低碳Mn系空冷贝氏体钢的强韧性优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对碳含量范围为0.07%~0.30%的一系列低碳Mn系贝氏体钢,总结了一整套强韧性优化的途径。具体研究了不同C含量和不同Si含量的钢在奥氏体化后不同冷速下的组织类型,经空冷、系统回火后组织性能的变化规律,详细讨论了粒状组织的相变过程及M/A小岛形态。对于碳含量为0.08%左右的Mn系贝氏体钢,通过Gleeble热力模拟试验,研究了未微合金化及Nb微合金化后经不同温度热变形对组织的影响,在实验轧机上控轧后的性能数据较好的验证了研究结果。得到了以下主要结论:
     1. Si对碳含量为0.07~0.08%的Mn系贝氏体钢空冷后的组织类型几乎不产生影响,但对碳含量为0.17%的钢能明显提高淬透性。
     2.低碳Mn、Si钢的粒状组织中M/A小岛具有无规则排列型和平行排列型两种形态,当高温铁素体以台阶机制长大时,容易生成平行排列的小岛,区分粒状贝氏体和粒状组织不能以小岛是否平行排列为标准, Cr能有效抑制低碳Mn、Si钢中的粒状组织转变,使高温先共析铁素体中不出现小岛。
     3. Mn系贝氏体钢空冷后存在较大的宏观残余应力,屈服强度较低。低温回火能有效消除残余应力,使屈服强度增高,400℃左右回火后屈服强度达到最高。将Mn系贝氏体钢提高Si含量后经低温回火能获得很好的强韧性配合,对于低Si钢,高温回火后韧性值显著提高。
     4.随着变形温度的降低,低碳Mn系贝氏体钢中铁素体量增多,晶粒细化,韧性提高,加Nb之后相同形变工艺下组织显著细化,终轧温度降至760℃后,铁素体的量不发生明显的增多,而进一步发生细化,铁素体相变开始以形核为主。含Nb的低碳Mn系贝氏体钢性能比不含Nb的对于终轧温度更敏感,降低终轧温度能更有效提高含Nb钢的性能。
     5.采用粒状贝氏体/马氏体(Bg/M)复相组织,成功研制出工艺简单、低成本的930MPa级超高强螺纹钢筋,已实现工业化生产。对原有低碳Mn系贝氏体非调质中厚钢板进行了性能优化,优化后组织类型为仿晶界铁素体、晶内铁素体、粒状贝氏体复相,控轧+空冷后,R0.2﹥600MPa, Rm﹥800MPa,0℃的V型冲击韧性值大于150J。
Mn-series banitic steels with carbon content 0.07wt%-0.30wt% have been selected as the test materials in this paper. The methods of optimization on the strenghth and toughness of the steel have been systematically studied. The microstructures of Mn-series banitic steels of different carbon content and Si content and the changing of properties of the steels after air cooling and tempering have been studied. Phase transformation and the morphology of islands of granular structure were studied. The steels with the carbon content of about 0.08% were tested on Gleeble thermal-mechanical simulator machine, and the microstructures of non micro-alloyed and micro-alloyed steels were investigated after deformation at different temperature. The researching results were verified well by means of control rolling on testing rolling mills. The main conclusions of the paper are drawn as follows:
     1. Si almost has no influence on the microstructures of the steels with the carbon content 0.07~0.08%, but can improve the hardenbility of the steels with the carbon content 0.17%.
     2. The morphologies of M/A islands in the granular structure are two types: irregular and regular. The parallel islands are sensitive to form when the matrix grow in ledgewise mechanism. The islands parallelly or irregularly distributing are not the criterion of granular bainite and granular structure. The transformation of granular structure can be efficiently inhibited by Cr, so there are no islands in the proeutcoid ferrite.
     3. The huge macro residual stress will be remained in Mn-series bainitic steels after air cooling, result in low yield strength, and the stress will be efficiently eliminated after tempering at low temperature and the optimum temperature is about 400℃. The strength and toughness of the high Si content of the steels can match better after tempering at low temperature.
     4. The content of ferrite in low carbon Mn-series increases with the deformation temperature decreased, and the grains and toughness are refined and improved. The microstructures of the Nb micro-alloyed steel are more refined on the same deformation process, and the ferrites keeps a relatively stable content when the deformation temperature decrease to about 760℃. However the grain refined further and the transformation of ferrites turns to nucleation dominated process. The strength and toughness of Nb Micro-alloyed Mn Series Bainitic Steels are more sensitive to the finishing rolling temperature, and the properties of Nb Micro-alloyed steels can be improved more effectively with decreasing the finishing rolling temperature.
     5. The reinforced bar with the yeild strength 930MPa has been developed and the microstructure is B/M dual phase, the process is simple and cost is low, and successfully industrialized. The non-moderating medium plate with high strength and toughness has been developed, and the microstructure includes FGBA、intragranular ferrite、granular bainite, the properties are: R0.2﹥600MPa, Rm﹥800MPa, AKV(0℃)﹥150J after control rolling and air cooling。
引文
[1]陈蕴博.强韧微合金非调质钢的研究动向.材料导报,2000 (8) :327
    [2]解振林.非调质钢的研究、应用及其最新进展,河北理工学院学报.河北理工学院学报, 2002年5月2002:36-41
    [3] Buchi G J P, Page J H R, Sidey M P:JISI: 1965; 203: 291-298
    [4] Biss V, Cryolerman R L: Metall. Trans. : 1971, 2: 2267-2276
    [5] Habraken L.J., Economopoulos M. Bainitic Microstructures in Low-Carbon Alloy Steels and Their Mechanical Properties, Symposium: Transformation and Hardenability in Steels, Climax Molybdenum Company of Michigan, Ann Arbor, MI, 1967: 69-107
    [6] Bhadeshia H.K.D.H. Bainite in Steels (Second Edition), London: the Institute of Materials Communication Ltd, 2001:277-278
    [7]钟炳文,宋宇文.超高强度钢中的(M-A)组织与贝氏体.金属学报,1986, 22(4): 289-292
    [8] Bush M.E., Kelly P.M. Strengthening mechanism in bainitic steels, Acta Metallurgica, 1971, 19: 1363-1371.
    [9]方鸿生,白秉哲,邓海金等.粒状贝氏体组织形态、精细结构及相变.金属热处理学报,1982, 3(2): 76-90
    [10] Zhang Shouhua, Zhang Hong, Yuan Yi. Deformation and fracture of a microalloyed 12SiMoVNb steel with granular bainite structure, in Gray J.M., Ko T., Zhang Shouhua, et al, ed., HSLA Steels: Metallurgy and Applications, Proceedings of an international conference, Bejing, ASM International, 1985:113-120
    [11]方鸿生,白秉哲,郑秀华,等.粒状贝氏体和粒状组织的形态与相变.金属学报:1986, 22(4):A283-288
    [12]方鸿生,白秉哲,邓海金,等.低碳Fe-Mn-B钢粒状贝氏体的组织及其强韧性.机械工程材料. 1981, 5(2):5-11
    [13] Mangonon P. L. Effect of Alloying Elements on the Microstructure and Properties of a Hot-Rolled Low-Carbon Low-Alloy Bainitic Steel, Metallurgical Transactions A, 1976, 7(9): 1389-1400
    [14] Bold T., Garbarz B. The Structure of Martensit-Austenite Islands in Granular Bainite. Practical Metallography. 1980, 17(7): 338-343
    [15]康沫狂,管敦惠,郭成道,等,低合金高强度结构钢中的(M-A)组织.理化检验(物理分册),1979, 15(6): 1-11, 18
    [16]黄维刚,方鸿生,郑燕康. C-Si-Mn-B系贝氏体钢的强度及强化机制.钢铁研究学报,2003, 01期:38-41
    [17] Wang Shyi-Chin, Hsieh Rong-Iuan, et al. The Effects of Rolling Processes on the Microstructure and Mechanical Properties of Ultralow Carbon Bainitic Steels, Materials Science and Engineering, 1992, A157: 29-36
    [18]杨柳,方鸿生,孟至和. Fe-C-Mn-B合金奥氏体等温分解动力学及Mn的再分配.金属学报,28(1), 1992: A16-20
    [19]郑燕康,方鸿生,陈秀云.中碳空冷贝氏体/马氏体复相组织精细结构与强韧性研究.清华大学学报,1986,26(2):34~43
    [20]黄维刚,方鸿生,郑燕康.硅对Mn-B系空冷贝氏体钢组织与性能的影响.金属热处理学报,1997,18(1):8~13.
    [21]黄维刚,徐蓉,方鸿生,等.中低碳含硅空冷贝氏体钢的冲击韧性.钢铁研究学报,1997,9(2):31~34.
    [22]方鸿生,刘东雨,白秉哲,等.无碳化物贝氏体/马氏体复相钢的新进展,金属热处理,2001, 10期:4-6
    [23] Miihkinen V T T,Edmonds D V.Microstructural examination of two experimental high-strength bainitic low-alloy steels containing silicon.Mater Sci Technol,1987,3:422-431
    [24] Miihkinen V T T,Edmonds D V.Tensile deformation of two experimental high-strength bainitic low-alloy steels containing silicon.Mater SciTechnol,1987,3:432-440
    [25] Miihkinen V T T,Edmonds D V.Fracture toughness of two experimental high-strength bainitic low-alloy steels containing silicon.Mater SciTechnol,1987,3:441-449
    [26]张明星,周鹿宾,康沫狂.冷却速度对低碳贝氏体钢组织性能的影响,西北工业大学学报,1990,增刊:133-139
    [27]康沫狂.钢中非典型贝氏体的力学行为.西北工业大学学报,1990,增刊:121-126
    [28]胡光立,刘正堂,康沫狂.几种结构钢的回火贝氏体脆性.西北工业大学学报,1990,增刊:127-132
    [29] E. K. Storms, N. H. Krikorian,“The Niobium-Niobium carbide System,”J. Phys. Chem., 64(1960): 1471.
    [30] H. Watanabe, Y. E. Smith and R. D. Pehlke,“Precipitation Kinetics of Niobium Carbonitride in Austenite of High-Strenghth Low-Alloy Steels,”The Hot Deformation of Austenite, ed. John B. Balance (New York, NY: TMS-AIME, 1977): 140-168.
    [31] W.a. bandi, private communication with author, United States steel corporation research laboratories 1979.
    [32] L. Meyer, H.E. Buhler and F. Heisterkamp,“metallurgical and technological basis for the development and production of pealite-poor structural steels,”thyssenforschng, 3(1971): 8-43
    [33] M. L. santella,“Grain growth and high-temperature hot rooling behavior of low-alloy steel austenite”(ph.D. Thesis, university of Pittsburgh, 1981)
    [34] W.B. pearson, Handbook of Lattice spacings and structures of Metals and alloys, Vol. 2(London, England: pergamon press, 1958): 124
    [35] J. M. gray,“effect of niobium(columbium) on Transformation and precipitation process in high strenghth low alloy steels,”heat treatment 73(metals society, London, 1973): 19-28
    [36] R. Grimaldi, et al.,“electrolytic isolation and identification by means x-ray diffraction of niobium carbide and niobium nitride in steels with low contens of niobium,”Arch. Eisenhuettenwes, 38(5) (1967): 401-406
    [37] T. Mori and M. Tokizane,“steel with niobium addition. IV. Influence of niobium on the mechnical strength of low-carbon steel,”Tetsu-to-Hagane, 51(1965): 2034-2036
    [38] S. Maneschi, et al.,“Separation and identification of nonmetallic phases of carbides and nitrides in columbium steels”, Metallurgia Italiana, v 58, n 1, Jan, 1966: 19-24
    [39] W. A. Roberts, A. Sandberg and T. Siwecki, Vanadium steels(Krakow), VANITEC, London, 1981: 19
    [40] DeArdo, A. J.; Brown, E. L. HOT ROLLING BEHAVIOR OF AUSTENITE MICROALLOYED WITH VANADIUM AND NITROGEN. Journal of Metals, v 29, n 1, Jan, 1977: 26-29
    [41] Sharma, R. C. et al.,“SOLUBILITY OF NIOBIUM CARBIDE AND NIOBIUM CARBONITRIDE IN ALLOYED AUSTENITE AND FERRITE.”Metall. Trans., 15A(3)(1984): 545.
    [42] Lakshmanan, V. K. et al., SOLUBILITY PRODUCT FOR NIOBIUM CARBIDE IN AUSTENITE. Metallurgical Transactions A (Physical Metallurgy and Materials Science), v 15A, n 3, Mar, 1984: 541-544
    [43] Andrade, H. L. et al., EFFECT OF MOLYBDENUM, NIOBIUM, AND VANADIUM ON STATIC RECOVERY AND RECRYSTALLIZATION AND ON SOLUTE STRENGTHENING IN MICROALLOYED STEELS. Metallurgical Transactions A (Physical Metallurgy and Materials Science), v 14A, n 10, Oct, 1983: 1967-1977
    [44] S. S. Hansen, J. B. Vander Sande, and M. Cohen, Metall. Trans., 11(1980): 387
    [45] W. J. Liu and J. J. Jonas, Metall. Trans., 20(1989): 689
    [46] B. Dutta, E. Valdes and C. M. Sellars, Acta Metall. Mater., 40(1992): 653
    [47] E. J. Palmiere, C. I. Garcia, and A. J. DeArdo, Metall. Trans., 27(1996): 951
    [48] E. J. Palmiere, C. I. Garcia and A. J. DeArdo, Metall. Mater. Trans., 25(1994): 277
    [49] W. J. Liu, Metall. Mater. Trans., 26(1995): 1641
    [50] B. Dutta, E. J. Palmiere and C. M. Sellars, Acta Metall., 49(2001): 785
    [51] C. S. Janampa, Ph.D. thesis, The University of Sheffield: 1982
    [52] C. M. Sellars, Mat. Sci. Tech., 6(1990); 1072
    [53] K. C. Russell, Adv. Coll. Int. Sci. Tech., 6(1990): 1072
    [54] R. Wagner, R., and R. Kampmann, R. in: Mater. Sci. Tech. A Comprehensive Treatment, eds. R. W. Cahn, P. Hassen and E. J. Krammer, Vol. 5, (VCH Verlagsgesselschaft GmbH, Weinheim, Germany,1991): 213
    [55] K. C. Russell, in: Phase Transformation, eds. H. I. Aaronson, (Metals Park: ASM, 1970): 219
    [56]齐俊杰,黄运华,张跃编著.微合金化钢,冶金工业出版社,2006
    [57] Irvine K J, Pickering F B. Low carbon bainitic steels. J.Iron Steel Inst 1957,187(4): 292~309
    [58]方鸿生,邓海金,低碳Fe-Mn-B钢粒状贝氏体的组织及其强韧性.机械工程材料,1981, 5(1): 5~14.
    [59]张弛,方鸿生,杨志刚,等.锰硅系贝氏体/马氏体复相钢中贝氏体精细结构的研究.金属学报, 2001, 06:561-566
    [60]杨福宝,徐平光,王建平,等.具有仿晶界型铁素体/粒状贝氏体复相组织的大截面钢筋.钢铁研究学报, 2005, 04:68-71
    [61]徐平光,方鸿生,白秉哲,等.仿晶界型铁素体/粒状贝氏体复相组织的韧性.金属学报, 2002, 03:255-260
    [62]刘东雨,徐鸿,杨昆,等.贝氏体/马氏体复相组织对低碳合金钢强韧性的影响.金属学报, 2004, 08:882-886
    [63]杨福宝,白秉哲,刘东雨,等.无碳化物贝氏体/马氏体复相高强度钢的组织与性能.金属学报, 2004, 03:296-300
    [64]刘东雨,方鸿生,白秉哲,等.无碳化物贝氏体/马氏体复相钢的强韧性.机械工程学报,2003, 08::27-31
    [65]韦东远,顾家琳,方鸿生,等. 1500MPa级贝氏体/马氏体复相高强钢的疲劳断裂特性.金属学报, 2003, 07:734-738
    [66]黄维刚,徐蓉,郑燕康,等.显微组织对中碳含硅贝氏体钢高应力冲击磨损性能的影响.机械工程材料, 1997, 01:4-6
    [67]黄进峰,方鸿生,徐平光,等,硅对贝氏体铸钢高应力冲击磨损性能的影响.钢铁研究学报, 2001, 01:40-45
    [68]杨业元,方鸿生,郑燕康,等,碳钢的高应力冲击磨损行为研究.摩擦学学报, 1996, 02:120-124
    [69]方鸿生,杨业元,姜忠良.贝氏体钢磨球与我国磨球材料.兵器材料科学与工程, 1993, 05:1-10
    [70]胡达新,王家军,杨志刚,等. Mn-B系空冷贝氏体钢转变动力学及组织研究,汽车技术1995, 01:27-30
    [71]黄进峰,方鸿生,余贵春,等.新型低碳贝氏体非调质钢研究,机械工程材料,1999, 01:20-23
    [72] Fang Hongsheng, Zheng Yankang, Chen Xiuyun et al. Novel Air-cooled Bainitic Steels. J. of Metals, 1988, 40(3):51.
    [73] Fang Hongsheng, Zheng Yankang, Chen Xiuyun et al. A Series of New Type Air Cooling Bainitic Steels. SEAISI qurterly, 1991, 20(3):30
    [74] Fang Hongsheng, Zheng Yankang, Chen Xiuyun et al. Development of a Series of New Air Cooled Bainitic Steels in China. In: Geoffrey Tither, Zhang Shouhua, eds. HSLA STEELS: Processing, Properties and Applications. Beijing: TMS, 1992. 119~125
    [75]方鸿生,薄祥正,郑燕康,等.贝氏体组织与贝氏体钢,金属热处理,1998, 11
    [76]方鸿生,郑燕康,陈秀云,等.空冷贝氏体型少热处理钢,金属热处理,1985,9:3-8
    [77] Czyryca E.J. Advances in High Strength Steel Technology for Naval Hull Construction, Key Engineering Materials, 1993, 84~85:491-520
    [78] Gross J.H., Stout R.D., Czyryca E.J. Processing of high yield strength steels-Part I HY-130 steel, in Proceedings of the 1995 International Symposium High Performance Steels for Structural Applications, Cleveland, Ohio, 1995: 161-168
    [79]傅积和,孙玉林主编.焊接数据资料手册[M],北京:机械工业出版社,1994: 422-433
    [80]新日鐵公司,新商品紹介:電力?タンク?圧力容器用厚板:WEL-TEN鋼(詳細情報), http://www.nsc.co.jp/plate/newprd/denryoku/den07a.html
    [81] DeArdo A.J., Multi-phase microstructures and their Properties in high strength low carbon steels, ISIJ International, 1995, 35(8): 946-954
    [82] Sen S.S., Ray A., Avat R., et al, Microstructure and properties of quenched-and-aged plates produced from a copper-bearing HSLA steels, Journal of Materials Engineering and Performance, 1998, 7(4): 504-510
    [83]徐建国,关菊,郭宏.高强度焊接结构钢HQ60、HQ60H的研制.鞍钢技术,1994,4:20-29
    [84]高季明,黄雨华等.高应力比下HQ60钢焊缝的疲劳裂纹扩展速率.焊接学报,1995,16(4):190-195
    [85]侯豁然,朱维翰,陈荣仙等.未再结晶区控轧工艺对HQ60钢的显微组织与力学性能的影响.钢铁,1998, 33(11): 46-49
    [86]李道明,姚枚. HQ-70钢的冷脆行为及其组织相关性的研究.钢铁,1992,27(4): 51-54
    [87]张万山,秦瑞凯. HQ80钢的开发及微合化元素的应用.鞍钢技术,1996,4:20-23
    [88]秦瑞凯,张万山,王德水,等.高强度焊接结构钢HQ80C的研制.鞍钢技术,1994,4:30-38
    [89]张万山,秦瑞凯,夏殿佩,等.回火温度对HQ80调质高强度钢力学性能与显微组织的影响,钢铁研究学报,1994, 6(1):55-58
    [90]李升龙,郝启望.高强度焊接结构钢HQ100及配套焊条材料的研究.鞍钢技术,1999,4:39-47
    [91]邹增大,李亚江. HQ130钢熔合区微裂纹扩展形态及断口特征.机械工程学报,1999, 35(6):70-73
    [92]盛光敏,彭侃,高长益.非调质状态下HG80钢的组织和性能研究.钢铁1999, 34(3):53-57
    [93]曹佩銮,周汉林. HG80钢焊接工艺探析.应用科技,2000, 27(10):7-9
    [94]周宣,李玮,王玉涛,等. DB590钢焊接冷裂纹敏感性的研究.钢铁研究,1998, 2:51-54
    [95]邵夫奎.超低碳贝氏体DB590钢在推土机上的应用.工程机械,1999,11:33-35
    [96]孙建林,康永林,贺信莱,等. 800MPa级低合金中厚钢板的工艺及力学性能分析.新一代钢铁材料研讨会论文集,北京:中国金属学会,2001:345-348
    [97]董成瑞,任海鹏,金同哲,等.微合金非调质钢.北京:冶金工业出版社,2000.
    [98] Sankaran S,Sarma V S,Gouthama Sangal S,et al.Low cycle behavior of amultiphasemediumcarbon microalloyed steel processed through rolling.Scripta Mater,2003,49:503-508.
    [99] Matlock D K,Krass G,Speer J G.Microstructure and properties of direct-cooled microalloy forging steels. Mater Process Technol,2001,117:324-328.
    [100]宣卫芳;罗天元;杨晓然. 49MnVS3非调质易切削钢汽车曲轴的失效分析理化检验.物理分册2005, 12:630-632
    [101]施爱莉.国产化非调质钢49MnVS3在桑塔纳轿车曲轴上的应用;汽车技术;1995, 01:36-39
    [102]胡淑娥,唐立东,冯勇,王祥宾.贝氏体型非调质钢的试制.钢铁钒钛, 2003, 01:66-70
    [103]赵量.非调质钢的发展和第三代非调质钢.钢铁钒钛,1990,11(1):96-103
    [104] Huang Y H et al. Strengthing and Toughening mechanisms of the microalloying non-quenching and tempering steel. Materials science forum, 2005,475-479:97-100
    [105]张跃,黄运华,翟浩,等.一种新型高性能非调质钢.钢铁研究学报,2005, 17(2):54-58
    [106]胡淑娥,唐立东,冯勇,等.贝氏体型非调质钢的试制.钢铁钒钛, 2003, 01(35 )1:12-16
    [107] Wright P H.Microalloyed forging steels: a new generation [J].Advanced Materials & Process,1988, 134:29-34
    [108] Wright P H.Method for producing a precipitation hardenable martensitic low alloy steel forging.US Patent:4824492,1989-04-25.
    [109] Gu N J,Peng H F,Song X Y,et al.Modification and verification of the "twinning shear" method according to phenomenological crystallographic theory of martensitic transformation [J].Scripta Materialia,1996,34 (8):1267-1271
    [110]方鸿生,徐平光,白秉哲,等.一种新的复相组织———仿晶界型铁素体/粒状贝氏体.金属热处理,2000,11:1-5
    [111] Bhadeshia H K D H, Edmonds D V. Temered martensite embrittlement: Role of retained austenite and cementite, Met. Sci. 1979, 13(6): 325~334.
    [112]张伟,赵振业,冯玉书,等.等温处理40CrNi2Si2MoVA钢中残余奥氏体.航空材料学报,1995,15(2):27~33
    [113]周敬恩,涂铭旌.钢的第一类回火脆性.兵器材料科学与工程. 1988,21 (3):1~9,
    [114]刘东雨. 1500MPa级低碳无碳化物贝氏体马氏体复相钢的研究[博士学位论文].北京:清华大学材料科学与工程系,2000
    [115]桂州. Mn-系中、低碳贝氏体结构钢的制备与性能研究[硕士学位论文].北京:清华大学材料科学与工程系,2005.
    [116]康沫狂.贝氏体相变理论研究工作的主要回顾.金属热处理学报.第21卷,第2期,2 0 0 0 (6): 2-8
    [117] H.I.Aaronson. Decomposition of Austenite by Diffusional Processs,1962:391
    [118] M. Enomoto. Thermodynamics and kinetics of the formation of Widmanstatten ferrite plates in ferrous alloys. Enomoto Metall. Mat. Trans. A:1994;25:1947
    [119] K.M. Wu 1, M. Enomoto. Three-dimensional morphology of degenerate ferrite in an Fe–C–Mo alloy. Scripta Materialia 46 (2002) :569–57
    [120]黄维刚,方鸿生,等.硅和少量钼对Mn-B系贝氏体钢转变动力学的影响.金属热处理,1997,10:25~28
    [121]黄维刚;方鸿生;郑燕康;回火温度对高硅Mn-B系贝氏体钢强韧性的影响,金属热处理学报, 1999年04期:30-34
    [122]谭谆礼.锰硅铬系空冷贝氏体钢中硅的作用[博士学位论文].北京:清华大学材料科学与工程系,2006.
    [123] [日]米谷茂.残余应力的产生和对策.机械工业出版社:262
    [124]潘涛,杨志刚,白秉哲,等.钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究.金属学报,2003, 10
    [125]杨业元.新型Mn-B系贝氏体钢磨球磨损及破碎机理研究[博士论文].北京:清华大学材料科学与工程系:1995
    [126]陈文义,陈智力,等.粒状组织和粒状贝氏体的残余应力与屈服强度表达式.物理测试,1996,4:1~4
    [127]徐平光.仿晶界铁素体/粒状贝氏体复相钢的研究. [博士论文].北京:清华大学材料科学与工程系:2002
    [128] Davies R G. Early stages of yielding and strain aging of a vanadium-containing dual-phase steel Metall Trans, 1979, 10A: 1549
    [129] Bleck W, PHiu-on K. Grain refinement and mechanical properties in advanced high strength sheets steels. The joint internaltional Conference of HSLA Steels 2005 and ISUGS 2005, Hainan: CSM, 2005: 50
    [130] Davies R G, Magee C L. In: Kot R A ,Structure and properties of dual-phase steels. TMS-AIME, New York:, 1979:1
    [131] T.Tanaka,张展文.钢的控制轧制.兵器材料科学与工程,1985, Z1:101
    [132]王建平等,奥氏体形变对仿晶界型铁素体/粒状贝氏体复相钢组织和强韧性能的影响,金属学报,2004, (14)3:263-269
    [133]黄海冰等,铌、钛微合金化仿晶界型铁素体/粒状贝氏体复相钢的形变诱导铁素体相变的研究.金属热处理,2006, S1:124-129
    [134] Enomoto M, Norjirl V, Sato Y. Effects of vanadium and nibium on the nucleation kinetics of preoccupied ferrite at austenite grain boundaries in Fe-C and Fe-f-Mn alloys[J]. Mater Trans, 1994,35(12):859-867.
    [135]陈国安等,低碳微量铌钢形变过程中动态相变的特点.材料热处理学报,第27卷,第6期,2006年12月:89-94
    [136] B. Dutta, etc. Modelling the Kinetics of Strain INDUCEDPREcipitation in Nb Microalloyed Steels, Acta mater. 49 (2001) 785–794

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700