzed. The effects of bottom hole production pressure on NGH reservoir of different quality depressurization development parameters were analyzed. The numerical simulation results showed that the water production and cumulative water production have stronger sensitivity relationship with flowing bottom hole pressure and increase as the flowing bottom hole pressure decreases. Off-take rate and cumulative velocity appear less sensitivity with flowing bottom hole pressure.
     A complete set of economic evaluation methods for NGH reservoir development is proposed. By the method of internal rate of return, production limit of NGH is calculated based on numerical simulation. The economic evaluation for NGH reservoir of different quality is carried out. Economic evaluation results showed that the depressurization development of the first, second and third class NGH reservoir have commercial exploitation value. The depressurization development of the forth class NGH reservoir is not economically feasible.
引文
[1] Ray B..Resource potential of methane hydrate coming into focus[J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3): 9-13.
    [2] Burshears M., Obrien T. J., Malone R. D.. A multi-phase, multi-dimensional, variable composition simulation of gas production from a conventional gas reservoir in contact with hydrates[C]. 1986, SPE 15246, 449-463.
    [3] Makogon Y. F., Holditch S. A.. Makogon T.Y.. Natural gas-hydrates-A potential energy source for the 21st Century[J]. Journal of Petroleum Science and Engineering, 2003, 56(1-3): 14-31.
    [4] Kvenvolden K. A.. Gas hydrate: geological perspective and global change[M]. Rev Geophys, 1993.
    [5] Kvenvolden K. A.. A primer on the geological occurrence of gas hydrate[J]. Geol. Soc. London, 1998, 137: 9-30.
    [6]吴青柏,蒋观利,蒲毅彬等.青藏高原NGH的形成与多年冻土的关系[J].地质通报,2006;25 (1,2合刊):29-33.
    [7] Collett T. S.. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11):1971–1992.
    [8] Iseux J. C.. Gas hydrates: a new source of natrual gas[M]. Editions Technip,Paris,1992.
    [9] Milkov A. V., Sassen R.. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope[J]. Marine and Petroleum Geology, 2003, 20(2): 111–128.
    [10] Kerr R. A. Gas Hydrate Resource: Smaller but Sooner[J]. Science, 2004, 303(5660): 946-947.
    [11] Chuang J., Goodarz A., Duane H., et al. Natural gas production from hydrate decomposition by depressurization[J]. Chemical Engineering Science, 2001, 56: 5801–5814.
    [12] Sung W. M., Huh D. G., Ryu B. J., et al. Development and application of gas hydrate reservoir simulator based on depressurizing mechanism[J].Korean J. Chem. Eng., 2000, 17(3): 344–350.
    [13]李栋梁,樊栓狮.天然气水合物资源开采方法研究[J].化工学报,2003,(增刊):108~112.
    [14] Selim M. S., Sloan E. D.. Hydrate dissociation in sediment[C]. SPE 16859.
    [15] Hong H., Pooladi D. M., Bishnoi P.R.. Analytical modelling of gas production from hydrates in porous media[J]. J. Cdn. Pet. Tech., 2003, 42(11): 45–56.
    [16] Bayles G. A., Sawyer W. K., Malone R. D.. A steam cycling model for gas production from a hydrate reservoir[J]. Chem. Eng. Commun, 1986, 47: 225–245.
    [17]. Islam M. R.. A new recovery technique for gas production from Alaskan gas hydrates[J]. Journal of Petroleum Science and Engineering, 1994, 11: 267-281.
    [18] Swinkels W. J. A. M., Drenth R. J. J.. Thermal reservoir simulation model of production from naturally occurring gas hydrate accumulations[C]. SPE 56550.
    [19] Selim M. S.,Sloan E. D.. Heat and mass transfer during the dissociation of hydrates in porous media[J]. AIChE J,1989, 35: 1049–1052.
    [20]李相方,隋秀香,刘大宝,等.深层高压气藏测试NGH生成趋势监测与控制技术[J].石油钻探技术,2002,30 (6):42-51.
    [21] Wonmo S., Hoseob L.,Huen L.. Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection[J]. Energy Sources, 2002, 24(6): 499–512.
    [22] Kamath V. A., Godbole S. P.. Evaluation of hot-brine simulation technique for gas production from natural gas hydrates[J]. JPT, 1987, 1379–1388.
    [23]Yuri F. M., Taras Y. M., Stephen A. H.. Gas hydrate formation and dissociation with thermodynamic and kinetic inhibitors[C]. SPE 56568.
    [24]. Sira J. H., Patil S. L., Kamath V. A.. Study of hydrate dissociation by methanol and Glycol[C]. SPE 20770.
    [25] Wdyadhar A. K., Sanjay R. G.. Evaluation of hot-brine stimulation technique for gas production from natural gas hydrates[C]. SPE 13594.
    [26] Hancocks S. H., Collett T. S., Dallimore S. R., et al. Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well: in scientific results form the Mallik 2002 Gas Hydrate Production Research Well Program[N]. Northwest territories Canada, Geological Survey of Canada, 2005, Bulletin 585.
    [27] Hancocks S H,Collett T S,Dallimore S R, et al.Overview of pressure-drawdown production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well: in scientific results form the Mallik 2002 Gas Hydrate Production Research Well Program[N]. Northwest territories Canada, Geological Survey of Canada, 2005, Bulletin 585.
    [28] Masanori K., Kunihiro F., Hisanao O., et al.Analysis of the jogmec/nrcan/aurora mallik gas hydrate productiong test through numerical simulation [C].ICGH,Vancouver, CANADA, 2008, 5831.
    [29] Kurihara M., Ouchi H., Inoue T., et al. Analysis of the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate thermal-production test through numerical simulation[N]. Northwest Territories, Canada, Geological Survey of Canada 2005, Bulletin 585.
    [30] Fujii T., Takayama T., Dallimore S. R., et al. Wire-line Logging Analysis of the JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Test[C]. ICGH, Vancouver, CANADA, 2008, 5684.
    [31] Fujii K., Cho B., Ikegami T., et al. Development of a monitoring system for the JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Test Program[C]. ICGH, Vancouver, CANADA, 2008, 5830.
    [32] Masuda Y., Konno Y., Iwama H., et al. Improvement of Near Wellbore Permeability by Methanol Stimulation in a Methane Hydrate Production Well[C]. 2008 Offshore Technology Conference held in Houston, Texas, U.S.A., 2008,19433,.
    [33] Numasawa M., Dallimore S. R., Yamamoto K., et al. Objectives and Operation Overview of the JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Test[C]. ICGH,Vancouver, CANADA, 2008, 5832.
    [34] Dallimore S. R.,Wright J. F., Nixion F. M., et al. Geological and thermodynamic factors affecting the stimulation-response characteristics of a production test interval[C]. Mallik 2007 Gas Hydrate Production Research well, CANADA, 2007, 5725.
    [35]张卫东,王瑞和,任韶然,等.由麦索雅哈NGH气田的开发谈NGH的开采.石油钻探技术,2007,35(4):93-95.
    [36] Kono H. O., Narasimhan S., Feng S., et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing[J]. Powder Technology, 2002, 122:239-246.
    [37] Sung W. M., Lee H., Kim S., et al. Experimental investigation of production behaviors of methane hydrate saturated in porous rock [J]. Energy Sources, 2003, 25(8):845-856.
    [38]李淑霞.多孔介质中水合物合成与分解的电阻率性质研究[R].广州:中科院广州能源所,2008.
    [39] McGuire P. L.. Recovery of Gas From Hydrate Deposits Using Conventional Technology[C]. SPE/DOE 10832, 1982.
    [40] Naval G., Michael W., Subhash S.. Analytical modeling of gas recovery from in situhydrates dissociation[J]. Journal of Petroleum Science and Engineering, 2001, 29:115-127.
    [41] Holder G. D., Angert P. F.. Simulation of gas production from a reservoir containing both gas hydrate and free natural gas. 1982, SPE11105: 1~4.
    [42] Holder G. D., Angert P. F.. Simulation of Gas Production from A Reservoir Containing both Gas Hydrates and Free Natural Gas[C]. The 57th Annual Fall Technical Conference and Exhibition, New Orleans, USA, 1982.
    [43] Ji C., Ahmadi G., Smith D. H.. Constant rate natural gas production from a well in a hydrate reservoir[J]. Energy Conversion and Management, 2003, 44: 2403~2423.
    [44] Makogon Y. F.. Hydrate of hydrocarbons[M]. Penn Well Publishing Co, Tulsa, klahoma, 1997.
    [45] Ahmadi G., Ji C., Smith D. H.. Numerical solution for natural gas production from methane hydrate dissociation[J]. Journal of Petroleum Science and Engineering, 2004, (41):169~385.
    [46] Tsypkin G. G.. Regimes of dissociation of gas hydrates coexist with a gas in natural strata[J]. Journal of Engineering Physics and Thermophysics, 2001, 74 (5):1083~1089.
    [47] Yousif M. H., Abass H. H., Selim M. S., et al. Experimental and theoretical investigation of methane gas hydrate dissociation in porous media[J]. Society of Petroleum Engineers, 1991, 6(4):69~76.
    [48] Kim H. C., Bishinoi P. R., Heidemann R. A., et al. Kinetics of methane hydrate dissociation[J]. Chem.Eng. Sci., 1987, 42 (7):1645~1653.
    [49] Wim J. A., Swinkels M., Rik J. J.. Thermal Reservoir Simulation Model of Production from Naturally Occurring Gas Hydrate Accumulations[C]. SPE 56550.
    [50] Constantin C.. In-situ thermal stimulation of gas hydrates[J]. Journalof Petroleum Science and Engineering, 2009, 65(1-2):76-80.
    [51] Moridis G. J.. Numerical Studies of Gas Production From Methane Hydrates[C]. SPE 75691.
    [52] Sun X., Nanchary N., Mohanty K. K.. 1-2D modeling of hydrate depressurization in porous media. Transport in Porous Media, 2005, 58:315~338.
    [53] Tang L. G., Li X. S., Feng Z. P., et al. The control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs[J]. Energy Fuels, 2007, 21 (1):227~233.
    [54] Alejandro A., Larry W. L.. Inferring interwell connectivity only from well-rate fluctuations in waterfloods[C]. 2002, SPE75225:7-16.
    [55]刘亚平,陈月明,李春英,等.利用多层次模糊综合评判方法定量预测特高含水期油藏潜力[J].系统工程理论与实践,2009,29(1):181-184.
    [56]韩立岩,汪培庄.应用模糊数学[M].北京:首都经济贸易大学出版社,1989.
    [58] Kim H. C.,Bishinoi P. R., Heidemann R. A.,et al.. Kinetics of methane hydrate dissociation[J]. Chemical Engineering Science, 1987, 42(7):1645-1653.
    [57] Kamath V. A.. Study of heat transfer characteristics during dissociation of gas hydrate in porous media[D]. University of pittsburgh, Pittsburgh, 1983.
    [59] Sawyer W. K., Boyer C. M., Frantz J. H., et al.Comparative assessment of natural gas hydrate production models[C]. SPE 62513.
    [60] Moridis G. J., Sloan E. D.. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management, 2007, 48(6):1834-1849.
    [61]史斗,孙成权,朱岳年.国外天然气水合物研究进展[M].兰州:兰州大学出版社,1992,125~130.
    [62]谢道夫.力学中的相似方法与量纲理论[M].北京:科学出版社,1983.
    [63]陈月明.注蒸汽热力采油[M].东营:石油大学出版社,1991,183-203.
    [64]刘其成,张勇,张鹰.多功能高温高压三维比例物理模拟试验装置[J].石油仪器,2006,20(1):17-23.
    [65]杨立强.中深层超稠油直井-水平井组合SAGD理论和实践研究:[博士论文],东营:中国石油大学.
    [66]刘亚平, Chen Y. M., Bai Y. H., et al. Study of similarity theory for natural gas hydrate reservoir development[J]. Journal of China University of Mining & Technology, (to be published)
    [67]孙长宇,陈光进,郭天民.甲烷水合物恒温恒压分解过程研究,地球化学,2003,32(2),112-116.
    [68]孙长宇,陈光进,郭天民等.甲烷NGH分解动力学[J].化工学报,2002,53(9):899-903.
    [69] Komai T. a., Sakamoto Y. b., Kawamura T. b., et al. Dissociation Rate of Methane Hydrates Occupied in Pore Space of Marine Sediments[C]. Proceeding of the sixth(2005) ISOPE Ocean Mining Symposium, Changsha, Hunan, China, 2005.
    [70] Makogon Y. F.. Hydrates of natural gas, Translated form Russian by Cieslesica[M]. W. J. Penn Well, Tulsa, OK, 1974.
    [71] Youslf M. H., Sloan E. D.. Depressurization of Natural Gas Hydrate in Berea Sandstone Cores[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1990(8):71-88.
    [72] Youslf M. H., Sloan E. D.. Experimental Investigation of Hydrate Formation and Dissociation in Consolidated Porous Media[J]. 1991, SPE (11):452-458.
    [73] Charles E. T.. Large-volume, high-pressure view vell helps fill gaps in understanding of methane hydrate behavior[R], Fire in the Ice Newsletter, USA: The National Energy Technology Laboratory, 2004.
    [74] Hong D. N., Gruy F., Herri J. M.. Experimental data and approximate estimation for dissociation time of hydrate plugs. Chemical Engineering Science, 2006, 61(6):1846-1853.
    [75] Buffett B. A., Zatsepina O. Y.. Formation of gas hydrate from dissolved gas in natural porous medium[J]. Marine Geology, 2000,.164:69-77.
    [76] Booth J. S., Winters W. J., Dillon W. P.. Apparatus investigates geological aspects of gas hydrates[J]. Oil & Gas Journal, 1999,8(4):63-69.
    [77] Sung W .M., Lee H., Yang H.. An experimental study for hydrate dissociation phenomena and gas flowing analysis by electric heating method in porous rocks[J]. Korean Chem.Eng.Res., 2004, 42(1):115-120.
    [78]张剑,业渝光.天然气水合物探测技术的模拟实验研究[J].海洋地质动态,2003,19(6):28-30.
    [79]业渝光,张剑,刁少波.海洋天然气水合物模拟实验技术[J].海洋地质与第四纪地质,2003,23(1):119-123.
    [80]刘昌岭,业渝光.海洋天然气水合物生成机制的实验研究[J].海洋地质与第四纪地质,2003,23(2):90-96.
    [81]马荣生,孙志高,樊栓狮,等.气体水合物生成条件研究[J].扬州大学学报(自然科学版),2002,5(2):49-52.
    [82]郝永卯.NGH开采理论与技术研究[D].东营:中国石油大学(华东),2006.
    [83]丁次乾.矿场地球物理[M].山东东营:石油大学出版社,2002:8-15.
    [84]陈月明,刘亚平,张新军,等.盐水体系中天然气水合物降压开采数值模拟[J].石油大学学报,2009,33(3).
    [85] Kim H. C., Bishinoi P. R., Heidemann R. A., et al. Kinetics of methane hydrate dissociation[J]. Chemical Engineering Science, 1987, 42(7):1645-1653.
    [86] Moridis G. J.. Numerical studies of gas production from methane hydrates[J]. 2002,SPE87330:1-11.
    [87] Kobayashi R., Katz D. L.. Vapor-liquid equilibria for binary hydrocarbon-water systems[J]. Industry Engineering and Chemistry, 1951, 45:440-451.
    [88] Hyndman R. D., Davis E. E.. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion[J]. J.Geophys.Res. B., Solid Earth and Planets, 1992, 97(5): 7025~7041.
    [89] Hyndman R.D., Foucher J. P., Yamano M. et al. Deep sea bottom-simulating reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates[J]. Earth and Planetary Science Letter, 1992, 109:289-301.
    [90] Roo J. D., Peters C.J., Lichtenthaler, R. N., et al. Occurrence of methane in hydrate-bearing sediments and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure[J]. AIChE Journal, 1983, 29:651-657.
    [91] Dickens G. R., Quinby-Hunt M. S.. Methane hydrate stability in seawater Geophys[J]. 1994, Res. Lett., 21:2115-2118.
    [92]前川龙男等.甲烷水合物合成实验和稳定条件研究[J].地球,1996,181(10):20-25.
    [93] Dholabhai P. N., Kalogerakis P. R., Bishnoi. Kinetics of methane hydrate formation in aqueous electrolyte solutions[J]. Can. J. Chem. Eng., 1993, 71: 68–74.
    [94] Kamath V. A.. Study of heat transfer characteristics during dissociation of gas hydrate in porous media[D]. University of pittsburgh, Pittsburgh, 1983.
    [95] Amyx H. C., Bass D. M., Whiting R. L. Petroleum reservoir engineering physical properties[M]. Mc Graw Hill Book Co., New York, 1960.
    [96] Yousif M. H.. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE Reservoir Engineering (Society of Petroleum Engineers), 1991, 6(1):69-76.
    [97] Sun X., Anchary N., Mohanty K. K.. 1-D modeling of hydrate depressurization in porous media[J]. Transport in Porous Media, 2005, 58:315-338.
    [98] Civan F.. Scale effect on porosity and permeability: kinetics, model, and correlation[J]. AIChE Journal, 2001, 47: 271-287.
    [99] Lake L. W.. Enhanced oil recovery[M]. Prentice-Hall Inc., Upper Saddle River, N. J., 1989.
    [100] Amyx J. w., Bass D. M., Whiting R. L.. Petroleum reservior engineering-physical properties[M]. McGraw-Hill, New York, 1960.
    [101] Hong H., Pooladi D. M.. A numerical study on gas production from formationcontaining gas hydrates[C]. Canada International Petroleum Conference. Calgary, Canada, 2003.
    [102]袁自学,郦君一.油气储量资产评估方法和资产化管理探讨[M].北京:石油工业出版社,2000:1-12.
    [103]贾承造.美国SEC油气储量评估方法[M].北京:石油工业出版社,2004:1-28.
    [104]总公司计划局规划院编.石油工业建设项目经济评价方法与参数(第2版) [M].北京:石油工业出版社,1994:1-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700