稠油中沥青质井下裂解及应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于稠油油藏而言,由于稠油中沥青质等重质组分的含量比常规原油高得多,造成稠油的粘度高、开采难度大。目前开采稠油的主要技术是蒸汽吞吐和蒸汽驱技术,但这类技术只能暂时降低稠油的粘度,而不能从根本上解决稠油粘度高、流动困难等不利因素所导致的一系列开采难题。为此,本文针对沥青质等重质组分在油田开发中带来的问题,深入研究了稠油中沥青质井下裂解机理及应用技术,这对稠油油藏的有效开发具有重要意义和实用价值。
     本文利用元素分析、红外光谱、核磁共振、热重分析等现代测试手段来检测石油沥青质的组成、结构以及热稳定性,再结合沥青质化学结构推测理论模型并进行模拟实验。通过1H和13C NMR等测定的实验数据得到了沥青质基本结构单元的平均分子式和结构参数,推测出了辽河、大庆及华北原油中沥青质分子模型的结构,为加深对沥青质的微观认识和研究提供了新方法及可靠依据。
     针对沥青质在热采条件下的裂解反应机理进行了分析研究,且通过热重分析手段着重研究了沥青质的热稳定性,探讨了热裂解过程的动力学规律,并建立适用于大庆、辽河稠油中沥青质的活化能分布模型(DAEM),对沥青质的热裂解动力学进行了深入研究。研究结果表明,沥青质分子量的下降主要是桥链硫醚和稠环之间的桥链及侧链脂肪结构单元断裂的结果,而且后者是沥青质在井下催化裂解的主要原因,脂肪侧链和桥链的断裂主要按本位取代的机理进行;引入活性基团氢,可以消除自由基,阻滞反应链的增长,实现不可逆降黏;加入供氢剂可以加强稠油井下裂解降粘效果。对沥青质的热重(TG/DTG)分析表明:沥青质在300℃以下,没有明显的热裂解失重;从300℃至430℃,以较慢的速率产生挥发质;沥青质裂解主要发生在430℃至550℃范围,峰值温度在470℃至480℃。
     在近临界水体系中,以环烷酸镍与环烷酸亚铁为催化剂分别对辽河油田四种稠油中沥青质进行了催化裂解正交试验,考察了反应温度、反应时间、催化剂用量对沥青质转化率的影响,得到了适宜四种沥青质催化裂解的反应条件。在近临界水条件下,催化裂解后的沥青质中S元素含量有明显的下降,C元素、H元素、O元素、N元素含量也均有不同程度的下降。由于C-C、C-H键断裂程度比其它杂元素化学键断裂程度小,因此裂解后的沥青质中C、H元素含量略有上升。同时,由于不同区块油样的沥青质含氧基团类型不同,有些沥青质中O元素相对其它元素裂解掉的较少,因此O元素的含量反而上升。另外,经红外光谱测定发现,在近临界水条件下催化裂解后的沥青质中的环烷环及烷基链上的C-H键有不同程度的断裂,芳环数以及-CH2-的数量也有减少。
     通过对热采条件下油藏矿物的水/岩反应的研究,证实油藏矿物经水热处理后,其表面性质发生了改变,尤其是新矿物相的生成,使其催化活性有所增强。室内实验结果表明,油藏矿物对沥青质井下裂解具有催化作用,在反应体系中加入10%的油藏矿物,可使沥青质的平均相对分子质量降低程度增加10%左右;在沥青质裂解反应体系中,加入的油藏矿物可与催化剂NiSO4产生协同催化作用,使沥青质平均相对分子质量进一步降低,降低程度由28.5%提高到36.6%。
     基于Olah发明的煤的解聚方法,结合辽河油田稠油及油砂样品,进行了超强酸催化裂解稠油及其沥青质实验研究。实验结果表明,超强酸催化剂HF:BF3是裂解沥青质、使其轻质化的高效可用化学剂。
     依据上述前期研究成果,结合油田热采的实际条件,在室内开展了沥青质在稠油热采工程中的应用基础研究,提出了稠油热采工程中应用沥青质的新方案,即沥青质不完全燃烧供热生产入井蒸汽,用沥青质燃烧残余物制备高效热采稠油蒸汽添加剂,并研究可行的现场实施工艺技术。室内实验研究表明,欢喜岭稠油燃烧残余物可用作热采稠油蒸汽添加剂,胜利油田单家寺稠油燃烧残余物不可用。
It was widely ackowledged that high viscosity makes it difficult to develop heavy oil due to more contents of heavy component such as asphaltene in heavy oil than that in regular oil. Steam flooding and steam stimulation were the major technologies to develop heavy oil at present. By using these technologies, the viscosity of the heavy oil can be reduced temporarily, while the problems in development caused by the high viscosity, poor fluidity of heavy oil can not be solved radically. This dissertation set out to deal with the problems caused by heavy component in reservoir development and carried out a further reserch on the thermolysis and viscosity reduction mechanism of asphaltene. It was a kind of technology with significance and practical value to develop heavy oil reservoir more efficiently.
     Composition, structure and thermal stability of asphaltene were detected by element analysis, infrared spectrum, nuclear magnetic resonance, and thermogravimetric analysis. The model experiment was carried out on the basis of presumed chemical structure model of asphaltene. With experimental data of 1H and 13C NMR, the average molecular formula and the structure parameters of basic structural unit of asphaltene were obtained, and the molecular models of asphaltene in crude oil of Liaohe, Daqing and Huabei were conjectured, which provided new methods and reliable basis for further studying the microcosmic structure of asphaltene.
     The pyrolysis mechanism of asphaltene under thermal recovery condition was studied. Thermal stability of asphaltene was emphatically studied by thermogravimetric analysis. The dynamics law was investigated in the thermolysis process, and DEMA of asphaltene in heavy oil from Daqing and Liaohe oilfields were established. It was shown that the breaking of bridged chain between thioether and fused ring and the breaking of side chain of fat structure unit result in reduction molecular weight of asphaltene. The latter was the major contribution to catalytic pyrolysis underground. The breaking of side chain and bridged chain of fat structure unit proceed as mechanism of ipso substitution. The introduction of active hydrogen in aquathermolysis reaction could capture free radical, which was beneficial to prevent the interlinkage of reactant chain, realizing the irreversible reduction of viscosity. The adding of hydrogen donor make it more effective to pyrolyze asphaltene and reduce viscosity of heavy oil. It was shown in thermogravimetric analysis(TG/DTG) that there were no obvious phenomena below 300℃; volatile substance was produced at a low rate between 300℃and 430℃; thermolysis mostly occured between 430℃and 550℃, and the peak temperature was between 470℃and 480℃.
     In near-critical water system, orthogonal experiments of catalytic pyrolysis of four asphaltene types from Liaohe heavy oil were carried out using nickel naphthenate and ferrous naphthenate as catalysts. The effects of reaction temperature, reaction time, catalyst amount on conversion rate of asphaltene were studied and the proper reaction conditions were obtained respectively. Under such conditions, sulfur contents of asphaltene were reduced obviously and it was found that the contents of carbon, hydrogen, oxygen, nitrogen also decreased in some degree. Because the breaking of C-C and C-H chemical bonds was less than that of other chemical elements, carbon and hydrogen contents increased slightly after thermolysis reaction. Due to diferent types of oxygen-containing groups contained in diferent asphaltene and less pyrolyzed mount of oxygen than other elements, oxygen contents of some types of asphaltene might increase in the contrary. In addition, it was found by infrared spectrum that the breaking of C-H chemical bonds on naphthenic and alkyl chains of pyrolyzed asphaltene was in different degree in near-critical water system. Aromatic rings and -CH2- were decreased as well.
     Through the study on water-rock reaction, it was proved that surface properties of oil reservoir minerals were changed after hydrothermal treatment. The formation of new minerals made its catalytic activity more active. Experimental results suggested that oil reservoir minerals have a catalytic effect on the thermolysis underground. The average molecular weight of asphaltene was reduced by 10% when adding 10% of oil reservoir minerals. The minerals also took synergetic catalysis action with Catalyst NiSO4, which could further reduce average molecular weight, increasing the molecular weight reduction ratio from 28.5% to 36.6%.
     On the basis of disaggregation of coal developed by Olah, Catalytic pyrolysis experiment of asphaltene by super acid were carried out by using heavy oil samples from Liaohe oilfield. It was shown that HF:BF3 was a high efficient chemical agent to pyrolyze and light asphaltene.
     According to above results and combining thermal recovery conditions in the field, experimental study on application of asphaltene for thermal recovery engineering of heavy crude was carried out. The new scheme proposed was to make use of asphaltene in thermal recovery engineering of heavy crude. The steam was produced by the energy from incomplete combustion of asphaltene, and the burning residue was used to prepare high effective steam additive. The results of laboratory experiment show that burning residue of asphaltene in heavy oil from Huanxiling oilfield could be used as steam additive while that from Shanjiasi oilfield was useless.
引文
[1]彭裕生,季华生,梁春秀等.微生物提高石油采收率的矿场研究[M].北京:石油工业出版社,1997.
    [2]刘文章.稠油注蒸汽热采工程[M].北京:石油工业出版社,1997.
    [3]张会成,颜涌捷,程仲芊,等.钌离子催化氧化法研究沥青质经加氢处理后的变化[J].石油学报:石油加工,2007,23(4):32-38.
    [4]陈尔跃,刘永建,葛红江,等.辽河稠油沥青质在催化水热裂解反应中的降解[J].大庆石油学院学报,2005,29(5):9-11.
    [5]马安来,张水昌,张大江.轮南和塔河油田稠油沥青质钌离子催化氧化研究[J].天然气地球科学,2004,15(2):144-149.
    [6]马安来,张水昌,张大江,等.塔里木盆地原油沥青质钌离子催化氧化及油源[J].石油勘探与开发,2004,31(3):54-58.
    [7]廖泽文,耿安松.稠油和油砂中沥青质等重质组分的轻度氧化降解[J].石油勘探与开发,2002,29(4):55-59.
    [8]王子军.石油沥青质的化学和物理Ⅲ:沥青质化学结构的研究方法[J].石油沥青,1996,10(1):26.
    [9] Marcusson J Z, Angew Z. Chem, 1919, 32:113.
    [10] Nellensteyn, F. J.; Roodenburg N. M. Chem.-Z. 1930, 545-819.
    [11] Joshi N B,Mullins O C, Jamaluddin A et, al. Asphaltene Precipitation from Live Crude Oil [J]. Energy & Fuels ,2001,15(4): 979-986.
    [12] Yen T F.Present status of the structure of petroleum heavy end and its significance to various technical applications[J] Am.Chem. Soc. Div. Petrol. Chem.,1972,17(1): 102-104.
    [13]王子军.石油沥青质的化学和物理Ⅱ:沥青质的化学组成和结构[J].石油沥青,1996,10(1):26-36.
    [14] Brooks B T. Evidence of catalytic action in petroleum[J]. Ind. Eng. Chem, 1952, 44(11): 2570-2577.
    [15] Pfeiffer J P, Van Doormaal P M. The Rrheological Properties of Asphaltic Bitumens[J].Journal of the Institute of Petroleum,1936,22:414-440.
    [16] Mansoori G A.Modeling of asphaltene and other heavy organic depositions[J].Journal of Petroleum Science and Engineering,1997,17:101-111.
    [17] Leontaritis K J.The asphaltene and wax deposition envelopes[J].Fuel Science and Technology Int,L,1996,14(1&2):13-39.
    [18] Wiehe I A,Kennedy R J.The oil compatibility model and crude oil in compatibility [J]. Energy&Fuels, 2000,14:56-59.
    [19] Peramanu S,Clarke P F,Pruden B B. Flow loop apparatus to study the effect of solvent,temperature and additives on asphaltene precipitation[J]. Journal of Petroleum Science and Engineering, 1999, 23: 133-143.
    [20] Yen T F. Structure of petroleum asphaltene and its significance [J]. Energy Source, 1974, 1: 102-104.
    [21] Yen T F. Multiple structural orders of asphaltenes[J]. In:Asphaltenes and Asphalts I. (Eds. Yen T F and Chilingarian G V) Elsevier Science B V, pp 111-123.
    [22] Tissot B.P. Recent advances in petroleum geochemistry applied to hydrocarbon exploration[J]. AAPG bulliten, 1984, 68: 545-563.
    [23] Yen T F, Erdman J G and Pollack S S.Investigation of the structure of petroleum asphaltene by X-ray diffraction[J]. Analytical Chemistry, 1961, 33: 1587-1594.
    [24] Dickie J P and Yen T F. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39: 1847-1852.
    [25] Sheu E Y. Petroleum Asphaltene-Properties, Characterization, Issues[J]. Energy & Fuels, 2002, 16:74-82.
    [26] Chen Chong.Observation of the type of hydrogen bonds in coal by FTIR[J]. Energy &Fuels, 1998, 12(2):446-449.
    [27] Jha K N, Montgomery D S, Strausz O P, Preprints, Div Fuel Chem, American Chemical Society, 1979, 24, P260-264.
    [28] Yen T F.Structure of petroleum asphaltene and its significance[J].Energy Sources 1974,1:102~104.
    [29] Speight J G , Morchapedis S E. On the polymeric nature of petroleum asphaltenes [J]Fuel,1980,59:440-446.
    [30] Murgich J, Abanero J A, Strausz O P.Molecular recognition in aggregates formed by asphaltene and resinmolecules from the Athabasca oil sand[J]. Energy& Fuel,1999, 13 (2):278-286.
    [31]秦匡宗,李丽云.用13C NMR波谱技术研究烃源岩显微组分的化学结构与成烃潜力[J].石油大学学报:自然科学版,1995,19(4):87-94.
    [32]董喜贵,雷群芳,愈庆森.石油沥青质的NMR测定及其模型分子的推测[J].燃料化学学报,2004,32(6):668-671.
    [33] Yen T F. Asphaltic materials. In: Encyclopedia of Polymer Science and Engineering 2nd ed[J]. J Wiley & Sons, NY, 1990.
    [34] Speight J G, Long R B, Trawbridge T D. Factor Influencing the Separation of Asphaltenes from Heavy Feedstocks[J]. Fuel, 1984, 63: 616.
    [35] Speight J G. Chemical and physical studies of petroleum asphaltenes[J]. In:Asphaltene and AsphaltsⅠ. (Eds.Yen T F and Chilingarian G V) Elsvier Science B V, 1994: 7-66.
    [36] Wiehe IA, Kennedy RJ.The oil compatibility model and crude oil incompatibility[J]. Energy&Fuel, 2000, 14: 56-59.
    [37] Mansoori G A. Modeling of asphaltene and other heavy organic deposition [J]. Journal of Petroleum Science and Engineering, 1997, 17:101-111.
    [38] Anderson S I,Birdi KS. Influence of temperature and solvent on the precipitation ofasphaltenes. Fuel Sci.Tech.Int’l, 1990, 8(6): 593-615.
    [39] Andersen S L and Speight J G. Thermdynamic models for asphaltene solubility and precipitation[J]. J Petroleum Sci. Engineering, 1999, 22: 53-66.
    [40] Speight J G. The Chemistry and Technology of Petroleum[M]. Marcel Dekker. New York. 1980.
    [41] Anderson SI. Effect of precipitation temperature on the composition of n-heptane asphaltenes[J]. Fuel Sci. Tech. Int’l, 1994, 12(1): 51-74.
    [42] Ali L H. Investigations into asphaltenes in heavy crudes[J]. Fuel, 1981,60: 1043.
    [43] Koots J A, Speight J G. Relation of petroleum resins to asphaltenes[J]. Fuel, 1975, 54: 179.
    [44] Boduszynski M M. Composition of Heavy Petroleums I. Molecular Weight, Hydrogen Deficiency, and Heteroatom Concentration as a Function of Atmospheric Equivalent Boiling Point up to 760℃Energy Fuels, 1987, 1(1): 2-11.
    [45] Hyne J B, Greidanus J.W.Aquathermolysis of heavy oil.Proc. 2nd int. Conf.On heavy crude and tar sands.Caracas, Venezuela, 1982.
    [46] Hyne J B.重油的水热解[A].王鸿勋译,国际重质原油开采会议论文选集,第一版[M].北京:石油工业出版社,1986.
    [47] Clark P D, Hyne J B.Steam-Oil chemical reactions: mechanisms for the aquathermolysis of heavy oil[J].AOSTRA Journal of research, 1984 (1):15-20.
    [48] Akstinat M H. Gas evolution and change of oil composition during steam flooding [J]. petroleum geology, 1983,5:363-388.
    [49] Clark P D,Hyne J B.Studies on the chemical reactions of heavy oils under steam stimulation condition[J].AOSTRA J Res,1990,29(6):29-39.
    [50] Strausz O P. Bitumen and heavy oil chemistry[M].AOSTRA Technical handbook, in Press.
    [51] Chen H H, Payzant J D, Frakman Z, et al. Fifth progress report to AOSTRA, Project #146D.Chemical changes taking place in Oil sand bitumen during aquathermolysis conditions.1987,July 01-1987,December 31.
    [52] Shore S G, Bricker J C,Nagel A A,et al. Hydride donating properties of [HRu3(CO)11]- in the presence of carbon monoxide; chemistry of ruthenium carbonyl anions relevant to the catalysis of the water gas shift reaction [J], J. Am. Chem. Soc, 1985,107(2) ,377-384.
    [53] Fish R H, Komlenic J J. Molecular characterization and profile. identifications of vanadyl compounds in heavy crude petroleums. by liquid chromatography/graphite furnace atomic spectrometry[J]. Analytical chemistry. 1984,56:511.
    [54] Clark P D著.刘文章编译.蒸汽吞吐开采中使用化学添加剂改善重油在油藏和地面的流动性[A].第四届国际重油及油砂会议论文选译(上册)[M].北京:石油工业出版社,1989:226-235.
    [55] Clark P D ,Kirk M J. Studies on the Upgrading of Bituminous Oils with Water andTransition Metal Catalysts[J].Energy&Fuels,1994,8,380-387.
    [56]姜嘉陵,施晓乐,房惠春.单家寺热采原油性质的研究[A].稠油热采技术论文集[M].北京:石油工业出版社,1993:32-35.
    [57]范洪富,刘永建,赵晓非.稠油在水蒸汽作用下组成变化研究[J].燃料化学学报,2001,29(3):269-272.
    [58]刘永建,钟立国,范洪富,等.稠油的水热裂解反应及其降粘机理[J].大庆石油学院学报,2002,26(3):95-98.
    [59]刘永建,钟立国,范洪富,等.辽河油田超稠油水热裂解采油现场试验[J].大庆石油学院学报,2002,26(3):99-101.
    [60]范洪富,刘永建,赵晓非.井下降粘开采稠油技术研究[J].石油与天然气化工,2001,30(1):39-40.
    [61]刘永建,范洪富,钟立国,等.水热裂解开采稠油新技术初探[J].大庆石油学院学报,2001,25(3):56-59.
    [62]范洪富,刘永建,钟立国,等.金属盐对辽河稠油水热裂解反应影响研究[J].燃料化学学报,2001,29(5):430-433.
    [63]闻守斌,刘永建,宋玉旺,等.硅钨酸对胜利油田超稠油的催化降黏作用[J].大庆石油学院学报,2004,28(1):25-27.
    [64]陈勇,陈艳玲,朱明,等.过渡金属的有机酸盐水热裂解降黏反应的催化作用[J].地质科技情报,2005,24(3):75-78.
    [65]樊泽霞,赵福麟,王杰祥,等.超稠油供氢水热裂解改质降黏研究[J].燃料化学学报,2006,34(3):315-318.
    [66]范洪富,刘永建,赵晓非,等.国内首例井下水热裂解催化降黏开采稠油现场试验[J].石油钻采工艺,2001,23(3):42-44.
    [67] Ignisiak T, Bimer J, Samman N, Montgomery, D. S,et al.in Chemistry of Asphaltenes, eds J[M]. W.Bunger and N. C. Li, Adv. Chem. Series, 195, ACS Washington, 1981.
    [68] Greensfelder B S, Voge H H, Good G M. Catalytic and Thermal Cracking of Pure Hydrocarbons: Mechanisms of Reaction[J]. Industrial & Engineering Chemistry, 1949,41(11):2573-2584.
    [69] Connan J. Biodegradation of crude oils in reservoirs. In: Broods J, Welte D H, ed. Advances in Petroleum Geochemistry[M].London: Academic Press, 1984,1: 299-335.
    [70] Tissot B P, Welte D H. Petroleum formation and occurrence: a new approach to oil and gas exploration[M]. Berlin,Heidelberg , New York: Springer-Verlag, 1978.
    [71] J.D.M. Belgrave, R.G. Moore, M.G. Ursenbach. Comprehensive kinetic models for the aquathermolysis of heavy oils[J].The Journal of Canadian Petroleum Technic,1997, 36(4): 38-44.
    [72] J.D.M.Belgrave, R.G.Moore and M.G.ursenbach. Gas Evolution from the aquathermolysis of heavy oils[J].The Canadian Journal of chemical engineering,1994,72: 511-516.
    [73] Monin, J. C. Audlbert.Thermal cracking of heavy-oil/mineral matrix system[C].SPE reservoir engineering, November, 1988:1243-1250.
    [74] Hamid Pahlavan,Islam Rafiqul.Laboratory simulation of geochemical changes heavy curde oils during thermal recovery[J].Petroleum science & engineering,1995,12:219-231.
    [75] Rivas O R, Campos R E, Borges L G, Intevep S A.Experimental evaluation metals salt solutions as additives in steam recovery processes[C].SPE18076: 1-5.
    [76] Peter D.Clark, Robert A.Clarke, James B.Hyne, Kevin L.Lesage. Studies on the effect of metal species on oil sands undergoing steam treatments[J].AOSTRA Journal of Research, 1990,6: 53-64.
    [77] Glen Brons, Michael Siskin.Bitumen chemical changes during aquathermolytic treatments of cold Lake tar sands[J].Fuel, 1994, 73(2): 183-190.
    [78] Glen Brons.Upgrading of heavy oil with aqueous base treatments.Symposium on crude oil upgrading from reservoir to refinery presented before the division of petroleum chemistry, Inc.221st National meeting, American Chemical Society, San Diego, CA, April 1-5,2001:66-68.
    [79]刘永建,胡绍彬,闻守斌,等.油藏矿物和化学剂强化稠油水热裂解降黏研究[J].燃料化学学报,2008,36(3):302-305.
    [80] Schoonena Martin A. A, Yong Xua , Strongin D R. An introduction to geocatalysis[J]. Journal of Geochemical Exploration, 1998,62:201-215.
    [81]王子军.石油沥青质的化学和物理Ⅲ(沥青质化学结构的研究方法)[J].石油沥青,1995,9(4):32-38.
    [82] Brown J K, Ladner W R. A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopyⅡ. A comparison with infra-red measurement and the conversion to carbon structure[J]. Fuel, 1960, 39: 87-96.
    [83] Williiams R B. Characterization of hydrocarbons in petroleum by nuclear magnetic resonance.Symposium on composition of Petroleum Oils[J]. ASTM, Spec. Tech. Publ, 1958:224.
    [84] Yen T F, Wen H W , Chilingar G V. A study of the structure of petroleum asphaltenes and related substances by proton nuclear magnetic resonance[J]. Energy Scources, 1984, 7(3): 275-304.
    [85] Strausz O P, Mojelsky T W, Lown E M,et al. Structural features of Boscan and Duri asphaltenes[J]. Energy Fuels, 1999, 13: 228-247.
    [86]沈其丰,徐广智.13C-核磁共振及其应用[M].北京:化学工业出版社,1986.
    [87] Bartle K D, Ladner W R,Martin T G, et al. Structrual analysis of supercritical-gas extracts of coals[J]. Fuel, 1979, 58: 413-422.
    [88] Maekawa Y, Yoshida T, Yoshida Y. Quantitative 13C n. m. r. spectroscopy of a coal-derived oil and the assignment of chenical shifts[J]. Fuel, 1979, 58: 864-872.
    [89] Takegami, Watanabe Y, Suzuki T,et al. Structural investigation on column chromatographed vacuum residues of various prtroleum crudes by 12C nuclear magnetic resonance spectroscopy[J]. Fuel, 1980, 59(4): 253-259.
    [90] Altgelt K H, Bodusyzynski M M. Composition and Analysis of Heavy Petroleum Fractions[M], Marcel Dekker, Inc., New York, 1994.
    [91] Yen T F. 1971. Long-chain alkyl subtituents in native asphaltic molecules[J]. Nature, Phy. Sci., 233(37): 36.
    [92]梁文杰.石油化学[M].东营:石油大学出版社,1995.
    [93]杨小莉,陆婉珍.有关原油乳状液稳定性的研究[J].油田化学,1998,15(2):87-96.
    [94]樊西惊.石油胶态分散体的稳定性[J].油田化学,1999,16(1):72-76.
    [95]刘东,王宗贤,闽国和.渣油中沥青质胶粒缔合状况初探[J].燃料化学学报,2002,30(3):281-284.
    [96] Rassamdana H., Farhani M. and Dabir B.er al. Asphalt flocculation and deposition. V. Phase behavior in miscible and immiscible injections[J]. Energy &Fuels, 1999, 13: 176-187.
    [97] Mohamed R, S and Ramos A. C. S. Aggregation behavior of two asphaltenic fraction in aromatic solvents[J].Energy & Fuels, 1999, 13: 323-327.
    [98]梁文杰.重质油化学[M].东营:石油大学出版社,2000.
    [99] Speight J G. A structural investigation of the constituents of athabasca bitumen by proton magnetic resonance spectroscopy[J].Fuel, 1970, 49: 75-91.
    [100] Ali L H, A method for the calculation of molecular weights of aromatic compounds, and its application to petroleum fractions[J]. Fuel, 1971, 50: 298-307.
    [101] Ali L H, AI-Ghannam K A. Investigations into asphaltenes in heavy crude oils. I. Effects of temperature on precipitation by alkane solvents[J].Fuel,1981, 60(11):1043-1046.
    [102] Ali L H, Al-Ghannam K A, Al-Rawi J M. Chemical structure of asphaltenes in heavy crude oils investigated by NMR [J]. Fuel, 1990, 69(4): 519-521.
    [103] Burnham A K, Braun R L.Global kinetic analysis of complex materials[J]. Energy&Fuels, 1999, 13:1-22 .
    [104] Gupta P L, Dogra P V, Kuchhal R K, et al.Estimation of average structural parameters of petroleum crudes and coal-derived liquids by 13C and 1H NMR[J].Fuel, 1986, 65: 515-519.
    [105]吴帆,彭朴,陆婉珍.烃类化合物NMR化学位移数据库及各类碳氢原子族化学位移统计分布[J].波谱学杂志,1996,13(4):393-402.
    [106] Dickinson E M.Structural comparison of petroleum fractions using proton and 13C NMR spectroscopy[J].Fuel,1980,59(3):290-294.
    [107] Christopher J,Sarpal A S,Kapur G S,et a1.Chemical structure of bitumen-derived asphaltenes by nuclear magnefc resomance spectroscopy and X-ray diferactometry [J]. Fuel,1996,75(8):999-1008.
    [108] Michon L,Martin D,Planche J P.et a1.Estimation of average structural parameters of bitumens by C nuclear magneticresonance spectroscopy[J].Fuel,1997,76(1):9-15.
    [109]李述元,林世静,郭绍辉,等.矿物质对干酪根热解生烃过程的影响[J].石油大学学报(自然科学版),2002,26(1):69-71,74.
    [110] Park S J,Mansoori G A. Aggregation and deposition of heavy organics in petroleum crudes[J]. Energy Sources 1988 10: 109-125.
    [111] Storm D A Sheu E Y. Characterization of colloidal asphaltenic particles in heavy oil [J]. Fuel,1995,74(8): 1140-1145.
    [112]王宗贤,张宏玉,郭爱军,阙国和.渣油中沥青质的缔合状况与热生焦趋势研究[J].石油学报(石油加工),2000,16(4):60-64.
    [113] Friedman H L, Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to phenolic plastic[J]. J Polym Sci, Part C, 1963, 6: 183- 195.
    [114] Coats A W, Redfem J P, kinetic parameters from thermogravimetric data[J], Nature,1964,201:68-69.
    [115] Yue C Watk'inson A P. Pyrolysis of pitch[J]. Fuel, 1998, 77: 695-711.
    [116]胡荣祖.史启祯.热分析动力学[M].北京:科学出版社,2001,108.
    [117]张伟南,袁誉洪,李丽清,等.二水草酸锌脱水的热分解动力学研究[J].物理化学学报,2004, 20(1):33-37.
    [118] Gao X, Pollimore D. A kinetic study of the thermal decomposition of magnese(ll) oxalate dihydronate[J]. ThermochimicaActa, 1993, 215: 47-63.
    [119]朱学栋,朱子彬,张成芳.煤热失重动力学的研究[J].高校化学工程学报,1999,13(3):223-228.
    [120] Braun R L, Burnham A K, Reynolds J q Clarkson J E. Pyrolysis kinetics for Lacustrine and Marine source rocks by programmed micropyrolysis[J], Energy&Fuels, 1991, 5: 192-204.
    [121] Lakshmanan C C, Bennett m L, White N. Implications of multiplicity in kinetic parameters to petroleum exploration: distributed activation energy models[J]. Energy&Fuels, 1991, S: 110-117.
    [122] Miura K. A new and simple method to estimate f(E) and lco(E) in the distributed activation energy model from three sets of experimental data[J] . Energy&Fuels, 1995, 9: 302-307.
    [123] Maki T, Takatsuno A, Miura K. Analysis of pyrolysis reactions of various coals including argonne premium coals using a new distributed activation energy model[J]. Energy&Fuels, 1997, 11:972-977.
    [124] Miura K, Maki T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model[J]. Energy&Fuels, 1998, 12: 864-869.
    [125] Gong J, Fu W, Zhong B. A study on the pyrolysis of asphalt[J]. Fuel, 2003, 82: 49-52.
    [126]龚景松,傅维镳.沥青燃烧的热解特性研究[J].冶金能源,2002,21 (4):36-58.
    [127]廖译文,耿安松.沥青质热解动力学研究及其应用初探[J].自然科学进展,2000,10 (2):183- 189.
    [128]董喜贵,雷群芳,俞庆森.石油沥青质的热解动力学研究[J].浙江大学学报(理学版),2004,31(6):652-656.
    [129] Michael Siskin, Alan R.Katritzky.Reactivity of Organic compounds in hot water:Geochemical and technological implications[J].Science,1991, 254(11):231-236.
    [130] Savage P E, Gopalan S, Mizan T I,et al. Kinetics and mechanism of methane oxidation insupercritical water [J]. AIChE J,1995,41:1723-1772.
    [131] Savage P E.Organic chemical reaction in supercritical water[J].Chem. Rev. 1999,99(2):603-621.
    [132]杨子超.基础无机化学理论[M].西安:陕西人民出版社,1985.
    [133] Olah G A, Prakash S, Sommer J. Superacids[M]. New York: Willy Press, 1985.
    [134]魏贤勇,宗志敏,秦志宏,等.煤液化化学[M].北京:科学出版社,2002.
    [135]舒歌平.稠油注蒸汽热采工程[M].北京:煤炭工业出版社,2003.
    [136]范洪富.辽河稠油水热裂解反应研究与应用[D].大庆:大庆石油学院,2002.
    [137]赵晓非.超稠油水热裂解反应催化剂及其载体的研制[D].大庆:大庆石油学院,2006.
    [138]钟立国.水热裂解开采稠油关键技术研究[D].大庆:大庆石油学院,2005.
    [139]刘春天.稠油水热裂解反应动力学研究及应用[D].大庆:大庆石油学院,2005.
    [140]陈尔跃.辽河稠油井下改质催化体系的研制与应用[D].大庆:大庆石油学院,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700