亚高山森林植物层次去除对土壤生态过程的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物多样性与生态系统功能的关系是生态学领域研究的热点与难点,但现有的研究主要集中在草地生态系统、水生生态系统和农田生态系统,受研究手段的限制,对森林生态系统研究相对较少。川西亚高山针叶林位于我国青藏高原东缘和长江上游地区,在生物多样性保育、水源涵养和全球碳循环中具有十分重要的、不可替代的作用和地位。同时,川西亚高山针叶林具有层次结构和物种丰富度相对简单、更新和演替规律十分清晰、结构和功能类型更加分化等特点,这为研究森林物种组成和多样性变化对森林生态系统功能及过程的影响提供了理想的天然实验室。大量研究表明,土壤生物多样性、植被与生态系统过程密切相关,土壤生物群落与植被的互动决定着生态系统过程,土壤生态系统很可能就是联系生物多样性与生态系统功能关系的桥梁与纽带。基于此,本研究于2007-2009年,以1988年营造的云杉人工纯林与混交林为研究对象,运用野外定位观测和林地控制实验的手段,从“植物多样性对土壤动物的影响、对土壤微生物的影响、对土壤酶活性的影响、对凋落物分解的影响”等4个方面,探讨了植物多样性对土壤生态过程的影响。以期丰富森林生态系统生物多样性与生态系统功能的理论研究成果,并为川西亚高山退化森林生态系统的恢复重建提供必要的基础数据。主要研究结果如下:
     1.植物多样性对土壤动物的影响
     不同林分类型的土壤动物群落结构具有明显的季节变化。云杉纯林获土壤动物7197头(不包括原生动物,下同);云杉混交林获土壤动物8831头。云杉混交林各类土壤动物类群数、密度、生物量和多样性指数均高于纯林,其中,大型土壤动物林分间有显著或极显著差异。云杉混交林腐食性和捕食性土壤动物比例高丁。纯林,而植食性土壤动物比例低于纯林。A/C值受纬度和海拔的影响,一定程度上能反映不同地带土壤动物的分布特征;在同一地带,还与生境的异质性、受干扰的程度和植物群落的多样性有关。云杉纯林A/C值为0.87,混交林为1.59,约为纯林1.83倍。云杉纯林土壤原生动物密度为365头/克鲜土,混交林为1046头/克鲜士,极显著高于纯林。两类林分土壤动物的剖面分布均具明显表聚性,并且有相似的季节动态。
     除草处理(RH)获土壤动物7529头;除灌处理(RS)获土壤动物6103头;对照(CK)获土壤动物10986头。除灌除草处理后,大型土壤动物类群数短期内有增加的趋势,而中小型土壤动物类群数和土壤动物总类群数呈下降趋势;除灌除草处理后,各类:L壤动物密度、生物量和DG指数基本以CK>RH>RS;腐食性土壤动物数量和比例以及A/C值均有所下降,其中,RH处理A/C值为0.92,RS处理A/C值为0.82,CK处理A/C值为1.43;除灌除草处理后,土壤原生动物密度下降,RH处理为958头/克鲜土,RS处理为1510头/克鲜土,CK处理为2666头/克鲜土,处理间有极显著差异;除灌除草处理后,土壤动物剖面分布的表聚性没有改变,但递减的速率以RS>RH>CK。总体而言,除灌处理对土壤动物群落的影响大于除草处理。
     2.植物多样性对土壤微生物的影响
     不同林分类型的土壤微生物群落的组成、数量、生物量存在差异。云杉纯林与混交林虽均以细菌数量最多,放线菌次之,真菌最少,但混交林真菌比例大于纯林;云杉纯林细菌数量和土壤微生物总数显著低于混交林,而放线菌和真菌数量极显著低于混交林;两类林分细菌、真菌、土壤微生物总数及纯林放线菌的剖面分布具明显表聚性,而混交林放线菌则以凋落物层最低,0-5cm土层最高;云杉纯林与混交林各类土壤微生物数量均以夏季最高,春季次之,秋季最低;土壤微生物生物量是土壤有机质较易分解的部分,是土壤养分重要的源与库,云杉纯林土壤微生物生物量碳氮低于混交林,其剖面分布和季节动态与土壤可培养微生物数量一致。
     除灌除草处理对土壤微生物数量和生物量的剖面分布特征产生了不同程度的影响。土壤细菌和真菌数量均以CK最大,RH次之,RS最小,而上壤放线菌数量则以RH最大,CK次之,RS最小;除灌除草处理对不同层次土壤微生物生物量的影响不同,其中,凋落物层土壤微生物生物量以RH最高,CK次之,RS最小,而0-5cm、5-10cm、10-15cm土层则以CK最高,RH次之,RS最低,除灌处理对土壤微生物生物量的影响大于除草处理,除草处理后土壤微生物生物量短期内有升高的趋势;除灌除草处理后,土壤微生物的剖面分布格局没有发生太大变化,但随土层加深,微生物数量和生物量递减的速率表现出差异,以RS最大,CK最小。
     3.植物多样性对上壤酶活性的影响
     不同林分类型的土壤蔗糖酶、脲酶、纤维素酶和脱氢酶活性表现出一定差异。云杉混交林各种酶活性均高于纯林;两类林分土壤酶活性均具明显表聚性,且有相似的季节动态,其中,蔗糖酶、脲酶与脱氢酶活性以秋季最低,夏季或春季最高,纤维素酶活性以夏季或秋季最高,春季最低。
     除灌除草处理后,4种酶活性均降低,以CK>RH>RS,除灌处理的影响大于除草处理;4种酶活性均以CK随土层加深递减的速率最小,RS递减的速率最大;4种酶中,以纤维素酶活性随土层加深递减的速率最大,脱氢酶活性递减的速率最小。
     4.植物多样性对凋落物分解的影响
     不同林分类型的凋落物分解特征存在差异。云杉纯林凋落物分解速率低于混交林,约为混交林的65.51-99.63%,前期差异明显,后期差异较小。云杉纯林土壤微生物与小型土壤动物(主要是线虫和原生动物)对凋落物分解的贡献率达68.71-94.03%,大中型土壤动物对凋落物分解的贡献率为5.97~31.29%;云杉混交林土壤微生物与小型土壤动物对凋落物分解的贡献率达90.29~94.22%,大中型土壤动物对凋落物分解的贡献率为5.78-9.71%。各类土壤动物与微生物的共同作用大于仅微生物和小型湿生上壤动物的作用。在云杉凋落物分解的开始2年,除N元素出现富集外,P、K、Ca、Mg等元素均表现为释放,从释放量的大小来看,基本以混交林大于纯林。在该研究区域,所有分解者中以线虫、原生动物和真菌对凋落物分解起至关重要的作用。
     除灌除草处理降低了凋落物分解速率,并且除灌处理导致的下降程度高于除草处理;各处理土壤动物与微生物对凋落物分解的共同作用大于仅微生物和小型湿生土壤动物的作用。各处理云杉凋落物分解的开始2年,N元素表现为富集,而P、K、Ca、Mg等元素则表现为释放。其中,除灌处理对凋落物养分释放表现为不利的影响,除Mg元素以外的N、P、K、Ca元素均以除灌处理释放量最小;除草处理在一定程度上有利于K元素的释放,而对N、P、Ca元素的释放影响不大,释放量仅次于或略等于对照。除灌除草处理后,凋落物分解过程中土壤动物、微生物及酶活性的变化并不是简单的以CK>RH>RS,而是表现出更加复杂的模式。由此认为,灌草层去除引起的凋落物组成和质量的改变,以及凋落物分解过程中土壤生物的多样性格局及酶活性的变化趋势是影响凋落物分解和养分周转的重要因素;同时,去除行为本身可能对森林生态系统的生物多样性以及物质循环功能产生干扰,干扰效应在处理早期比较明显,随时间推移逐渐减弱。
     综上所述,植物多样性低的林分,其土壤生物多样性、土壤酶活性以及凋落物分解速率低于多样性高的林分;灌木层缺失对土壤生态过程的影响大于草本层缺失。因此,提高植物多样性,丰富凋落物组成,通过地上/地下生物互动,促进养分元素的循环,是增强生态系统各项功能的有效途径。
The relationship between biodiversity and ecosystem function is a hot and difficult problem in the field of ecological research, but a lot of studies are mainly concentrated on the research of grassland ecosystems, aquatic ecosystems and farmland ecosystem, because the means of research is inadequate, studies of forest ecosystem are relatively seldom, as compared with those ecosystems. Subalpine coniferous forests located in eastern edge of Qinghai-Tibet Plateau and the upper area of Yangtze River, it played an important and irreplaceable role in biodiversity conservation, water conservation and the global carbon cycle. Meanwhile, subalpine coniferous forests have some characteristics, for example, the hierarchical structure is clear and species richness is relatively simple, the law of update and succession is clearer; the type of structure and function is more various and so on. Those characteristics provide an ideal natural laboratory for the study of the composition of forest species and variations of forest ecosystems function and the process as affected by diversity change. A large number of studies have shown that the process is closely related to soil biodiversity, vegetation and ecosystems, interaction relationship of soil biological communities and vegetation determine ecosystem processes, the soil ecosystem is likely a bridge which makes biodiversity contact with ecosystem function. Above all, spruce artificial pure forest and mixed forest which were planted in1988were studied in this paper, the effects of plant diversity on soil microbes, soil enzyme activity, litter decomposition though field positioning observation and woodland means of control experiments and the influence of plant diversity on soil ecological process. Those results would enrich theoretical studies of the forest ecosystem biodiversity and ecosystem function, and provide basic data for restoration and reconstruction of subalpine degraded forest ecosystems. The main findings are as follows:
     1. Effects of plant diversity on soil fauna
     Different types of stand showed differences of the structure and spatial and temporal distribution of soil animal community. There are7197soil animals in Picea asperata pure plantation(not including protozoa, the same below); there are8831soil animals in Picea asperata mixed plantation. The number, density, biomass and diversity index of soil animal group of Picea asperata mixed plantation were higher than Picea asperata pure plantation. Among them, the number, density, biomass and diversity indices of macro-fauna have a significant or very significant difference. The quantities of saprophagous and predatory soil fauna in Picea asperata mixed plantation are higher than Picea asperata pure plantation, but the quantities of phytophagous soil animals are less than Picea asperata pure plantation. The ratio of A/C was effected by latitude and altitude, to some extent, reflect the characteristics of the distribution of soil animals in different zones; it is related to the heterogeneity of habitat, the degree of interference and diversity of plant communities in the same zone. The ratio of A/C of Picea asperata pure plantation was0.87, Picea asperata mixed plantation wasl.59and is about1.83times former. Soil protozoa density of Picea asperata pure plantation was365in1g fresh soil, soil protozoa density of spruce mixed forest was1046in1g fresh soil was significantly higher than Picea asperata pure plantation. The profile distribution of soil fauna of two stand types both have apparent surface gathering, and similar seasonal dynamics, are higher in summer than in spring and autumn.
     Structure and distribution of soil animal communities showed different characteristics among different treatments.7529soil animals were collected in herb removal treatment (RH); the quantities of soil animals were6103in shrub removal treatment (RS).10986soil animals were collected in CK treatment. Through RH and RS treatment, the groups of soil macro-fauna showed increasing trend in short term, but the number of micro-and meso-soil fauna were decreasing; through RH and RS treatment, the density, biomass, and DG index of soil animals showed CK>RH>RS; number and proportion of saprophagous soil animals as well as A/C ratio were decreased, value of A/C was0.92in the RH treatment, value of A/C was0.82in the RS treatment, value of A/C of CK treatment was1.43; Through RH and RS treatment, soil protozoa density decreased,there were958soil animals in1g of fresh soil in RH treatment, there were1510soil animals in1g of fresh soil in RS treatment, there were2666soil animals in CK treatment, there was a significant difference among treatments; through RH and RS treatment, the profile distribution of soil animals has not changed, but a decreasing rate showed RS>RH>CK. Overall, effects of RS treatment on soil animal communities were more than RH treatment.
     2. The effects of plant diversity on soil microbes
     There were different component, number, biomass and temporal and spatial distribution of soil microbes in different plant types. Bacteria had the largest number in Picea asperata pure plantation and Picea asperata mixed plantation compared with other microbes, the order was Bacteria>actinomycetes>fungi, but the fungi ratio in mixed plantation was higher than that in pure plantation. The total number of microbes in Picea asperata pure plantation was significantly lower than that in Picea asperata mixed plantation, and number of actinomycetes and fungi in pure plantation were extremely lower than that in mixed plantation. Bacteria, fungi, total soil microbe number and actinomycetes in pure plantation in surface soil layer was higher than that in other soil layers, the actinomycetes had the lowest number in litter layer, and highest number in0-5cm layer compared with other soil layers. The order of Biomass in Picea asperata pure and mixed plantation was summer>spring>autumn. Biomass of soil microbes is the easy to decompose part in soil organic matter, which is an important source and sink, the profile distribution and seasonal dynamics of C/N of microbe biomass had the same trends with microbes number, and Picea asperata mixed plantation higher than that in Picea asperata pure plantation.
     After shrub removal, soil microbes number, biomass and profile distribution changed a lot. The number order of soil bacteria and fungi was CK>RH>RS, and the number order of actinomycetes was RH>CK>RS. There was different affection on the microbes'biomass of soil layers after shrub and herb removal. The order of microbes'biomass in litter layer was RH>CK>RS, and The order of microbes'biomass in soil layers were CK>RH>RS, microbes' biomass had negative response after shrub removal, and had positive response after herb removal after a short period. There no huge changes in microbe profile distribution after shrub and herb removal, but microbe number and biomass reduced with the soil depth increased, the highest was RS, and the lowest was CK.
     3. The effects of plant diversity on soil soil enzyme activity
     There were diffrent activity of soil invertase, urease, cellulase and dehydrogenase in different plant types. All enzyme activity in the Picea asperata mixed plantation was higher than that in pure plantation. And enzyme activity in surface soil layer was higher than that in other soil layers, and had the same seasonal trends. The order of invertase, urease and dehydrogenase activity was autumnspring.
     After shrub cutting,4enzymes'activity reduced, the order was CK>RH>RS, and the enzymes'activity effected by removing shrub are higher than that of removing herb. The lowest degressive rate of4enzymes activity with the soil depth increased was CK, the highest was RS. And cellulase had the highest degressive rate with the soil depth increased among the4enzymes, and dehydrogenase had the lowest degressive rate.
     4. The effects of plant diversity on litter decomposition
     Litter decomposition had different characteristics in the different plantation. The decomposition rate of Picea asperata pure plantation was lower than that in the Picea asperata mixed plantation, decomposition ratio of Picea asperata pure plantation and mixed plantation is65.51~99.63%. the significant difference was found in early period, and there was tiny difference in later period. The contribution of soil microbes and meso-fauna (mainly nematode and protozoa) to litter decomposition in Picea asperata pure plantation are68.71~94.03%, contribution of soil macro-fauna to litter decomposition was5.97~31.29%; The contribution of soil microbes and meso-fauna to litter decomposition in Picea asperata mixed plantation are90.29~94.22%, contribution of soil macro and meso-fauna to litter decomposition was5.78~9.71%. The interaction decomposition of soil microbes and soil fauna were higher that effect of pure soil microbes or soil fauna. The front2years' decomposition, P、K、Ca、Mg element showed releasing, but the N showed enrichment. Releasing quantity of mixed plantation was higher that in pure plantation.
     After shrub and herb removal, the litter decomposition rate decreased, and litter decomposition rate decreased caused by shrub removal was higher than that in herb removal. The interaction decomposition of soil microbes and soil fauna were higher that effect of pure soil microbes or soil fauna. The front2years' decomposition, P、K、Ca、Mg element showed releasing, but the N showed enrichment. Shrub removal had negative effect on the litter decomposition, N、P、K、Ca element showed releasing excepting Mg. Herb removal had positive effect on K releasing, and had little affection on the N、P、Ca releasing, the releasing quantity had no significant difference compared with CK. After shrub and herb removal, the changes of soil fauna, soil microbes and enzyme activity during the litter decomposition hadn't the order CK>RH>RS, but had more complicated models. The result can be conclude that the shrub and herb removal lead to the composition and quality changes, and the soil fauna diversity and the change trends of enzyme were the main factors which lead to litter decomposition and nutrition cycle during the litter decomposition. Meanwhile, the removal is an important interference which affects the biodiversity and material cycle; the interference affection was significant in early period.
     To summary, compared with rich plant diversity plantation, the soil biodiversity, soil enzyme activity, and litter decomposition rate were lower than that in the poor plant diversity plantation. Stronger affection on the soil ecology process was found in shrub removal compared with herb removal. Therefore, to increase plant diversity, to enrich litter composition, to interact upper and underground organisms, to improve nutrition recycles, can enhanced the functions of forest ecosystem.
引文
Aarssen L. W., Epp G. A.1990. Neighbour manipulations in natural vegetation:a review[J]. Journal of Vegetation Science,1:13-30.
    Aarssen L.W.1997.High productivity in grassland ecosystems:effected by species diversity or productive species[J].Oikos,80:183-184.
    Aarssen L.W.2001.On correlation and causations between productivity and species richness in vegetation:predictions from habitat attributes[J].Basic and Applied Ecology,2:105-114.
    Aerts R., Caluwe H. D.1997. Nutritional and plant-mediated controls on leaf liter decomposition of Carex species[J]. Ecology,78(1):244-260.
    Agrawal A. A.1998. Induced responses to herbivory and increased plant performance[J]. Science, 279:1201-1202.
    Aubert M., Margerie P., Trap J. et al.,2010.Aboveground-belowground relationships in temperate forests:Plant litter composes and microbiota orchestrates[J]. Forest Ecology and Management,259: 563-572.
    Badiane N.N.Y., Chotte J.L., Pate E. et al.,2001.Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semiarid tropical region[J].Applied Soil Ecology, 18(3):229-238.
    Ball B. A., Bradford M. A., Coleman D.C.et al.,2009. Linkages between below and aboveground communities:Decomposer responses to simulated tree species loss are largely additive[J]. Soil Biology and Biochemistry,30:1-9.
    Barajas G. G., Alvarez S. J.2003. The relationships between litter fauna and rates of litter decompo-sitionin a tropical rain forest[J]. Applied Soil Ecology,24:91-100.
    Bardgett R. D., Chan K. F.1999. Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems[J]. Soil Biology and Biochemistry, 31:1007-1014.
    Bardgett R. D., Wardle D. A.2003. Herbivore mediated linkages between aboveground and below-ground communities[J]. Ecology,84:2258-2268.
    Bardgett R. D., Wardle D. A.,Yeates G. W.1998. Linking above-ground and below-ground food webs: how plant responses to foliar herbivory influences soil organisms[J]. Soil Biology and Biochemistry,30:1867-1878.
    Beare M. H., Coleman D. C., Crossley D. A. et al.,1995. A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling[J]. Plant and Soil,170:5-22.
    Behan-Pelletier V., Newton G.1999. Linking soil biodiversity and ecosystem function-the taxonomic dilemma [J]. Bioscience,49:149-153.
    Bengtsson J., Lundkvist H., Saetre P. et al.,1998.Effects of organic matter removal on the soil food web: Forestry practices meet ecological theory[J]. Applied Soil Ecology,9:137-143.
    Berg B.2000. Litter decomposition and organic matter turnover in northern forest soils[J].Forest Ecology and Management,133:13-22.
    Berg B., Berg M. P., Bottner P.1993. Litter mass loss rates in pine forests of Europe and Eastern United States:some relationships with climate and litter quality[J]. Biogeochemistry,20:127-153.
    Binet F., Fayolle L., Pussard M.1998. Significance of earthworms in stimulating soil microbial activity[J]. Biology and Fertility of Soils,27:79-84.
    Boerner R.E.J., Decker K. L. M., Sutherland E. K.2000.Prescribed burning effects on soil enzyme activity in a southern Ohiohard wood forest:A landscape scale analysis[J]. Soil Biology and Biochemistry,32(7):899-908.
    Boerner R.E.J., Waldrop T.A., Sheldune V.B.2006.Wildfire mitigation strategies affect soil enzyme activity and soil organic carbon in loblolly pine(Pinus taeda) forests[J]. Canadian Journal of Forest Research,36(12):3148-3154.
    Bonkowski M.2004. Protozoa and plant growth:the microbial loop in soil revisited[J]. New Phytologist, 162:617-631.
    Brookes P. C., Landman A., Pruden G., et al.,1985.Chloroform fumigation and the release of soil nitrogen:Arapid direct extraction method to measure microbialbiomass nitrogen in soil[J]. Soil Biology and Biochemistry,17:837-842.
    Brussaard L., Behan-Pelletier V.M., Bignell D. et al.,1997.Biodiversity and ecosystem functioning in soil[J], Ambio,26:563-570.
    Burger J.A., Kelting D.L.1999. Using soil quality indicators to assess forest stand management[J].Forest Ecology and Management,122:155-166.
    Burns R.G., Dick R.P.2001.Enzymes in the Environment:Ecology, Activity and Applications[M]. New York:Marcel Dekker, Inc.
    Campbell B. D., Grime J. P., Mackey J. M. L. et al.,1991. The quest for a mechanistic understanding of resource competition in plant communities:the role of experiments[J]. Functional ecology,5:241-253.
    Carolyn B. M., Jennie R. M., Roy T.2011. Soil microbial communities resistant to changes in plant functional group composition[J].Soil Biology and Biochemistry,43:78-85.
    Carreiro M., Sinsabaugh R., Repert D. et al.,2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition[J]. Ecology,81:2359-2365.
    Chapin F.S.III, Matson P.A., Mooney H. A.2002. Principles of Terrestrial Ecosystem Ecology[M]. New York:Springer-Verlag:206-206.
    Christensen S., Griffiths B.S., Ekelund F. et al.,1992. Huge increase in bacterivores on freshly killed barley roots[J]. FEMS Microbiology Ecology,86:303-310.
    Clarholm M.1985. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen [J].Soil Biology and Biochemistry,17:181-187.
    Coartez J., Bouehe M.2001. Decomposition of Mediterranean leaf litters by Nicodrilus meridionalis(Lumbrieidae)in laboratory and field experiments[J].Soil Biology and Biochemistry, 35:2023-2035.
    Coleman D. C.1994. The microbial loop concept as used in terrestrial soil ecology studies[J]. Microbial Ecology,28:245-250.
    Coleman D.C., Cole C.V., Elliot E.T.1984.Decomposition,organic matter turnover, and nutrient dynamics inagroecosystems. In:Lowrance R., Stinner B.R., House G.J.(eds.). Agricultural Eco-systems, Unifying Concepts[M]. New York:Wiley.
    Coleman D.C., Crossley D.A.1996.Fundamentals of Soil Ecology[M]. Academic Press, San Diego.
    Coleman T.W, Rieske L.K.2006. Arthropod response to prescription burning at the soil-litter interface in oak-pine forest[J], Forest Ecology and Management,233:52-60.
    Connell J.H.1978.Diversity im tropical rain forest and coralreefs[J]. Science,199:1302-1310.
    Couteaux M. M., Bottner P.1994. Biological interactions between fauna and the microbial community in soils. In:Ritz K., Dighton J., Giller K. E.(eds.). Beyond the Biomass[M]. Chichester:John Wiley & Sons Inc.
    Criquet S., Farnet A.M., Tagger S.2000.Annual variations of phenoloxidase activities in an evergreen oak litter:influence of certain biotic and abiotic factors[J].Soil Biology and Biochemistry,32: 1505-1513.
    Criquet S.,Tagger S., Vogt G.1999.Laccase activity of forest litters[J].Soil Biology and Biochemistry, 31:1239-1244.
    David A. L., Steven K. S., Russell K. M.1999. Links between microbial population dynamics and nitrogen availability in an alpine ecosystem[J]. Ecology,80(5):1623-1631.
    David A.W., Gregor W. Y., Gary M. B.2006.The influence of plant litter diversity on decomposer abundance and diversity[J]. Soil Biology and Biochemistry,38:1052-1062.
    David A.W., Gregor W.Y., Gary M. B. et al.,2006.The influence of plant litter diversity on decomposer abundance and diversity[J]. Soil Biology and Biochemistry,38:1052-1062.
    Deacon L. J., Pryce-Miller E. J., Frankland J. C. et al.,2006. Diversity and function of decomposer fungi from a grassland soil[J]. Soil Biology and Biochemistry,38:7-20.
    Deyn G. B. D., Putten W. H. V.2005.Linking aboveground and belowground diversity[J].Trends in Ecology and Evolution,20:625-632.
    Diaz S., Chapin F. S. Ⅲ, Symstad A. et al.,2003. Functionaldiversity revealed through removal experi-ments[J].Tends in Ecology and Evolution,18:140-146.
    Djigal D., Brauman A., Diop T.A. et al.,2004. Influence of bacterial-feeding nematodes (Cephalobidae)on soil microbial communities during maize growth[J].Soil Biology and Biochemistry,323-331.
    Doda J.J., Freeman D.C., Emlen J. M.2003.Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogrtion glomeratus[J].Biology and Fertility of Soils,38:72-77.
    Doran J. W.,Coleman D. C, Bezdicek D.F.et al.,1994.Defining Soil Quality for a Sustainable Environment [M]. Madison, Wl:Soil Science Society of American, American Society of Agronomy.
    Duffy J. E., Richardson J. P.,Canuel E A.2003.Grazer diversity effects on ecosystem functioning in seagrass beds[J]. Ecology Letters,6:637-645.
    Edmonds R. L., Thomas T. B.1995. Decomposition and nutrient release from green needles of western hemlock anti Pacific silver fir in an old-growth temperate rain forests, Olympic National Park Washington[J]. Canadian Journal of Botany,25:1049-1057.
    Edwards C.A., Bohlen P.J.1996. Biology and Ecology of Earthworm[M].Chapman & Hall, London.
    Elton C. S.1958. Ecology of Invasions by Animals and Plants[M]. London:Chapman & Hall.
    Facelli J.M., Pickett S.T.A.1974. Plant litter:its dynamics and effects on plant community structure[J]. Botanical Reviews,57:1-32.
    Findlay S., Tank J., Dye S. et al.,2000. Across system comparison of bacteria land fungal biomass in detritus pools of headwater streams[J]. Microbial Ecology,43:55-66.
    Firband L. G., Carter N., Darbyshire J. F. et al.,1991. The Ecology of Temperate Cereal Fields [M]. London:Oxford Blackwell Scientific Publications.
    Fisk M. C., Schmidt S. K.1996.Microbial responses to nitrogen additions in alpine tundra soils[J]. Soil Biology and Biochemestry,1996,28:751-755.
    Flora A. R., Massimo M., Oriana M. et al.,2006.Changes in microfungi and fauna of burned and unburned soils in a Mediterranean area of southern Italy[J]. Forest Ecology and Management,15.
    Frank S., Christophe C.T.1998.A new approach to utilize PCR-single-strand-conformation polymorph-ism for 16srRNA gene-based microbial community analysis[J]. Applied and Environmental Micro-biology,64(12):4870-4876.
    Freckman D.W., Blackburn T.H., Brussaard L. et al.,1997. Linking biodiversity and ecosystem functioning of soils and sediments[J]. Ambio,26:555-562.
    Freckman D.W.1988. Bacterivorous nematodes and organicmatter decomposition[J]. Agriculture, Ecosystem and Environment,24:195-212.
    Fridley J.D.2001.The influence of species diversity on ecosystem productivity:how, where, and why? [J].Oikos,93:514-526.
    Fu S.L., Ferris H., Brown D., Plant R.2005. Does the positive feedback effect of nematodes on the biomass and activityof their bacteria prey vary with nematode species andpopulation size?[J]. Soil Biology and Biochemistry,37:1979-1987.
    Fyles J.W., Fyles I. H.1993.Interaction of Douglas-fir with red alder and salal foliage litter during decomposition[J].Canadian Journal of Forest Research,23(3):358-361.
    Gary G. M., Christopher S. M., Schiner K. L. et al.,2001. What is the observed relationship between species richness and productivity? [J]. Ecology,82(9):2381-2396.
    Griffiths B. S.1994. Microbial-feeding nematodes and protozoa in soil:Their effects on microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere[J]. Plant and Soil,164:25-33.
    Griffiths B.S., Ekelund F., Ronn R.et al.,1993. Protozoa and nematodes on decomposing barley roots[J]. Soil Biology and Biochemistry,25,1293-1295.
    Griffiths B.S., Welschen R., Van Arendonk J.C. M. et al.,1992. The effect of nitrate-nitrogen supply on bacteria and bacterial-feeding fauna in the rhizosphere of different grass species[J]. Oecologia,91: 253-259.
    Griffiths B.S.1986. Mineralization of nitrogen and phosphorusby mixed cultures of the ciliate protozoan Colpoda steinii, the nematode Rhabditis spp. and the bacterium Pseudomonas fluorescens[J]. Soil Biology and Biochemistry,18,637-641.
    Grifiths B.S., Bonkowski M., Dobson G. et al.,1999. Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa[J]. Pedobiologia,43:297-304.
    Groffman P.M., Eagan P., Sullivan W.M., et al.,1996. Grass species and soil type effects on microbial biomass and activity[J]. Plant and Soil,183:61-67.
    Gulis V., Suberk ropp K.2003. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter[J]. Microbial Ecology,45:11-19.
    Hassett J. E., ZAK D. R.2005.Aspen harvest intensity decreases microbial biomass and extracellular enzyme activity and soil nitrogen cycling[J]. Soil Science Society of America Journal, 69(1):227-235.
    Hattenschwiler S., Gasser P.2005.Soil animals alter plant litter diversity effects on decomposition [J]. Proceedings of the National Academy of Sciences of the United States of America,102: 1519-1524.
    He J.S., Bazzaz F.A., Schmid B.2002.Interactive effects of diversity, nutrients and elevated Co2 on experimental plant communities[J]. Oikos,97:337-348.
    He W.X., Zhu M.E.1997. Relationship between urease activity and fertility of soils in Shanxi Province[J]. Acta Pedologica Sinica,34(4):392-398.
    Hecor A., Beale A. J., Minns A. et al.,2000. Consequences of the reduction of plant diversity for litter decomposition:effects through litter quality and microenvironment[J]. Oikos,90:357-371.
    Hector A., Schmid B., Beierkuhnlein C. et al.,1999. Plant diversity and productivity experiments in European grassland[J]. Science,286:1123-1127.
    Hedlund K., Korthals G.W., Lavorel S. et al.,1997.Interactions between soil biodiversity, vegetation and ecosystem processes. In:Wolters V.(eds.). Functional Implication of Biodiversity in Soil[M]. Brussels.
    Hendrix P.,Parmelee R.,Crossley J.D. et al.,1986. Detritus food webs in conventional and no-tillage agro-ecosystems[J]. BioScience,36:374-380.
    Hooper D.U., Vitousek P. M.1997.The effects of plant composition and diversity on ecosystem processes [J]. Science,277:1302-1305.
    Hooper, D.U.1998. The role of complementarity and competition in ecosystem responses to variation in plant diversity[J]. Ecology,79:704-719.
    Hu F., Li H. X., Xie L.Q. et al.,1999. Interactions of bacterivorous nematode and bacteria and their effects on mineralization-Immobilization of nitrogen and phosphorus[J]. Acta Ecologica Sinica,19: 914-920.
    Huebner K., Lindo Z., Lechowicz M.J.2012. Post-fire succession of collembolan communities in a northern hardwood forest[J]. European Journal of Soil Biology,48:59-65.
    Huhta V., Karpinnen E., Nurminen M. et al.,1967.Effects of silvicultural practices upon arthropod, annelid and nematode populations in coniferous forest soil[J]. Annales Zoologici Fennici,4: 87-145.
    Hunt H.W.,Coleman D.C.,Ingham E.R. et al.,1987. The detrital food web in a short-grass prairie[J]. Biology and Fertility of Soils,3:57-68.
    Huston M. A.1997.Hidden treatments in ecological experiments:re-evaluating the ecosystem function of,biodiversity[J].Oecologia,110:449-460.
    Hutsch B.W., Augustin J., Merbsch W.2002.Plant rhizodeposition-an important source of carbon turnover in soils[J]. Journal of Plant Nutrition and Soil Science,165:397-407.
    Ilieva-Makulec K., Makulec G.2002. Effect of the earthworm Lumbricus rubellus on the nematode community in a peat meadow soiL[J]. European Journal of Soil Biology,38:59-62.
    llieva-Makulec K., Olejniczak I., Szanser M.2006.Response of soil micro-and mesofauna to diversity and quality of plant litter[J]. European Journal of Soil Biology,42:244-249.
    Imberger K.T.,Chiu C.Y.2001.Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region[J].Biology and Fertility of Soils,33: 105-110.
    Ingham R. E., Trofymow J. A., Ingham E. R. et al.,1985.Interactions of bacteria, fungi, and their nematode grazers:effects on nutrient cycling and plant growth[J].Ecological Monographs,55: 119-140.
    Ives A. R., Cardinale B. J., Snyder W. E.2005.A synthesis of subdisciplines:Predator-prey interactions, and biodiversity and ecosystem functioning[J]. Ecology Letters,8:102-116.
    Jaeger C. H., Monson R. K., Fisk, M. C., et al.,1999. Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem[J]. Ecology,80(6):1883-1891.
    Jentschke G., Bonkowski M., Godbold D. L. et al.,1995.Soil protozoa and plant growth: Non-nutritional effects and interaction with mycorrhizas[J].Biology and Fertility of Soils,20: 263-269.
    Jiang X. L., Zhang W.G., Wang G.2007.Biodiversity effects on biomass production and invasion resis-tance in annual versus perennial plant communities[J]. Biodiversity Conservation,16:1983-1994.
    Jie Z., Xiaoling W., Yuanhu S. et al.,2011. Effects of vegetation removal on soil properties and decomposer organisms[J]. Soil Biology and Biochemistry,43:954-960.
    Joergenson R. G., Anderson T. H.,Wolters V.1995.Carbon and nitrogen relationships in the microbial bio-mass of soils in beech(Fagus sylvatica L.) forests[J]. Biology and Fertility of Soils,19: 141-147.
    Jones C. G., Lawton J. G., Shachak M.1994. Organisms as ecosystem engineer[J]. Oikos,69:373-386.
    Krivtsov V., L iddell K., Bezginova T. et al.,2005. Forest litter bacteria:Relationships with fungi, micro-fauna, and litter composition over a winter-spring period[J]. Polish Journal of Ecology,53: 383-394.
    Kaiser J.2000.Rift over biodiversity divides ecologists[J]. Science,289:1282-1283.
    Kaye J. P., Hart S.C.1997.Competition for nitrogen between plants and soil microorganisms[J]. Trends Ecology Evolution,12:139-143.
    Kerry B. R.2000. Rhizosphere interactions and the exploitation of microbial agents for the biological control[J]. Annual Review of Phytopathology,38:423-441.
    Kiss I.1957.The invertase activity of earthworm casts and soils from anthills[J]. Agrokem Talajtan, 6:65-85.
    Knox O. G.G., Killham K., Mullins C. E. et al.,2003. Nematode-enhanced microbial colonization of the wheat rhizosphere[J]. FEMS Microbiology Letters,225:227-233.
    Kourtev P. S., Ehrenfeld J. G., Huang W. Z.2002. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey[J]. Soil Biology and Bioch-emistry,34:1207-1218.
    Kozlov K.A.1965.The role of soil fauna in the enrichment of soil with enzymes[J]. Pedobiologia, 5:140-145.
    Kreuzer K., Adamczyk J., Iijima M. et al.,2006.Grazing of a common species of soil protozoa(Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice(Oryza sativa L.)[J]. Soil Biology and Biochemistry,38:1665-1672.
    Kreuzer K., Bonkowsk M., Langel R. et al.,2004.Decomposer animals(Lumbricidae, Collembola)and organic matter distribution affect the performance of Lolium perenne(Poaceae)and Trifolium repens(Fabaceae) [J]. Soil Biology and Biochemistry,36:2005-2011.
    Kubartova A., Ranger J., Berthelin J.et al.,2009.Diversity and decomposing ability of saprophytic fungi from temperate forest Iitter[J]. Microbial Ecology,58:98-107.
    Lavelle P.D.,Lepage B.M.1997.Soil function in a changing world:the role of invertebrate ecosystem engineers[J]. European Journal of Soil Biology,33:159-193.
    Lawton J.H.2000. The theory and practice of the science of biodiversity:a personal assessment. In: Kato M (eds).The Biology of Biodiversity[M].Berlin:Springer.
    Leps J.2004.Variability in population and community biomass in a grassland community affected by environmental productivity and diversity[J]. Oikos,107:64-71.
    Lipson D. A., Monson R. K.1998.Plant-microbe competition for soil amino-acids in the alpine tundra: effects of freeze-thaw and dry-rewet events[J]. Oecologia,113:406-414.
    Lisanework N., Michelsen A.1994. Litterfall and nutrient release by decomposition in three plantations compared with a natural forest in the Ethiopian highland[J]. Forest Ecology and Management,65: 149-164.
    Liu F.M., Hiroto T., Kikuo H.2001.Effects of clear-cutting and burning on characteristics of nitrogen mineralization and microbes in the forest soil of a Pinus massoniana plantation in Southern China[J]. Ecological Research,16:531-542.
    Loranger G., Ponge J.F., Blanchart E. et al.,1998. Impact of earthworms on the diversity of microarth-ropods in a vertisol (Martinique)[J]. Biology and Fertility of Soils,27:21-26.
    Loranger-Merc iris G, BarthesLaure, Gastine A. et al.,2006. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems[J]. Soil Biology and Biochemistry,38:2336-2343.
    Loreau M., Hector A.2001. Partitioning selection and complementarity in biodiversity experimentsfJ]. Nature,412:72-76.
    Loreau M., Naeem S., Inchausti P. et al.,2001.Biodiversity and ecosystem functioning:current knowledge and future challenges[J]. Science,294:804-808.
    Lussenhop J.1992. Mechanisms of microarthropod-microbial interactions in soil[J]. Advances in Eco-logical Research,23:4-23.
    MacArthur R.H.1955.Fluctuations of animal populations and ameasure of community stability [J]. Eco-logy,36:533-536.
    Manna M.C., Jha S. et al.,2003. Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition[J]. Bioresource Technology,88:197-206.
    Maria V., Cecilia P., Bjorn S. et al.,2005.Plant species effects on soil nematode communities in experi-mental grasslands[J]. Applied Soil Ecology,30:90-103.
    Marschner P., Yang C.H., Lieberei R. et al.,2001. Soil and plant specific effects on bacterial community composition in the rhizosphere[J]. Soil Biology and Biochemistry,33:1437-1445.
    May R.M.1973. Stability and Complexity in Model Ecosystems[M]. Princeton:Princeton University Press.
    McGrady-Steed J., Harris P. M., Morin P. et al.,1997. Biodiversity regulates ecosystem predict stability [J].Nature,390:162-165.
    McNeill J.R., Winiwarter V.2004.Soil and trouble[J]. Science,304:1614-1615.
    Micks P., Downs M. R., Magill A. H. et al.,2004. Decomposing litter as a sink for 15N-enriched additions to an oak forest and a red pine plantation[J]. Forest Ecology and Management,196: 71-87.
    Mittelbach G. G., Steiner C. F., Scheiner S. M. et al.,2001.What is the observed relationship between species richness and productivity [J]. Ecology,82(9):2381-2396.
    Moore J.C.2003.Top-down is bottom-up:Does predation in the rhizosphere regulate aboveground dyna-mics? [J]. Ecology,84(4):846-857.
    Moore T.R., Trofymow J.A., Taylor B. et al.,1999. Litter decomposition rates in Canadian forests [J]. Global Change Biology,5(1):75-82.
    Murphy M., Balser T., Buchmann N. et al.,2008. Linking tree biodiversity to belowground process in a young tropical plantation:Impacts on soil CO2 flux[J]. Forest Ecology and Management,255: 2577-2588.
    Naeem S., Hahn D. R., Schuurman G.2000. Producer-decomposer co-dependency influences biodiversity effects[J]. Nature,403:762-764.
    Naeem S., Hakansson K., Lawton J.H. et al.,1996. Biodiversity and plant productivity in a model assemblage of plant species[J]. Oikos,76:259-264.
    Naeem S., Li S.1997. Biodiversity enhances ecosystem reliability[J]. Nature,390:507-509.
    Naeem S., Thompson L. J., Lawler S. P. et al.,1995. Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems[J]. Philosophical Transactions:Biological Science,347:249-262.
    Naeem S., Thompson L. J., Lawler S.P. et al.,1994. Declining biodiversity can alter the performance of ecosystems[J]. Nature,368:734-736.
    Neher D.2001. Role of ncmatodes in soil health and their uscas indicators[J]. Journal of Nematology, 33:161-168.
    Newell K.1984. Interactions between two decomposer basidiomycetes and a collebolan under Sitka spruce:Distribution,abundance and selective grazing[J].Soil Biology and Biochemistry,16: 227-233.
    Oliver D., Sigrun B., Petra R., el al.,2001. Shifts in physiologicalcapabilities of themicrobiota during the decomposition of leaf litter ina black alder(Alnus glulinosa (Gaertn.)L.) forest[J].Soil Biology and Biochemistry,33(7):921-930.
    Pacala S., Tilman D.2002. The transition from sampling to complementary [A]. Kinzig A. Pacala S. Tilman D. et al., The functional consequences of biodiversity:Empirical Progress and Theoretical Extensions [M]. Princeton University Press, Priceton.
    Paerl H. W., Pinckney J. L.1996. A mini-review of microbial consortia:their roles in aquatic production and biogeochemical cycling[J]. Microbial Ecology,31:225-247.
    Park S. C., Smith T.J., Bisesi M.S.1992.Activities of phosphomonoesterase from Lumbricus terrestris[J]. Soil Biology and Biochemistry,24:873-876.
    Parkinson D.,Visser S.,Whittaker J.B.et al.,1979. Effects of collembolan grazing on fungal colonization of leaf litter[J]. Soil Biology and Biochemistry,16:227-233.
    Pausas J. G., Casals P., Ronmnyh J.2004. Litter decomposition and faunal activity in Mediterranean forest soils:effects of N content and the moss layer[J]. Soil Biology and Biochemistry,36: 989-997.
    Peres G., Cluzeau D., Curmi P.et al.,1998. Earthworm activity and soil structure changes due to organic enrichments in vineyard systems[J]. Biology and Fertility of Soils,27:417-424.
    Ping-Chun L.H.,Xiaoming Z.,Ching-Yu H. et al.,2005.Plant litter decomposition influenced by soil animals and disturbance in a subtropical rainforest of Taiwan[J]. Pedobiologia,49:539-547.
    Raty M., HuhtaV.2003. Earthworms and pH affect communities of nematodes and enchytraeids in forest soil[J]. Biology and Fertility of Soils,38:52-58.
    Ritter E.2005.Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech(Fagus wylvatica)forest[J]. Soil Biology and Biochemistry,37(7):1237-1247.
    Ritz K.2005. Underview:origins and consequences of belowground biodiversity. In:Bardgett R. D., Hopkins D. W., Usher M. B.(eds.). Biological Diversity and Function in Soils[M]. Cambridge: Cambridge University Press.
    Ross D. J.1987.Soil microbial biomass estimated by the fumigation-incubation procedure:seasonal fluctuation and influence of soil moisture content[J]. Soil Biology and Biochemistry,19:397-404.
    Sariyildiz T., Anderson J. M.2003.Interactions between litter quality, decomposition and soil fertility:a laboratory study[J]. Soil Biology and Biochemistry,35:391-399.
    Sariyildiz T., Anderson J. M.2003.Interactions between litter quality, decomposition and soil fertility: a laboratory study[J]. Soil Biology and Biochemistry,35:391-399.
    Scheu S., Schlit N., Tiunov A.V. et al.,2002. Effects of the presence and community composition of earthworms on microbial community functioning[J]. Oecologia,133:254-260.
    Schipper L.A., Degens B.P., Sparling G.P.2001.Changes in microbial heterotrophic diversity along five plants successional sequences[J]. Soil Biology and Biochemistry,33:2093-2103.
    Sinsabaugh R.L., Antibus R.K., Linkins A.E., et al.,1993. Wood decomposition:nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[J].Ecology,74:1586-1593.
    Staddon W.J.1997. Effects of selected forestry practices and climatic factors on forest soil microbial diversity and soil enzymatic activity[D]. Guelph, Canada:University of Guelph.
    Standing D. B., Rangel Castro J. I., Presser J. I. et al.,2005. Rhizosphere carbon flow:a driver of soil microbial diversity. In:Bardgett R. D., Hopkins D. W., Usher M. B.(eds.). Biological Diversity and Function in Soils[M]. Cambridge:Cambridge University Press.
    Stork N. E., Eggleton P.1992. Invertebrates as determinants and indicators of soil quality[J]. American Journal of Alternative Agriculture,7:23-32.
    Sundin P., Valeur A., Olsson S. et al.,1990. Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere:effects on root exudation and distribution of bacteria[J]. FEMS Microbiology Ecology,73:13-22.
    Swift M. J., Heal O.W., Anderson J.M.1979. Decomposition in Terrestrial Ecosystems[M]. Berkley, California:University of California Press.
    Swift M.J., Boddy L.1984. Animal-microbial interactions in wood decomposition.In:Anderson J.M., Rayner A.D.M., Walton D.W.H.(eds.). Invertebrate Microbial Interactions[M].Cambridge:Cam-bridge University Press.
    Syers J.K., Sharpley A.N., Keeney D.R.1979.Cycling of nitrogen by surface-casting earthworms in a pasture ecosystem[J]. Soil Biology and Biochemistry,11:181-185.
    Symstad A. J., Tilman D.2001.Diversity loss, recruitment limitation, and ecosystem functioning: lessons learned from a removal experiment[J]. Oikos,92:424-435.
    Taylor B.R., Parkinson D., Parsons W.F.J.1989. Nitrogen and lignin content as predictors of litter decay rates:A microcosm test[J]. Ecology,79(l):97-104.
    Tian G., Olimah J.A., Adeoye G.O.et al.,2000.Regeneration of earthworm populations in a degraded soil by natural, planted fallows under humid tropical conditions[J]. Soil Science Society of America Journal,64:222-228.
    Tian X. J., Takeishi T.2002. Relative roles of microorganisms and fauna on needle litter decomposition in a subalpine coniferous forest [J]. Acta Phytoecologica Sinica,26(3):257-263.
    Tilman D.1982.Resource Competition and Community Structure[M]. Princeton:Princeton University Press.
    Tilman D.1997. Distinguishing between the effects of species diversity and species composition [J]. Oikos,80:185.
    Tilman D., Downing J. A.,1994. Biodiversity and stability in grassland[J], Nature,367:363-365.
    Tilman D., Reich P. B., Knops J. et al.,2001. Diversity and productivity in a long-term grassland experiment[J]. Science,294:843-845.
    Tilman D., Wedin D., Knops J.1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems[J]. Nature,379:718-720.
    Trevor J. T.1984. Election transport system activity in soil, sediment and pure cultures[J]. CRC Critical Reviews Microbiology,11:83-100.
    Tso S. F., Taghon G. L.2006. Protozoan grazing increases mineralization of naphthalene in marine sedi ment[J]. Microbial Ecology,51:460-469.
    Tuor U.,Winterhalter K., Fiechter A.1995. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay[J]. Journal of Biotechnology,41:1-17.
    Uhia E., Briones J.I.2002. Population dynamics and vertical distribution of enchytraeids and tardigrades in response to deforestation [J]. Acta Oecologica,23(6):349-359.
    Vandermeer J. H.1990. Intercropping. In:Carrol C. R., Vandermeer J. H., Rosset P. M.(eds.). Agroecology [M]. New York:McGraw-Hill.
    Visser S.1985. Role of the soil invertebrates in determining the composition of soilmicrobial communities[A]. In:Fitter A. H., Atkinson D., Read D. J. and Usher M. B.(eds.). Ecological interactions in soil-plants, microbes and animals[C]. Boston:Blackwell Scientific Publications.
    Vitousek P. M., Turner D. R.., Patton W. J. et al.,1994. Litter decomposition on the Mauna Loa environment matrix, Hawaii:Patterns, mechanisms and models[J]. Ecology,75(2):418-429.
    Waid J.S.1999. Does soil biodiversity dependent upon metabolic activity and influences?[J]. Applied Soil Ecology,13:151-158.
    Waide, R. B., Willing M. R., Steiner C. F. et al.,1999. The relationship between productivity and species richness[J]. Annual Review of Ecology and Systematics,30:257-300.
    Wardle D. A.1999. Is "sampling effect" a problem for experiments investigating biodiversity-ecosystem function relationships?[J]. Oikos,87:403-407.
    Wardle D. A., Bardgett R. D., Klironomos J. N. et al.,2004. Ecological linkages between aboveground and belowground biota[J]. Science,304:1629-1633.
    Wardle D.A., Zackrisson O.2005. Effect of species and functional group loss on island ecosystem properties [J]. Nature,435(9):806-810.
    Wardle D.A.,Yeates G.W., Nicholson K.S. et al.,1999. Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period[J]. Soil Biology and Biochemistry,31:1707-1720.
    Wood T.G.1991. Field investigations on the decomposition of leaves of Eucalyptus delegatensis in relation to environmental factors[J]. Pedobiologia,14:343-371.
    Wright M. S., Covich A. P.2005. Relative importance of bacteria and fungi in a tropical headwater stream:Leaf decomposition and invertebrate feeding preference[J]. Microbial Ecology,49: 536-546.
    Xiaodong Y. Jin C.2009. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China[J]. Soil Biology and Biochemistry,41: 910-918.
    Yang W.Q., Wang K.Y., Kellomaki S. et al.,2005. Litter dynamics of three subalpine forests in the western Sichuan[J]. Pedosphere, 15(5):653-659.
    Yang Y. S., Guo J. F., Chen G. S. et al.,2004. Litterfall nutrient return, and leaf-litter decomposition in four plantations compared with a natural forest in subtropical China[J]. Annals of Forest science,!: 465-476.
    Yedzis P.1981.The stability of real ecosystems[J]. Nature,289:674-676.
    Zak D.R., Holmes W.E., White D.C.et al.,2003. Plant diversity, soil microbial communities, and ecosystem function:are there any links? [J]. Ecology,84(8):2042-2050.
    Zhang B. G., Li G.T., Shen T. S. et al.,2000.Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida[J]. Soil Biology and Biochemistry,32:2055-2062.
    Zimmer M., Topp W.1998. Microorganisms and cellulose digestion in the gut of Porcelli scaber(Isopoda:Oniscidae)[J]. Journal of Chemical Ecology,24:1397-1408.
    Zwart K. B., Kuikman P. J., Van Veen J. A.1994. Rhizosphere protozoa:their significance in nutrient dynamics. In:Darbyshire J. F.(eds.). Soil Protozoa[M]. Wallingford, Oxon:C.A.B. International.
    毕江涛,贺达汉.2009.植物对上壤微生物多样性的影响研究进展[J].中国农学通报,25(9):244-250.
    曹志平,李德鹏,韩雪梅.2011.土壤食物网中的真菌/细菌比率及测定方法[J].生态学报,31(16):4741-4748.
    陈法霖,郑华,阳柏苏,等.2011.中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响[J].生态学报,31(11):3027-3035.
    陈国孝,宋大祥.2000.暖温带北京小龙门林区土壤动物的研究[J].生物多样性,8(1):88-95.
    陈立明,丁雷,满秀玲.2009.云冷杉林土壤酶活性与植物多样性[J].东北林业大学学报,37(3):58-61.
    陈民生,赵京岚,刘杰,等.2008.人工林林下植被研究进展[J].山东农业大学学报,39(2):321-325.
    陈鹏,杨秉赓,张一.1983.长白山北坡高山苔原带土壤动物的生态分布[J].森林生态系统研究(Ⅲ),119-132.
    陈仁华.2004.武夷山小同森林类型土壤微生物分布状况的研究[J].福建林业科技,31(4):44-47.
    陈小鸟,由文辉,王向阳,等.2009,常绿阔叶林不同砍伐处理下土壤动物群落特征[J].生物多样性,17(2):160-167.
    陈小云,刘满强,胡锋,等.2007.根际微型土壤动物—原生动物和线虫的生态功能[J].生态学报,27(8):3132-3143.
    陈印平,赵昕华,吴越华,等.2005.森林凋落物与土壤质量的互作效应研究[J].世界科技研究与发展,27(4):88-94.
    杜玮超,袁霞,曲同宝.2011.土壤微生物多样性与地上植被类型关系的研究进展[J].当代生态农业,1-2:14-18.
    冯保平,高润宏,张秋良,等.2009.不同经营方式下兴安落叶松林上壤微生物年季动态研究[J].内蒙古农业大学学报,30(4):74-79.
    傅必谦,陈卫,高武,等.1997.百花山山杨桦木林土壤动物群落及其季节动态[J].动物学杂志,32(2):10-15.
    傅荣恕,尹文英.1999.伏牛山地区土壤动物群落的初步研究[J].动物学研究,20(5):396-398.
    傅卢雷.2007.土壤生物多样性的研究概况与发展趋势[J].生物多样性,15(2):109-115.
    高贤明.1997.秦岭太白山弃耕地植物群落演替的生态学研究[J].生态学报,17(6):619-625.
    耿玉清,戴伟,余新晓,等.2008.森林经营对土壤酶活性影响的研究进展[J].北京林业大学学报,30(增2):132-138.
    谷思玉,隋跃宇.2007.红松人工纯林、人工混交林和天然林几种土壤酶活性比较[J].农业系统科学与综合研究,23(4):486-488.
    关松荫.1986.土壤酶及其研究法[M].北京:农业出版社.
    郭剑芬,杨玉盛,陈光水,等.2006.森林凋落物分解研究进展[J].林业科学,42(4):93-100.
    郭正刚.2003.白龙江上游地区森林植物群落物种多样性的研究[J].植物生态学报,27(3):389-395.
    郝占庆,吕航.1989.木质物残体在森林生态系统中的功能评述[J].生态学进展,6(3):179-183.
    何跃军,刘锦春,钟章成,等.2008.重庆石灰岩地区植被恢复过程土壤酶活性与植物多样性的关系[J].西南大学学报,30(4):139-143.
    洪坚平,谢英荷,Kleber M,等.1997.德国西南部惠格兰牧草区土壤微生物生物量的研究[J].生态学报,17(5):493-496.
    胡小飞,陈伏生,葛刚.2007.森林采伐对林地表层土壤主要特征及其生态过程的影响[J].土壤通报,38(6):1213-1218.
    胡亚林,江思龙,黄宇,等.2005.凋落物化学组成对土壤微生物学性状及上壤酶活性的影响[J].生态学报,25(10):2662-2668.
    胡亚林,汪思龙,颜绍馗.2006.影响土壤微生物活性与群落结构因素研究进展[J].土壤通报,37(1):170-176.
    胡肄慧,陈灵芝,陈清朗,等.1987.几种树木枯叶分解速率的试验研究[J].植物生态学与地植物学学报,11(2):124-132.
    黄建辉,白永飞,韩兴国.2001.物种多样性与生态系统功能:影响机制及有关假说[J].生物多样性,9(1): 1-7.
    黄锦学,黄李梅,林智超,等.2010.中国森林凋落物分解速率影响因素分析[J].亚热带资源与环境学报,5(3):56-63.
    黄旭,文维全,张健,等.2010.川西高山典型自然植被土壤动物多样性[J].应用生态学报,21(1):181-190.
    黄玉梅,张健,杨万勤.2006.巨桉人上林上壤动物群落结构特征[J].生态学报,26(8):2502-2509.
    黄玉梅,张健,杨万勤.2006.巨桉人工林中小型土壤动物类群分布规律[J]应用生态学报,17(12):2327-2331.
    黄玉梅.2004.土壤动物群落多样性研究进展[J].西部林业科学,33(3):63-68.
    黄志宏,田大伦,梁瑞友,等.2007.南岭不同林型土壤微生物数量特征分析[J].中南林业科技大学学报,27(3):1-5.
    姜培坤,周国模.2003.侵蚀型红壤植被恢复后土壤微生物量碳、氮的演变[J].水土保持学报,17(1):112-114.
    李振高,骆永明,滕应.2008.上壤与环境微生物研究法[M].北京:科学出版社.
    李海涛,于贵瑞,李家永,等.2007.亚热带红壤丘陵区四种人工林凋落物分解动态及养分释放[J].生态学报,27(3):899-907.
    李禄军,曾德慧,于古源.2010.物种/功能群去除实验及其在生态学中的应用[J].生态学报,30(1)197-204.
    李禄军,曾德慧.2008.物种多样性与生态系统功能的关系研究进展[J].生态学杂志,27(11)2010-2017.
    李淑兰,陈永亮.2004.不同落叶林林下凋落物的分解与养分归还[J].南京林业大学学报,28(5):59-62.
    李晓捷,王绪芳,袁建立,等.2007.泾河流域不同森林植被类型中物种多样性与生产力的关系[J].兰州大学学报(自然科学版),43(4):42-46.
    李媛良,江思龙,颜绍馗.2011.杉木人上林剔除林下梢被对凋落物层养分循环的短期影响[J].应用生态学报,22(10):2560-2566.
    李云乐,乔玉辉,孙振钧,等.2006.不同土壤培肥措施下农田有机物分解的生态过程[J].生态学报,26(6):1933-1939.
    李志安,邹碧,丁永祯,等.2004.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志,23(6):77-83
    李志辉,李跃林,杨民胜,等.2000.桉树人工林地土壤微生物类群的生态分布规律[J].中南林学院学报,20(3):24-28.
    梁文举,葛亭魁,段玉玺.2001.土壤健康及土壤动物生物指示的研究与应用[J].沈阳农业大学学报,32:70-72.
    廖崇惠,李健雄,杨悦屏,等.2003.海南尖峰岭热带林十壤动物群落——群落结构的季节变化及其气候因素[J].生态学报,23(1):139-147.
    林开敏,章志琴,邹双全,等.2006.杉木与阔叶树种凋落物混合分解对土壤性质的影响[J].土壤通报,37(2):258-262.
    林英华,孙家宝,郑桂华,等.2005.帽儿山土壤动物在凋落叶分解过程中的动态和作用[J].东北林业大学学报,33(6):33-36.
    刘红,袁兴中.1999.曲阜孔林土壤动物多样性研究[J].应用生态学报,10(5):609-611.
    刘红,袁兴中.2000.中国东部山地森林上壤动物多样性[J].山地学报,18(3):221-225.
    刘建军,陈海滨,田呈明,等.1998.秦岭火地塘林区主要树种根际微生态系统土壤性状研究[J].土壤侵蚀与水土保持学报,4(3):52-56.
    刘庆.2002.亚高山针林生态学研究[M].成都:四川大学出版社.
    刘爽,王传宽.2010.五种温带森林土壤微生物生物量碳氮的时空格局[J].生态学报,30(12):3135-3143.
    刘洋,张健,冯茂松.2006.巨桉人工林凋落物数量、养分归还量及分解动态[J].林业科学,42(7):1-10.
    刘颖,武耀祥,韩士杰,等.2009.长白山四种森林类型凋落物分解动态[J].生态学杂志,28(3):400-404.
    刘永杰,刘文耀,陈林,等.2010.哀牢山两类山地森林林冠及林下腐殖质微生物群落比较[J].应用生态学报,21(9):2257-2266.
    刘增文,段而军,高文俊,等.2008.秦岭山区人工林地枯落叶客置对土壤生物、化学性质的影响[J].应用生态学报,19(4):704-710.
    刘增文,潘开文,杜红霞,等.2006.森林植物-枯落物-上壤微生物系统N关系研究进展[J].西北林学院学报,21(1):72-75.
    龙妍,惠竹梅,程建梅,等.2007.生草葡萄园土壤微生物分布及土壤酶活性研究[J].西北农林科技大学学报,35(6):99-103.
    鲁海燕,徐艾诗,曹靖.2010.微生物多样性对植物群落影响的研究进展[J].长春理工大学学报,33(3):103-106.
    吕瑞恒,刘勇,李国雷,等.北京延庆飞播林区不同植被类型土壤肥力的差异[J].东北林业大学学报,5:39-42.
    罗明,庞峻峰,李叙勇,等.1997.新疆天山云杉林区森林土壤微生物学特性及酶活性[J].生态学杂志,16(1):26-30.
    马琦,张醒华,谷艳芳.2011,民权林场不同林型大型土壤动物群落结构及生物多样性动态研究[J].河南大学学报,41(6):615-622.
    孟好军,刘贤德,金铭,等.2007.祁连山不同森林植被类型对上壤微生物影响的研究[J].土壤通报,38(6):1127-1130.
    莫江明,布朗,孔国辉,等.1996.鼎湖山生物圈保护区马尾松林凋落物的分解及其营养动态研究[J].植物生态学报,20(6):534-542.
    彭少麟,黄忠良.2000.生产力与生物多样性之间相互关系研究概述[J].生态科学,19(1):1-9.
    邱波,王刚.2003.生产力与生物多样性关系研究进展[J].生态科学,22(3):265-270.
    邱尔发,陈卓梅,郑郁善,等.2005.麻竹山地笋用林凋落物发生、分解及养分归还动态[J].应用生态学报,16(5):811-814.
    曲浩,赵学勇,赵哈林,等.陆地生态系统凋落物分解研究进展[J].草业科学,27(8):44-51.
    沈海龙,丁宝永,沈国舫,等.1996.樟子松人工林下针阔叶凋落物分解动态[J].林业科学,32(5)393-402.
    宋永昌.2001.植被生态学[M].上海:华东师范大学出版社.
    孙翠玲,郭玉文,佟超然,等.1997.杨树混交林地上壤微生物与酶活性的变异研究[J].林业科学,33(6):488-496.
    孙翠玲,佟超然,徐兰成,等.2001.杨树不同栽培模式生长量、士壤微生物及酶活性的研究[J].林业科学,14(3):336-339.
    孙清芳,刘延坤,邵英男,等.2011.中国森林上壤微生物动态变化研究进展[J].36(6):117-121.
    孙书存,安树青,刘茂松,等.2000物种多样性与植物凋落物分解的相互关系:研究概述[C].生物多样性保护与区域可持续发展,101-110.
    覃光莲,杜国祯.2005.高寒草甸植物群落中物种多样性与群落变异性的关系及其机制初探[J].生态学杂志,24(11):1303-1307.
    覃光莲,马晓燕,杜国祯.2005.高寒草甸植物群落中物种多样性与种群变异性关系及其机制初探[J].兰州大学学报(自然科学版),41(3):31-35.
    谭周进,戴素明,谢桂先,等.2006.旅游踩踏对上壤微生物生物量碳、氮、磷的影响[J].环境科学学报,26(11):1921-1926.
    田兴军,立石贵浩.2002.亚高山针叶林土壤动物和十壤微生物对针叶分解的作用[J].植物生态学报,26(3):257-263.
    王凤友.1989.森林凋落量研究综述[J].生态学进展,6(2):82-89.
    工开运,杨万勤,宋光煜.2004.川西亚高山森林生态系统过程研究[M].成都:四川科学技术出版社.
    王邵军,阮宏华,汪家社,等.2010.武夷山土壤动物群落结构在凋落物分解过程中的变化[J].西南林学院学报,30(6):43-47.
    王希华,黄建军,闫思荣.2004.天童国家森林公园常见植物凋落叶分解的研究[J].植物生态学报,28(4):457-467.
    工相娥,薛立,谢腾芳.2009.凋落物分解研究综述[J].土壤通报,40(6):1473-1476.
    王星丽,殷秀琴,宋博,等.2011.羊草草原主要凋落物分解及土壤动物的作用[J].草业学报,20(6):143-149.
    工振中,张友梅,李忠武.2009.黄山森林生态系统土壤动物群落结构特征及其多样性[J].林业科学,45(10):168-173.
    王震洪,段昌群,侯永平,等.2006.植物多样性与生态系统土壤保持功能关系及其生态学意义[J].植物生态学报,30(3):392-403.
    吴纪华,宋慈玉,陈家宽.2007.食微线虫对植物生长及上壤养分循环的影响[J].生物多样性,15(2):124-133.
    吴鹏飞,刘兴良,刘世荣.2009,米亚罗亚高山草甸冬春两季土壤动物群落特征的比较[J].草业学报,18(5):123-129.
    吴鹏飞,刘兴良,刘世荣.2011.米亚罗林区冬季大型土壤动物空间分布特征[J].土壤学报,48(3):659-664.
    吴鹏飞,朱波.2008.桤柏混交林与纯柏林土壤动物群落特征的比较[J].应用与环境生物学报,14(4):488-493.
    夏北成,Zhou Jizhong,James M.Tiedje.1998植被对土壤微生物群落结构的影响[J].应用生态学报,9(3):296-300.
    夏磊,吴福忠,杨万勤.2011.季节貹冻融期间土壤动物对岷江冷杉凋落叶质量损失的贡献[J].植物生态学报,35(11):1127-1135.
    向泽宇,王长庭,宋文彪,等.2011.草地生态系统土壤酶活性研究进展[J].草业科学,28(10):1801-1806.
    肖德荣,田昆,张利权.2008.滇西北高原纳帕海湿地植物多样性与土壤肥力的关系[J].生态学报,28(7):3116-3124.
    肖辉林,郑习健.2001.植物多样性对土壤微生物的影响[J].土壤与环境,10(3):238-241.
    肖育贵,胡震宇.1997.不同林型土壤微生物种群数量及养分变化分析[J].四川林业科技,18(4)32-35.
    忻介六.1986.土壤动物知识[M].北京:科学出版社.
    熊浩仲,王开运,杨万勤.2004.川西亚高山冷杉林和白桦林土壤酶活性季节动态[J].应用与环境生物学报,10(4):416-420.
    徐国良,莫江明,周国逸,等.2005.氮沉降下鼎湖山森林凋落物分解及与土壤动物的关系[J].生态环境、14(6):901-907.
    徐振锋,尹华军,赵春章,等.陆地生态系统凋落物分解对全球气候变暖的响应[J].植物生态学报,33(6):1208-1219.
    许光辉,郑洪元,张德生,等.1985.长白山自然保护区三个主要林型下土壤微生物生态分布的季节性 动态[J].林业科学,21(3):286-291.
    许国志,顾基发,车宏安.2000.系统科学[M].上海:上海科技教育出版社.
    许景伟,王卫东,李成.2000.不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究[J].北京林业大学学报,22(1):51-55.
    许湘琴,林植华,陈慧丽.2011.凋落物分解对土壤生物的影响[J].生态学杂志,30(6):1258-1264.
    许新建,陈金耀,俞新妥.1995.武夷山六种杉木伴生树种落叶养分归还的研究[J].福建林学院学报,15(3):213-217.
    薛立,吴敏,徐燕,等.2005.几个典型华南人工林土壤的养分状况和微生物特性研究[J].土壤学报,42(6):1017-1023.
    薛立,向文静,何跃君,等.2005.不同林地清理方式对杉木林上壤肥力的影响[J].应用生态学报,16(8):1417-1421.
    严海元,辜夕容,申鸿.2010.森林凋落物的微生物分解[J].生态学杂志,29(9):1827-1835.
    颜绍馗,汪思龙,于小军,等.2004.桤木混交对杉木人工林大型上壤动物群落的影响[J].应用与环境生物学报,10(4):462-466.
    杨承栋,焦如珍.1999杉木人工林根际土壤性质变化的研究[J].林业科学,35(6):2-9.
    杨芳,王开运,方德华,等.2004.川西业高山针叶林土壤微生物生态研究展望[J].内蒙古林业科技,(2):26-29.
    杨万勤,邓仁菊,张健.2007.森林凋落物分解及其对全球气候变化的响应[J].应用生态学报,18(12)2889-2895.
    杨万勤,王开运.2002.土壤酶研究进展[J].应用与环境生物学报,8(5):564-570.
    杨力勤,王开运.2004.森林土壤酶的研究进展[J].林业科学,40(2):152-159.
    杨万勤,张健,胡庭兴,等.2006森林土壤生态学[M].成都:四川科学技术出版社.
    杨万勤,钟章成,韩玉萍.1999.缙云山森林土壤酶活性的分布特征、季节动态及与四川大头茶的关系研究[J].西南师范大学学报,24(3):318-324.
    杨万勤,钟章成,陶建平,等.2001.缙云山森林土壤酶活性与植物多样性的关系[J]林业科学,37(4)124-128.
    杨万勤.2003.川西亚高山针叶林土壤生态过程的研究[J].世界科技研究与发展,25(5):33-40.
    杨喜田,宁国华,董慧英,等.2006.太行山区不同植被群落土壤微生物学特征变化[J].应用生态学报,17(9):1761-1764.
    杨效东,唐勇,唐建纬.2001.热带次生林火烧前后土壤节肢动物群落组成和分布特征的变化[J].生态学杂志,20(5):32-35.
    杨玉盛,郭剑芬,陈银秀,等.2004.福建柏和杉木人工林凋落物分解及养分动态的比较[J].林业科学,40(3):19-25.
    杨玉盛,李振问,俞新妥,等.1994.杉木林替代阔叶林后土壤肥力的变化[J].植物生态学报,18(3)236-242.
    杨曾奖,曾杰,徐大平,等.2007.森林枯枝落叶分解及其影响因素[J].生态环境,16(2):649-654.
    易海燕,宫渊波,陈林武,等.2010.岷江上游山地森林/干旱河谷交错带退耕还林后土壤养分变化和微生物分布特征[J].水上保持研究,17(2):130-135.
    殷秀琴,蒋云峰,陶岩,等.2011.长白山红松阔叶混交林土壤动物生态分布[J].地理科学,31(8):935-940.
    殷秀琴,宋博,邱丽丽.2007.红松阔叶混交林凋落物-土壤动物土壤系统中N、P、K的动态特征[J].生态学报,27(1):129-134.
    殷秀琴,张桂荣.1993.森林凋落物与大型土壤动物相关关系的研究[J].应用生态学报,4(2):167-173.
    尹文英.2000.中国土壤动物[M].北京:科学出版社.
    尹文英.1992.中国亚热带土壤动物[M]北京:科学出版社.
    尹文英.1993.中国动物学的研究近况[J].生命科学,5(3):1-4.
    于淑玲,2003.腐生真菌在有机质分解过程中的作用研究进展[J].河北师范大学学报,27(5):519~522.
    曾思齐,周国英,佘济云.1998.湘东丘陵区次生林上壤微生物的分布及酶的活性研究[J].中南林学院学报,18(2):20-23.
    张鼎华,范少辉.2002.亚热带常绿阔叶林和杉木林皆伐后林地土壤肥力的变化[J].应用与环境生物学报,8(2):115-119.
    张浩,潘介昌,唐光大,等.2002.).广东天井山森林群落植物多样性与土壤持水性研究[J].广东林业科技,1:25-30.
    张洪芝,吴鹏飞,杨大星,等.2011,青藏东缘若尔盖高寒草甸中小型土壤动物群落特征及季节变化[J].生态学报,31(15):4385-4397.
    张金屯.2004.数量生态学[M].北京:科学出版社.
    张猛,张健,刘远鹏,等.2005.土壤管理方式对李园土壤微生物和酶活性的影响[J].中国南方果树,34(1):42-45.
    张其水,俞新妥.1990.杉木连栽林地营造混交林后土壤微生物的季节动态研究[J].生态学报,10(2):121-125.
    张全国,张大勇.2002.生产力、可靠度与物种多样性:微宇宙实验研究[J].生物多样性,10(2)135-142.
    张淑花,张雪萍.2009.大兴安岭火烧迹地土壤动物的群落多样性[J].应用与环境生物学报,15(5)672-676.
    张淑花,张雪萍.2011.大兴安岭森林火烧迹地大型上壤动物功能类群[J].东北林业大学学报,39(8):70-72.
    张卫信,陈迪马,赵灿灿.2007.蚯蚓在生态系统中的作用[J].生物多样性,15(2):142-153.
    张雪萍,候威岭,陈鹏.2001.东北森林土壤动物同功能种团及其生态分布[J].应用与环境生物学报,7(4):370-374.
    张雪萍,黄丽荣,姜丽秋.2008.大兴安岭北部森林生态系统大型土壤动物群落特征[J].27(3):509-518.
    张雪萍,李春艳,张思冲.2001.马陆在森林生态系统物质转化中的功能研究[J].生态学报,21(1)75-79.
    张雪萍,张毅,侯威岭,等.2000.小兴安岭针叶凋落物的分解与土壤动物的作用[J].地理科学,20(6):552-556.
    张雪萍,仲伟彦,马志伟,等.1996.阔叶树分解过程与土壤动物的作用[J].林业科技,21(3):1-4.
    张志霞,南志标.2010.土壤微生物生物量的研究进展[J].草业科学,27(6):50-57.
    郑伟,霍光华,骆昱春,等.2010.马尾松低效林不同改造模式土壤微生物及土壤酶活性的研究[J].江西农业大学学报,32(4):743-751.
    仲伟彦,殷秀琴,陈鹏.1999.帽儿山森林落叶分解消耗与土壤动物关系的研究[J].应用生态学报,10(4):511-512.
    周智彬,李培军,徐新文,等.2002.塔里木沙漠公路防护林十壤微生物的生态分布特征[J]水土保持学报,16(3):47-51.
    祝廷成,钟章成,李建东.1988.植物生态学[M].北京:高等教育出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700